blob: 5373acd57b0e477b17c6420bf3085561fb4d92cf [file] [log] [blame]
Alexander Belopolskyf0a0d142010-10-27 03:06:43 +00001:mod:`ast` --- Abstract Syntax Trees
2====================================
Georg Brandl0c77a822008-06-10 16:37:50 +00003
4.. module:: ast
5 :synopsis: Abstract Syntax Tree classes and manipulation.
6
7.. sectionauthor:: Martin v. Lรถwis <martin@v.loewis.de>
8.. sectionauthor:: Georg Brandl <georg@python.org>
9
Raymond Hettinger10480942011-01-10 03:26:08 +000010**Source code:** :source:`Lib/ast.py`
Georg Brandl0c77a822008-06-10 16:37:50 +000011
Raymond Hettinger4f707fd2011-01-10 19:54:11 +000012--------------
13
Georg Brandl0c77a822008-06-10 16:37:50 +000014The :mod:`ast` module helps Python applications to process trees of the Python
15abstract syntax grammar. The abstract syntax itself might change with each
16Python release; this module helps to find out programmatically what the current
17grammar looks like.
18
Benjamin Petersonec9199b2008-11-08 17:05:00 +000019An abstract syntax tree can be generated by passing :data:`ast.PyCF_ONLY_AST` as
Georg Brandl22b34312009-07-26 14:54:51 +000020a flag to the :func:`compile` built-in function, or using the :func:`parse`
Georg Brandl0c77a822008-06-10 16:37:50 +000021helper provided in this module. The result will be a tree of objects whose
Benjamin Petersonec9199b2008-11-08 17:05:00 +000022classes all inherit from :class:`ast.AST`. An abstract syntax tree can be
23compiled into a Python code object using the built-in :func:`compile` function.
Georg Brandl0c77a822008-06-10 16:37:50 +000024
Georg Brandl0c77a822008-06-10 16:37:50 +000025
26Node classes
27------------
28
29.. class:: AST
30
31 This is the base of all AST node classes. The actual node classes are
32 derived from the :file:`Parser/Python.asdl` file, which is reproduced
33 :ref:`below <abstract-grammar>`. They are defined in the :mod:`_ast` C
34 module and re-exported in :mod:`ast`.
35
36 There is one class defined for each left-hand side symbol in the abstract
37 grammar (for example, :class:`ast.stmt` or :class:`ast.expr`). In addition,
38 there is one class defined for each constructor on the right-hand side; these
39 classes inherit from the classes for the left-hand side trees. For example,
40 :class:`ast.BinOp` inherits from :class:`ast.expr`. For production rules
41 with alternatives (aka "sums"), the left-hand side class is abstract: only
42 instances of specific constructor nodes are ever created.
43
44 .. attribute:: _fields
45
46 Each concrete class has an attribute :attr:`_fields` which gives the names
47 of all child nodes.
48
49 Each instance of a concrete class has one attribute for each child node,
50 of the type as defined in the grammar. For example, :class:`ast.BinOp`
51 instances have an attribute :attr:`left` of type :class:`ast.expr`.
52
53 If these attributes are marked as optional in the grammar (using a
54 question mark), the value might be ``None``. If the attributes can have
55 zero-or-more values (marked with an asterisk), the values are represented
56 as Python lists. All possible attributes must be present and have valid
57 values when compiling an AST with :func:`compile`.
58
59 .. attribute:: lineno
60 col_offset
61
62 Instances of :class:`ast.expr` and :class:`ast.stmt` subclasses have
63 :attr:`lineno` and :attr:`col_offset` attributes. The :attr:`lineno` is
64 the line number of source text (1-indexed so the first line is line 1) and
65 the :attr:`col_offset` is the UTF-8 byte offset of the first token that
66 generated the node. The UTF-8 offset is recorded because the parser uses
67 UTF-8 internally.
68
69 The constructor of a class :class:`ast.T` parses its arguments as follows:
70
71 * If there are positional arguments, there must be as many as there are items
72 in :attr:`T._fields`; they will be assigned as attributes of these names.
73 * If there are keyword arguments, they will set the attributes of the same
74 names to the given values.
75
76 For example, to create and populate an :class:`ast.UnaryOp` node, you could
77 use ::
78
79 node = ast.UnaryOp()
80 node.op = ast.USub()
81 node.operand = ast.Num()
82 node.operand.n = 5
83 node.operand.lineno = 0
84 node.operand.col_offset = 0
85 node.lineno = 0
86 node.col_offset = 0
87
88 or the more compact ::
89
90 node = ast.UnaryOp(ast.USub(), ast.Num(5, lineno=0, col_offset=0),
91 lineno=0, col_offset=0)
92
93
94.. _abstract-grammar:
95
96Abstract Grammar
97----------------
98
Georg Brandl0c77a822008-06-10 16:37:50 +000099The abstract grammar is currently defined as follows:
100
101.. literalinclude:: ../../Parser/Python.asdl
102
103
104:mod:`ast` Helpers
105------------------
106
Martin Panter2e4571a2015-11-14 01:07:43 +0000107Apart from the node classes, the :mod:`ast` module defines these utility functions
Georg Brandl0c77a822008-06-10 16:37:50 +0000108and classes for traversing abstract syntax trees:
109
Terry Reedyfeac6242011-01-24 21:36:03 +0000110.. function:: parse(source, filename='<unknown>', mode='exec')
Georg Brandl0c77a822008-06-10 16:37:50 +0000111
Terry Reedyfeac6242011-01-24 21:36:03 +0000112 Parse the source into an AST node. Equivalent to ``compile(source,
Benjamin Petersonec9199b2008-11-08 17:05:00 +0000113 filename, mode, ast.PyCF_ONLY_AST)``.
Georg Brandl0c77a822008-06-10 16:37:50 +0000114
Georg Brandl48310cd2009-01-03 21:18:54 +0000115
Georg Brandl0c77a822008-06-10 16:37:50 +0000116.. function:: literal_eval(node_or_string)
117
Georg Brandlb9b389e2014-11-05 20:20:28 +0100118 Safely evaluate an expression node or a string containing a Python literal or
119 container display. The string or node provided may only consist of the
120 following Python literal structures: strings, bytes, numbers, tuples, lists,
121 dicts, sets, booleans, and ``None``.
Georg Brandl0c77a822008-06-10 16:37:50 +0000122
Georg Brandlb9b389e2014-11-05 20:20:28 +0100123 This can be used for safely evaluating strings containing Python values from
124 untrusted sources without the need to parse the values oneself. It is not
125 capable of evaluating arbitrarily complex expressions, for example involving
126 operators or indexing.
Georg Brandl0c77a822008-06-10 16:37:50 +0000127
Georg Brandl492f3fc2010-07-11 09:41:21 +0000128 .. versionchanged:: 3.2
Georg Brandl85f21772010-07-13 06:38:10 +0000129 Now allows bytes and set literals.
Georg Brandl492f3fc2010-07-11 09:41:21 +0000130
Georg Brandl0c77a822008-06-10 16:37:50 +0000131
Amaury Forgeot d'Arcfdfe62d2008-06-17 20:36:03 +0000132.. function:: get_docstring(node, clean=True)
Georg Brandl0c77a822008-06-10 16:37:50 +0000133
134 Return the docstring of the given *node* (which must be a
135 :class:`FunctionDef`, :class:`ClassDef` or :class:`Module` node), or ``None``
136 if it has no docstring. If *clean* is true, clean up the docstring's
137 indentation with :func:`inspect.cleandoc`.
138
139
140.. function:: fix_missing_locations(node)
141
142 When you compile a node tree with :func:`compile`, the compiler expects
143 :attr:`lineno` and :attr:`col_offset` attributes for every node that supports
144 them. This is rather tedious to fill in for generated nodes, so this helper
145 adds these attributes recursively where not already set, by setting them to
146 the values of the parent node. It works recursively starting at *node*.
147
148
149.. function:: increment_lineno(node, n=1)
150
151 Increment the line number of each node in the tree starting at *node* by *n*.
152 This is useful to "move code" to a different location in a file.
153
154
155.. function:: copy_location(new_node, old_node)
156
157 Copy source location (:attr:`lineno` and :attr:`col_offset`) from *old_node*
158 to *new_node* if possible, and return *new_node*.
159
160
161.. function:: iter_fields(node)
162
163 Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
164 that is present on *node*.
165
166
167.. function:: iter_child_nodes(node)
168
169 Yield all direct child nodes of *node*, that is, all fields that are nodes
170 and all items of fields that are lists of nodes.
171
172
173.. function:: walk(node)
174
Georg Brandl619e7ba2011-01-09 07:38:51 +0000175 Recursively yield all descendant nodes in the tree starting at *node*
176 (including *node* itself), in no specified order. This is useful if you only
177 want to modify nodes in place and don't care about the context.
Georg Brandl0c77a822008-06-10 16:37:50 +0000178
179
180.. class:: NodeVisitor()
181
182 A node visitor base class that walks the abstract syntax tree and calls a
183 visitor function for every node found. This function may return a value
Georg Brandl36ab1ef2009-01-03 21:17:04 +0000184 which is forwarded by the :meth:`visit` method.
Georg Brandl0c77a822008-06-10 16:37:50 +0000185
186 This class is meant to be subclassed, with the subclass adding visitor
187 methods.
188
189 .. method:: visit(node)
190
191 Visit a node. The default implementation calls the method called
192 :samp:`self.visit_{classname}` where *classname* is the name of the node
193 class, or :meth:`generic_visit` if that method doesn't exist.
194
195 .. method:: generic_visit(node)
196
197 This visitor calls :meth:`visit` on all children of the node.
Georg Brandl48310cd2009-01-03 21:18:54 +0000198
Georg Brandl0c77a822008-06-10 16:37:50 +0000199 Note that child nodes of nodes that have a custom visitor method won't be
200 visited unless the visitor calls :meth:`generic_visit` or visits them
201 itself.
202
203 Don't use the :class:`NodeVisitor` if you want to apply changes to nodes
204 during traversal. For this a special visitor exists
205 (:class:`NodeTransformer`) that allows modifications.
206
207
208.. class:: NodeTransformer()
209
210 A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
211 allows modification of nodes.
212
Georg Brandl36ab1ef2009-01-03 21:17:04 +0000213 The :class:`NodeTransformer` will walk the AST and use the return value of
214 the visitor methods to replace or remove the old node. If the return value
215 of the visitor method is ``None``, the node will be removed from its
216 location, otherwise it is replaced with the return value. The return value
217 may be the original node in which case no replacement takes place.
Georg Brandl0c77a822008-06-10 16:37:50 +0000218
219 Here is an example transformer that rewrites all occurrences of name lookups
220 (``foo``) to ``data['foo']``::
221
222 class RewriteName(NodeTransformer):
223
224 def visit_Name(self, node):
225 return copy_location(Subscript(
226 value=Name(id='data', ctx=Load()),
227 slice=Index(value=Str(s=node.id)),
228 ctx=node.ctx
229 ), node)
230
231 Keep in mind that if the node you're operating on has child nodes you must
232 either transform the child nodes yourself or call the :meth:`generic_visit`
233 method for the node first.
234
235 For nodes that were part of a collection of statements (that applies to all
236 statement nodes), the visitor may also return a list of nodes rather than
237 just a single node.
238
239 Usually you use the transformer like this::
240
241 node = YourTransformer().visit(node)
242
243
244.. function:: dump(node, annotate_fields=True, include_attributes=False)
245
246 Return a formatted dump of the tree in *node*. This is mainly useful for
247 debugging purposes. The returned string will show the names and the values
248 for fields. This makes the code impossible to evaluate, so if evaluation is
Serhiy Storchakafbc1c262013-11-29 12:17:13 +0200249 wanted *annotate_fields* must be set to ``False``. Attributes such as line
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000250 numbers and column offsets are not dumped by default. If this is wanted,
Georg Brandl0c77a822008-06-10 16:37:50 +0000251 *include_attributes* can be set to ``True``.