blob: c5c6e47fb3f3eb3fb10a37e52d46f9f43fc7eea8 [file] [log] [blame]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001"""
2Basic statistics module.
3
4This module provides functions for calculating statistics of data, including
5averages, variance, and standard deviation.
6
7Calculating averages
8--------------------
9
Raymond Hettinger9013ccf2019-04-23 00:06:35 -070010================== ==================================================
Larry Hastingsf5e987b2013-10-19 11:50:09 -070011Function Description
Raymond Hettinger9013ccf2019-04-23 00:06:35 -070012================== ==================================================
Larry Hastingsf5e987b2013-10-19 11:50:09 -070013mean Arithmetic mean (average) of data.
Raymond Hettinger72800482019-04-23 01:35:16 -070014fmean Fast, floating point arithmetic mean.
Raymond Hettinger6463ba32019-04-07 09:20:03 -070015geometric_mean Geometric mean of data.
Steven D'Apranoa474afd2016-08-09 12:49:01 +100016harmonic_mean Harmonic mean of data.
Larry Hastingsf5e987b2013-10-19 11:50:09 -070017median Median (middle value) of data.
18median_low Low median of data.
19median_high High median of data.
20median_grouped Median, or 50th percentile, of grouped data.
21mode Mode (most common value) of data.
Raymond Hettinger6463ba32019-04-07 09:20:03 -070022multimode List of modes (most common values of data).
Raymond Hettinger9013ccf2019-04-23 00:06:35 -070023quantiles Divide data into intervals with equal probability.
24================== ==================================================
Larry Hastingsf5e987b2013-10-19 11:50:09 -070025
26Calculate the arithmetic mean ("the average") of data:
27
28>>> mean([-1.0, 2.5, 3.25, 5.75])
292.625
30
31
32Calculate the standard median of discrete data:
33
34>>> median([2, 3, 4, 5])
353.5
36
37
38Calculate the median, or 50th percentile, of data grouped into class intervals
39centred on the data values provided. E.g. if your data points are rounded to
40the nearest whole number:
41
42>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
432.8333333333...
44
45This should be interpreted in this way: you have two data points in the class
46interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
47the class interval 3.5-4.5. The median of these data points is 2.8333...
48
49
50Calculating variability or spread
51---------------------------------
52
53================== =============================================
54Function Description
55================== =============================================
56pvariance Population variance of data.
57variance Sample variance of data.
58pstdev Population standard deviation of data.
59stdev Sample standard deviation of data.
60================== =============================================
61
62Calculate the standard deviation of sample data:
63
64>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
654.38961843444...
66
67If you have previously calculated the mean, you can pass it as the optional
68second argument to the four "spread" functions to avoid recalculating it:
69
70>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
71>>> mu = mean(data)
72>>> pvariance(data, mu)
732.5
74
75
76Exceptions
77----------
78
79A single exception is defined: StatisticsError is a subclass of ValueError.
80
81"""
82
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -070083__all__ = [
84 'NormalDist',
85 'StatisticsError',
86 'fmean',
87 'geometric_mean',
88 'harmonic_mean',
89 'mean',
90 'median',
91 'median_grouped',
92 'median_high',
93 'median_low',
94 'mode',
95 'multimode',
96 'pstdev',
97 'pvariance',
98 'quantiles',
99 'stdev',
100 'variance',
101]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700102
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700103import math
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000104import numbers
Raymond Hettinger11c79532019-02-23 14:44:07 -0800105import random
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700106
107from fractions import Fraction
108from decimal import Decimal
Victor Stinnerd6debb22017-03-27 16:05:26 +0200109from itertools import groupby
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000110from bisect import bisect_left, bisect_right
Raymond Hettinger318d5372019-03-06 22:59:40 -0800111from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700112from operator import itemgetter
113from collections import Counter
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700114
115# === Exceptions ===
116
117class StatisticsError(ValueError):
118 pass
119
120
121# === Private utilities ===
122
123def _sum(data, start=0):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100124 """_sum(data [, start]) -> (type, sum, count)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700125
Steven D'Apranob28c3272015-12-01 19:59:53 +1100126 Return a high-precision sum of the given numeric data as a fraction,
127 together with the type to be converted to and the count of items.
128
129 If optional argument ``start`` is given, it is added to the total.
130 If ``data`` is empty, ``start`` (defaulting to 0) is returned.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700131
132
133 Examples
134 --------
135
136 >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
Benjamin Petersonab078e92016-07-13 21:13:29 -0700137 (<class 'float'>, Fraction(11, 1), 5)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700138
139 Some sources of round-off error will be avoided:
140
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000141 # Built-in sum returns zero.
142 >>> _sum([1e50, 1, -1e50] * 1000)
Benjamin Petersonab078e92016-07-13 21:13:29 -0700143 (<class 'float'>, Fraction(1000, 1), 3000)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700144
145 Fractions and Decimals are also supported:
146
147 >>> from fractions import Fraction as F
148 >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
Benjamin Petersonab078e92016-07-13 21:13:29 -0700149 (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700150
151 >>> from decimal import Decimal as D
152 >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
153 >>> _sum(data)
Benjamin Petersonab078e92016-07-13 21:13:29 -0700154 (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700155
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000156 Mixed types are currently treated as an error, except that int is
157 allowed.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700158 """
Steven D'Apranob28c3272015-12-01 19:59:53 +1100159 count = 0
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700160 n, d = _exact_ratio(start)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100161 partials = {d: n}
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700162 partials_get = partials.get
Steven D'Apranob28c3272015-12-01 19:59:53 +1100163 T = _coerce(int, type(start))
164 for typ, values in groupby(data, type):
165 T = _coerce(T, typ) # or raise TypeError
166 for n,d in map(_exact_ratio, values):
167 count += 1
168 partials[d] = partials_get(d, 0) + n
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700169 if None in partials:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100170 # The sum will be a NAN or INF. We can ignore all the finite
171 # partials, and just look at this special one.
172 total = partials[None]
173 assert not _isfinite(total)
174 else:
175 # Sum all the partial sums using builtin sum.
176 # FIXME is this faster if we sum them in order of the denominator?
177 total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
178 return (T, total, count)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700179
180
Steven D'Apranob28c3272015-12-01 19:59:53 +1100181def _isfinite(x):
182 try:
183 return x.is_finite() # Likely a Decimal.
184 except AttributeError:
185 return math.isfinite(x) # Coerces to float first.
186
187
188def _coerce(T, S):
189 """Coerce types T and S to a common type, or raise TypeError.
190
191 Coercion rules are currently an implementation detail. See the CoerceTest
192 test class in test_statistics for details.
193 """
194 # See http://bugs.python.org/issue24068.
195 assert T is not bool, "initial type T is bool"
196 # If the types are the same, no need to coerce anything. Put this
197 # first, so that the usual case (no coercion needed) happens as soon
198 # as possible.
199 if T is S: return T
200 # Mixed int & other coerce to the other type.
201 if S is int or S is bool: return T
202 if T is int: return S
203 # If one is a (strict) subclass of the other, coerce to the subclass.
204 if issubclass(S, T): return S
205 if issubclass(T, S): return T
206 # Ints coerce to the other type.
207 if issubclass(T, int): return S
208 if issubclass(S, int): return T
209 # Mixed fraction & float coerces to float (or float subclass).
210 if issubclass(T, Fraction) and issubclass(S, float):
211 return S
212 if issubclass(T, float) and issubclass(S, Fraction):
213 return T
214 # Any other combination is disallowed.
215 msg = "don't know how to coerce %s and %s"
216 raise TypeError(msg % (T.__name__, S.__name__))
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000217
218
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700219def _exact_ratio(x):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100220 """Return Real number x to exact (numerator, denominator) pair.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700221
222 >>> _exact_ratio(0.25)
223 (1, 4)
224
225 x is expected to be an int, Fraction, Decimal or float.
226 """
227 try:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100228 # Optimise the common case of floats. We expect that the most often
229 # used numeric type will be builtin floats, so try to make this as
230 # fast as possible.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000231 if type(x) is float or type(x) is Decimal:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100232 return x.as_integer_ratio()
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700233 try:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100234 # x may be an int, Fraction, or Integral ABC.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700235 return (x.numerator, x.denominator)
236 except AttributeError:
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700237 try:
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000238 # x may be a float or Decimal subclass.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700239 return x.as_integer_ratio()
240 except AttributeError:
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000241 # Just give up?
242 pass
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700243 except (OverflowError, ValueError):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100244 # float NAN or INF.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000245 assert not _isfinite(x)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700246 return (x, None)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100247 msg = "can't convert type '{}' to numerator/denominator"
248 raise TypeError(msg.format(type(x).__name__))
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700249
250
Steven D'Apranob28c3272015-12-01 19:59:53 +1100251def _convert(value, T):
252 """Convert value to given numeric type T."""
253 if type(value) is T:
254 # This covers the cases where T is Fraction, or where value is
255 # a NAN or INF (Decimal or float).
256 return value
257 if issubclass(T, int) and value.denominator != 1:
258 T = float
259 try:
260 # FIXME: what do we do if this overflows?
261 return T(value)
262 except TypeError:
263 if issubclass(T, Decimal):
264 return T(value.numerator)/T(value.denominator)
265 else:
266 raise
267
268
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000269def _find_lteq(a, x):
270 'Locate the leftmost value exactly equal to x'
271 i = bisect_left(a, x)
272 if i != len(a) and a[i] == x:
273 return i
274 raise ValueError
275
276
277def _find_rteq(a, l, x):
278 'Locate the rightmost value exactly equal to x'
279 i = bisect_right(a, x, lo=l)
280 if i != (len(a)+1) and a[i-1] == x:
281 return i-1
282 raise ValueError
283
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000284
285def _fail_neg(values, errmsg='negative value'):
286 """Iterate over values, failing if any are less than zero."""
287 for x in values:
288 if x < 0:
289 raise StatisticsError(errmsg)
290 yield x
291
292
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700293# === Measures of central tendency (averages) ===
294
295def mean(data):
296 """Return the sample arithmetic mean of data.
297
298 >>> mean([1, 2, 3, 4, 4])
299 2.8
300
301 >>> from fractions import Fraction as F
302 >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
303 Fraction(13, 21)
304
305 >>> from decimal import Decimal as D
306 >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
307 Decimal('0.5625')
308
309 If ``data`` is empty, StatisticsError will be raised.
310 """
311 if iter(data) is data:
312 data = list(data)
313 n = len(data)
314 if n < 1:
315 raise StatisticsError('mean requires at least one data point')
Steven D'Apranob28c3272015-12-01 19:59:53 +1100316 T, total, count = _sum(data)
317 assert count == n
318 return _convert(total/n, T)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700319
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700320
Raymond Hettinger47d99872019-02-21 15:06:29 -0800321def fmean(data):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700322 """Convert data to floats and compute the arithmetic mean.
Raymond Hettinger47d99872019-02-21 15:06:29 -0800323
324 This runs faster than the mean() function and it always returns a float.
Raymond Hettinger47d99872019-02-21 15:06:29 -0800325 If the input dataset is empty, it raises a StatisticsError.
326
327 >>> fmean([3.5, 4.0, 5.25])
328 4.25
Raymond Hettinger47d99872019-02-21 15:06:29 -0800329 """
330 try:
331 n = len(data)
332 except TypeError:
333 # Handle iterators that do not define __len__().
334 n = 0
Miss Islington (bot)9ddb7772019-06-05 08:18:13 -0700335 def count(iterable):
Raymond Hettinger47d99872019-02-21 15:06:29 -0800336 nonlocal n
Miss Islington (bot)9ddb7772019-06-05 08:18:13 -0700337 for n, x in enumerate(iterable, start=1):
338 yield x
339 total = fsum(count(data))
Raymond Hettinger47d99872019-02-21 15:06:29 -0800340 else:
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700341 total = fsum(data)
Raymond Hettinger47d99872019-02-21 15:06:29 -0800342 try:
343 return total / n
344 except ZeroDivisionError:
345 raise StatisticsError('fmean requires at least one data point') from None
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700346
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700347
Raymond Hettinger6463ba32019-04-07 09:20:03 -0700348def geometric_mean(data):
349 """Convert data to floats and compute the geometric mean.
350
351 Raises a StatisticsError if the input dataset is empty,
352 if it contains a zero, or if it contains a negative value.
353
354 No special efforts are made to achieve exact results.
355 (However, this may change in the future.)
356
357 >>> round(geometric_mean([54, 24, 36]), 9)
358 36.0
359 """
360 try:
361 return exp(fmean(map(log, data)))
362 except ValueError:
363 raise StatisticsError('geometric mean requires a non-empty dataset '
364 ' containing positive numbers') from None
365
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700366
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000367def harmonic_mean(data):
368 """Return the harmonic mean of data.
369
370 The harmonic mean, sometimes called the subcontrary mean, is the
371 reciprocal of the arithmetic mean of the reciprocals of the data,
372 and is often appropriate when averaging quantities which are rates
373 or ratios, for example speeds. Example:
374
375 Suppose an investor purchases an equal value of shares in each of
376 three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
377 What is the average P/E ratio for the investor's portfolio?
378
379 >>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
380 3.6
381
382 Using the arithmetic mean would give an average of about 5.167, which
383 is too high.
384
385 If ``data`` is empty, or any element is less than zero,
386 ``harmonic_mean`` will raise ``StatisticsError``.
387 """
388 # For a justification for using harmonic mean for P/E ratios, see
389 # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
390 # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
391 if iter(data) is data:
392 data = list(data)
393 errmsg = 'harmonic mean does not support negative values'
394 n = len(data)
395 if n < 1:
396 raise StatisticsError('harmonic_mean requires at least one data point')
397 elif n == 1:
398 x = data[0]
399 if isinstance(x, (numbers.Real, Decimal)):
400 if x < 0:
401 raise StatisticsError(errmsg)
402 return x
403 else:
404 raise TypeError('unsupported type')
405 try:
406 T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
407 except ZeroDivisionError:
408 return 0
409 assert count == n
410 return _convert(n/total, T)
411
412
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700413# FIXME: investigate ways to calculate medians without sorting? Quickselect?
414def median(data):
415 """Return the median (middle value) of numeric data.
416
417 When the number of data points is odd, return the middle data point.
418 When the number of data points is even, the median is interpolated by
419 taking the average of the two middle values:
420
421 >>> median([1, 3, 5])
422 3
423 >>> median([1, 3, 5, 7])
424 4.0
425
426 """
427 data = sorted(data)
428 n = len(data)
429 if n == 0:
430 raise StatisticsError("no median for empty data")
431 if n%2 == 1:
432 return data[n//2]
433 else:
434 i = n//2
435 return (data[i - 1] + data[i])/2
436
437
438def median_low(data):
439 """Return the low median of numeric data.
440
441 When the number of data points is odd, the middle value is returned.
442 When it is even, the smaller of the two middle values is returned.
443
444 >>> median_low([1, 3, 5])
445 3
446 >>> median_low([1, 3, 5, 7])
447 3
448
449 """
450 data = sorted(data)
451 n = len(data)
452 if n == 0:
453 raise StatisticsError("no median for empty data")
454 if n%2 == 1:
455 return data[n//2]
456 else:
457 return data[n//2 - 1]
458
459
460def median_high(data):
461 """Return the high median of data.
462
463 When the number of data points is odd, the middle value is returned.
464 When it is even, the larger of the two middle values is returned.
465
466 >>> median_high([1, 3, 5])
467 3
468 >>> median_high([1, 3, 5, 7])
469 5
470
471 """
472 data = sorted(data)
473 n = len(data)
474 if n == 0:
475 raise StatisticsError("no median for empty data")
476 return data[n//2]
477
478
479def median_grouped(data, interval=1):
Zachary Waredf2660e2015-10-27 22:00:41 -0500480 """Return the 50th percentile (median) of grouped continuous data.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700481
482 >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
483 3.7
484 >>> median_grouped([52, 52, 53, 54])
485 52.5
486
487 This calculates the median as the 50th percentile, and should be
488 used when your data is continuous and grouped. In the above example,
489 the values 1, 2, 3, etc. actually represent the midpoint of classes
490 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
491 class 3.5-4.5, and interpolation is used to estimate it.
492
493 Optional argument ``interval`` represents the class interval, and
494 defaults to 1. Changing the class interval naturally will change the
495 interpolated 50th percentile value:
496
497 >>> median_grouped([1, 3, 3, 5, 7], interval=1)
498 3.25
499 >>> median_grouped([1, 3, 3, 5, 7], interval=2)
500 3.5
501
502 This function does not check whether the data points are at least
503 ``interval`` apart.
504 """
505 data = sorted(data)
506 n = len(data)
507 if n == 0:
508 raise StatisticsError("no median for empty data")
509 elif n == 1:
510 return data[0]
511 # Find the value at the midpoint. Remember this corresponds to the
512 # centre of the class interval.
513 x = data[n//2]
514 for obj in (x, interval):
515 if isinstance(obj, (str, bytes)):
516 raise TypeError('expected number but got %r' % obj)
517 try:
518 L = x - interval/2 # The lower limit of the median interval.
519 except TypeError:
520 # Mixed type. For now we just coerce to float.
521 L = float(x) - float(interval)/2
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000522
523 # Uses bisection search to search for x in data with log(n) time complexity
Martin Panterf1579822016-05-26 06:03:33 +0000524 # Find the position of leftmost occurrence of x in data
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000525 l1 = _find_lteq(data, x)
Martin Panterf1579822016-05-26 06:03:33 +0000526 # Find the position of rightmost occurrence of x in data[l1...len(data)]
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000527 # Assuming always l1 <= l2
528 l2 = _find_rteq(data, l1, x)
529 cf = l1
530 f = l2 - l1 + 1
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700531 return L + interval*(n/2 - cf)/f
532
533
534def mode(data):
535 """Return the most common data point from discrete or nominal data.
536
537 ``mode`` assumes discrete data, and returns a single value. This is the
538 standard treatment of the mode as commonly taught in schools:
539
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700540 >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
541 3
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700542
543 This also works with nominal (non-numeric) data:
544
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700545 >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
546 'red'
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700547
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700548 If there are multiple modes with same frequency, return the first one
549 encountered:
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700550
551 >>> mode(['red', 'red', 'green', 'blue', 'blue'])
552 'red'
553
554 If *data* is empty, ``mode``, raises StatisticsError.
555
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700556 """
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700557 data = iter(data)
Miss Islington (bot)8fe47552019-09-20 22:18:10 -0700558 pairs = Counter(data).most_common(1)
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700559 try:
Miss Islington (bot)8fe47552019-09-20 22:18:10 -0700560 return pairs[0][0]
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700561 except IndexError:
562 raise StatisticsError('no mode for empty data') from None
563
564
565def multimode(data):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700566 """Return a list of the most frequently occurring values.
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700567
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700568 Will return more than one result if there are multiple modes
569 or an empty list if *data* is empty.
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700570
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700571 >>> multimode('aabbbbbbbbcc')
572 ['b']
573 >>> multimode('aabbbbccddddeeffffgg')
574 ['b', 'd', 'f']
575 >>> multimode('')
576 []
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700577 """
578 counts = Counter(iter(data)).most_common()
579 maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
580 return list(map(itemgetter(0), mode_items))
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700581
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700582
Raymond Hettingercba9f842019-06-02 21:07:43 -0700583# Notes on methods for computing quantiles
584# ----------------------------------------
585#
586# There is no one perfect way to compute quantiles. Here we offer
587# two methods that serve common needs. Most other packages
588# surveyed offered at least one or both of these two, making them
589# "standard" in the sense of "widely-adopted and reproducible".
590# They are also easy to explain, easy to compute manually, and have
591# straight-forward interpretations that aren't surprising.
592
593# The default method is known as "R6", "PERCENTILE.EXC", or "expected
594# value of rank order statistics". The alternative method is known as
595# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
596
597# For sample data where there is a positive probability for values
598# beyond the range of the data, the R6 exclusive method is a
599# reasonable choice. Consider a random sample of nine values from a
600# population with a uniform distribution from 0.0 to 100.0. The
601# distribution of the third ranked sample point is described by
602# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
603# mean=0.300. Only the latter (which corresponds with R6) gives the
604# desired cut point with 30% of the population falling below that
605# value, making it comparable to a result from an inv_cdf() function.
Miss Islington (bot)8fe47552019-09-20 22:18:10 -0700606# The R6 exclusive method is also idempotent.
Raymond Hettingercba9f842019-06-02 21:07:43 -0700607
608# For describing population data where the end points are known to
609# be included in the data, the R7 inclusive method is a reasonable
610# choice. Instead of the mean, it uses the mode of the beta
611# distribution for the interior points. Per Hyndman & Fan, "One nice
612# property is that the vertices of Q7(p) divide the range into n - 1
613# intervals, and exactly 100p% of the intervals lie to the left of
614# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
615
Miss Islington (bot)e5bfd1c2019-07-19 02:17:53 -0700616# If needed, other methods could be added. However, for now, the
617# position is that fewer options make for easier choices and that
618# external packages can be used for anything more advanced.
Raymond Hettingercba9f842019-06-02 21:07:43 -0700619
Miss Islington (bot)31af1cc2019-09-17 21:06:53 -0700620def quantiles(data, *, n=4, method='exclusive'):
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700621 """Divide *data* into *n* continuous intervals with equal probability.
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700622
623 Returns a list of (n - 1) cut points separating the intervals.
624
625 Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
626 Set *n* to 100 for percentiles which gives the 99 cuts points that
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700627 separate *data* in to 100 equal sized groups.
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700628
Raymond Hettingercc1bdf92019-09-08 18:40:06 -0700629 The *data* can be any iterable containing sample.
630 The cut points are linearly interpolated between data points.
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700631
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700632 If *method* is set to *inclusive*, *data* is treated as population
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700633 data. The minimum value is treated as the 0th percentile and the
634 maximum value is treated as the 100th percentile.
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700635 """
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700636 if n < 1:
637 raise StatisticsError('n must be at least 1')
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700638 data = sorted(data)
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700639 ld = len(data)
640 if ld < 2:
641 raise StatisticsError('must have at least two data points')
642 if method == 'inclusive':
643 m = ld - 1
644 result = []
645 for i in range(1, n):
646 j = i * m // n
647 delta = i*m - j*n
648 interpolated = (data[j] * (n - delta) + data[j+1] * delta) / n
649 result.append(interpolated)
650 return result
651 if method == 'exclusive':
652 m = ld + 1
653 result = []
654 for i in range(1, n):
655 j = i * m // n # rescale i to m/n
656 j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1
657 delta = i*m - j*n # exact integer math
658 interpolated = (data[j-1] * (n - delta) + data[j] * delta) / n
659 result.append(interpolated)
660 return result
661 raise ValueError(f'Unknown method: {method!r}')
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700662
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700663
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700664# === Measures of spread ===
665
666# See http://mathworld.wolfram.com/Variance.html
667# http://mathworld.wolfram.com/SampleVariance.html
668# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
669#
670# Under no circumstances use the so-called "computational formula for
671# variance", as that is only suitable for hand calculations with a small
672# amount of low-precision data. It has terrible numeric properties.
673#
674# See a comparison of three computational methods here:
675# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
676
677def _ss(data, c=None):
678 """Return sum of square deviations of sequence data.
679
680 If ``c`` is None, the mean is calculated in one pass, and the deviations
681 from the mean are calculated in a second pass. Otherwise, deviations are
682 calculated from ``c`` as given. Use the second case with care, as it can
683 lead to garbage results.
684 """
Miss Islington (bot)811e0402020-06-13 16:57:17 -0700685 if c is not None:
686 T, total, count = _sum((x-c)**2 for x in data)
687 return (T, total)
688 c = mean(data)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100689 T, total, count = _sum((x-c)**2 for x in data)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700690 # The following sum should mathematically equal zero, but due to rounding
691 # error may not.
Steven D'Apranob28c3272015-12-01 19:59:53 +1100692 U, total2, count2 = _sum((x-c) for x in data)
693 assert T == U and count == count2
694 total -= total2**2/len(data)
695 assert not total < 0, 'negative sum of square deviations: %f' % total
696 return (T, total)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700697
698
699def variance(data, xbar=None):
700 """Return the sample variance of data.
701
702 data should be an iterable of Real-valued numbers, with at least two
703 values. The optional argument xbar, if given, should be the mean of
704 the data. If it is missing or None, the mean is automatically calculated.
705
706 Use this function when your data is a sample from a population. To
707 calculate the variance from the entire population, see ``pvariance``.
708
709 Examples:
710
711 >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
712 >>> variance(data)
713 1.3720238095238095
714
715 If you have already calculated the mean of your data, you can pass it as
716 the optional second argument ``xbar`` to avoid recalculating it:
717
718 >>> m = mean(data)
719 >>> variance(data, m)
720 1.3720238095238095
721
722 This function does not check that ``xbar`` is actually the mean of
723 ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
724 impossible results.
725
726 Decimals and Fractions are supported:
727
728 >>> from decimal import Decimal as D
729 >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
730 Decimal('31.01875')
731
732 >>> from fractions import Fraction as F
733 >>> variance([F(1, 6), F(1, 2), F(5, 3)])
734 Fraction(67, 108)
735
736 """
737 if iter(data) is data:
738 data = list(data)
739 n = len(data)
740 if n < 2:
741 raise StatisticsError('variance requires at least two data points')
Steven D'Apranob28c3272015-12-01 19:59:53 +1100742 T, ss = _ss(data, xbar)
743 return _convert(ss/(n-1), T)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700744
745
746def pvariance(data, mu=None):
747 """Return the population variance of ``data``.
748
Miss Islington (bot)35624392019-11-12 00:04:12 -0800749 data should be a sequence or iterable of Real-valued numbers, with at least one
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700750 value. The optional argument mu, if given, should be the mean of
751 the data. If it is missing or None, the mean is automatically calculated.
752
753 Use this function to calculate the variance from the entire population.
754 To estimate the variance from a sample, the ``variance`` function is
755 usually a better choice.
756
757 Examples:
758
759 >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
760 >>> pvariance(data)
761 1.25
762
763 If you have already calculated the mean of the data, you can pass it as
764 the optional second argument to avoid recalculating it:
765
766 >>> mu = mean(data)
767 >>> pvariance(data, mu)
768 1.25
769
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700770 Decimals and Fractions are supported:
771
772 >>> from decimal import Decimal as D
773 >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
774 Decimal('24.815')
775
776 >>> from fractions import Fraction as F
777 >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
778 Fraction(13, 72)
779
780 """
781 if iter(data) is data:
782 data = list(data)
783 n = len(data)
784 if n < 1:
785 raise StatisticsError('pvariance requires at least one data point')
Steven D'Apranob28c3272015-12-01 19:59:53 +1100786 T, ss = _ss(data, mu)
787 return _convert(ss/n, T)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700788
789
790def stdev(data, xbar=None):
791 """Return the square root of the sample variance.
792
793 See ``variance`` for arguments and other details.
794
795 >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
796 1.0810874155219827
797
798 """
799 var = variance(data, xbar)
800 try:
801 return var.sqrt()
802 except AttributeError:
803 return math.sqrt(var)
804
805
806def pstdev(data, mu=None):
807 """Return the square root of the population variance.
808
809 See ``pvariance`` for arguments and other details.
810
811 >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
812 0.986893273527251
813
814 """
815 var = pvariance(data, mu)
816 try:
817 return var.sqrt()
818 except AttributeError:
819 return math.sqrt(var)
Raymond Hettinger11c79532019-02-23 14:44:07 -0800820
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700821
Raymond Hettinger11c79532019-02-23 14:44:07 -0800822## Normal Distribution #####################################################
823
Miss Islington (bot)5779c532019-08-23 15:39:27 -0700824
825def _normal_dist_inv_cdf(p, mu, sigma):
826 # There is no closed-form solution to the inverse CDF for the normal
827 # distribution, so we use a rational approximation instead:
828 # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
829 # Normal Distribution". Applied Statistics. Blackwell Publishing. 37
830 # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
831 q = p - 0.5
832 if fabs(q) <= 0.425:
833 r = 0.180625 - q * q
834 # Hash sum: 55.88319_28806_14901_4439
835 num = (((((((2.50908_09287_30122_6727e+3 * r +
836 3.34305_75583_58812_8105e+4) * r +
837 6.72657_70927_00870_0853e+4) * r +
838 4.59219_53931_54987_1457e+4) * r +
839 1.37316_93765_50946_1125e+4) * r +
840 1.97159_09503_06551_4427e+3) * r +
841 1.33141_66789_17843_7745e+2) * r +
842 3.38713_28727_96366_6080e+0) * q
843 den = (((((((5.22649_52788_52854_5610e+3 * r +
844 2.87290_85735_72194_2674e+4) * r +
845 3.93078_95800_09271_0610e+4) * r +
846 2.12137_94301_58659_5867e+4) * r +
847 5.39419_60214_24751_1077e+3) * r +
848 6.87187_00749_20579_0830e+2) * r +
849 4.23133_30701_60091_1252e+1) * r +
850 1.0)
851 x = num / den
852 return mu + (x * sigma)
853 r = p if q <= 0.0 else 1.0 - p
854 r = sqrt(-log(r))
855 if r <= 5.0:
856 r = r - 1.6
857 # Hash sum: 49.33206_50330_16102_89036
858 num = (((((((7.74545_01427_83414_07640e-4 * r +
859 2.27238_44989_26918_45833e-2) * r +
860 2.41780_72517_74506_11770e-1) * r +
861 1.27045_82524_52368_38258e+0) * r +
862 3.64784_83247_63204_60504e+0) * r +
863 5.76949_72214_60691_40550e+0) * r +
864 4.63033_78461_56545_29590e+0) * r +
865 1.42343_71107_49683_57734e+0)
866 den = (((((((1.05075_00716_44416_84324e-9 * r +
867 5.47593_80849_95344_94600e-4) * r +
868 1.51986_66563_61645_71966e-2) * r +
869 1.48103_97642_74800_74590e-1) * r +
870 6.89767_33498_51000_04550e-1) * r +
871 1.67638_48301_83803_84940e+0) * r +
872 2.05319_16266_37758_82187e+0) * r +
873 1.0)
874 else:
875 r = r - 5.0
876 # Hash sum: 47.52583_31754_92896_71629
877 num = (((((((2.01033_43992_92288_13265e-7 * r +
878 2.71155_55687_43487_57815e-5) * r +
879 1.24266_09473_88078_43860e-3) * r +
880 2.65321_89526_57612_30930e-2) * r +
881 2.96560_57182_85048_91230e-1) * r +
882 1.78482_65399_17291_33580e+0) * r +
883 5.46378_49111_64114_36990e+0) * r +
884 6.65790_46435_01103_77720e+0)
885 den = (((((((2.04426_31033_89939_78564e-15 * r +
886 1.42151_17583_16445_88870e-7) * r +
887 1.84631_83175_10054_68180e-5) * r +
888 7.86869_13114_56132_59100e-4) * r +
889 1.48753_61290_85061_48525e-2) * r +
890 1.36929_88092_27358_05310e-1) * r +
891 5.99832_20655_58879_37690e-1) * r +
892 1.0)
893 x = num / den
894 if q < 0.0:
895 x = -x
896 return mu + (x * sigma)
897
898
Raymond Hettinger11c79532019-02-23 14:44:07 -0800899class NormalDist:
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700900 "Normal distribution of a random variable"
Raymond Hettinger11c79532019-02-23 14:44:07 -0800901 # https://en.wikipedia.org/wiki/Normal_distribution
902 # https://en.wikipedia.org/wiki/Variance#Properties
903
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700904 __slots__ = {
905 '_mu': 'Arithmetic mean of a normal distribution',
906 '_sigma': 'Standard deviation of a normal distribution',
907 }
Raymond Hettinger11c79532019-02-23 14:44:07 -0800908
909 def __init__(self, mu=0.0, sigma=1.0):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700910 "NormalDist where mu is the mean and sigma is the standard deviation."
Raymond Hettinger11c79532019-02-23 14:44:07 -0800911 if sigma < 0.0:
912 raise StatisticsError('sigma must be non-negative')
Miss Islington (bot)dafbe322019-09-05 00:42:22 -0700913 self._mu = float(mu)
914 self._sigma = float(sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -0800915
916 @classmethod
917 def from_samples(cls, data):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700918 "Make a normal distribution instance from sample data."
Raymond Hettinger11c79532019-02-23 14:44:07 -0800919 if not isinstance(data, (list, tuple)):
920 data = list(data)
921 xbar = fmean(data)
922 return cls(xbar, stdev(data, xbar))
923
Raymond Hettingerfb8c7d52019-04-23 01:46:18 -0700924 def samples(self, n, *, seed=None):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700925 "Generate *n* samples for a given mean and standard deviation."
Raymond Hettinger11c79532019-02-23 14:44:07 -0800926 gauss = random.gauss if seed is None else random.Random(seed).gauss
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700927 mu, sigma = self._mu, self._sigma
Raymond Hettinger11c79532019-02-23 14:44:07 -0800928 return [gauss(mu, sigma) for i in range(n)]
929
930 def pdf(self, x):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700931 "Probability density function. P(x <= X < x+dx) / dx"
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700932 variance = self._sigma ** 2.0
Raymond Hettinger11c79532019-02-23 14:44:07 -0800933 if not variance:
934 raise StatisticsError('pdf() not defined when sigma is zero')
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700935 return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance)
Raymond Hettinger11c79532019-02-23 14:44:07 -0800936
937 def cdf(self, x):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700938 "Cumulative distribution function. P(X <= x)"
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700939 if not self._sigma:
Raymond Hettinger11c79532019-02-23 14:44:07 -0800940 raise StatisticsError('cdf() not defined when sigma is zero')
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700941 return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0))))
Raymond Hettinger11c79532019-02-23 14:44:07 -0800942
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700943 def inv_cdf(self, p):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700944 """Inverse cumulative distribution function. x : P(X <= x) = p
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700945
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700946 Finds the value of the random variable such that the probability of
947 the variable being less than or equal to that value equals the given
948 probability.
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700949
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700950 This function is also called the percent point function or quantile
951 function.
952 """
953 if p <= 0.0 or p >= 1.0:
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700954 raise StatisticsError('p must be in the range 0.0 < p < 1.0')
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700955 if self._sigma <= 0.0:
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700956 raise StatisticsError('cdf() not defined when sigma at or below zero')
Miss Islington (bot)5779c532019-08-23 15:39:27 -0700957 return _normal_dist_inv_cdf(p, self._mu, self._sigma)
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700958
Raymond Hettingercc1bdf92019-09-08 18:40:06 -0700959 def quantiles(self, n=4):
960 """Divide into *n* continuous intervals with equal probability.
961
962 Returns a list of (n - 1) cut points separating the intervals.
963
964 Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
965 Set *n* to 100 for percentiles which gives the 99 cuts points that
966 separate the normal distribution in to 100 equal sized groups.
967 """
968 return [self.inv_cdf(i / n) for i in range(1, n)]
969
Raymond Hettinger318d5372019-03-06 22:59:40 -0800970 def overlap(self, other):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700971 """Compute the overlapping coefficient (OVL) between two normal distributions.
Raymond Hettinger318d5372019-03-06 22:59:40 -0800972
973 Measures the agreement between two normal probability distributions.
974 Returns a value between 0.0 and 1.0 giving the overlapping area in
975 the two underlying probability density functions.
976
977 >>> N1 = NormalDist(2.4, 1.6)
978 >>> N2 = NormalDist(3.2, 2.0)
979 >>> N1.overlap(N2)
980 0.8035050657330205
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -0700981 """
Raymond Hettinger318d5372019-03-06 22:59:40 -0800982 # See: "The overlapping coefficient as a measure of agreement between
983 # probability distributions and point estimation of the overlap of two
984 # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
985 # http://dx.doi.org/10.1080/03610928908830127
986 if not isinstance(other, NormalDist):
987 raise TypeError('Expected another NormalDist instance')
988 X, Y = self, other
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700989 if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity
Raymond Hettinger318d5372019-03-06 22:59:40 -0800990 X, Y = Y, X
991 X_var, Y_var = X.variance, Y.variance
992 if not X_var or not Y_var:
993 raise StatisticsError('overlap() not defined when sigma is zero')
994 dv = Y_var - X_var
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700995 dm = fabs(Y._mu - X._mu)
Raymond Hettinger318d5372019-03-06 22:59:40 -0800996 if not dv:
Miss Islington (bot)c613c332019-07-21 00:55:13 -0700997 return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
998 a = X._mu * Y_var - Y._mu * X_var
999 b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
Raymond Hettinger318d5372019-03-06 22:59:40 -08001000 x1 = (a + b) / dv
1001 x2 = (a - b) / dv
1002 return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
1003
Raymond Hettinger11c79532019-02-23 14:44:07 -08001004 @property
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001005 def mean(self):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001006 "Arithmetic mean of the normal distribution."
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001007 return self._mu
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001008
1009 @property
Raymond Hettingercc1bdf92019-09-08 18:40:06 -07001010 def median(self):
1011 "Return the median of the normal distribution"
1012 return self._mu
1013
1014 @property
1015 def mode(self):
1016 """Return the mode of the normal distribution
1017
1018 The mode is the value x where which the probability density
1019 function (pdf) takes its maximum value.
1020 """
1021 return self._mu
1022
1023 @property
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001024 def stdev(self):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001025 "Standard deviation of the normal distribution."
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001026 return self._sigma
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001027
1028 @property
Raymond Hettinger11c79532019-02-23 14:44:07 -08001029 def variance(self):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001030 "Square of the standard deviation."
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001031 return self._sigma ** 2.0
Raymond Hettinger11c79532019-02-23 14:44:07 -08001032
1033 def __add__(x1, x2):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001034 """Add a constant or another NormalDist instance.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001035
1036 If *other* is a constant, translate mu by the constant,
1037 leaving sigma unchanged.
1038
1039 If *other* is a NormalDist, add both the means and the variances.
1040 Mathematically, this works only if the two distributions are
1041 independent or if they are jointly normally distributed.
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001042 """
Raymond Hettinger11c79532019-02-23 14:44:07 -08001043 if isinstance(x2, NormalDist):
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001044 return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
1045 return NormalDist(x1._mu + x2, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001046
1047 def __sub__(x1, x2):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001048 """Subtract a constant or another NormalDist instance.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001049
1050 If *other* is a constant, translate by the constant mu,
1051 leaving sigma unchanged.
1052
1053 If *other* is a NormalDist, subtract the means and add the variances.
1054 Mathematically, this works only if the two distributions are
1055 independent or if they are jointly normally distributed.
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001056 """
Raymond Hettinger11c79532019-02-23 14:44:07 -08001057 if isinstance(x2, NormalDist):
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001058 return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
1059 return NormalDist(x1._mu - x2, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001060
1061 def __mul__(x1, x2):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001062 """Multiply both mu and sigma by a constant.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001063
1064 Used for rescaling, perhaps to change measurement units.
1065 Sigma is scaled with the absolute value of the constant.
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001066 """
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001067 return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
Raymond Hettinger11c79532019-02-23 14:44:07 -08001068
1069 def __truediv__(x1, x2):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001070 """Divide both mu and sigma by a constant.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001071
1072 Used for rescaling, perhaps to change measurement units.
1073 Sigma is scaled with the absolute value of the constant.
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001074 """
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001075 return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
Raymond Hettinger11c79532019-02-23 14:44:07 -08001076
1077 def __pos__(x1):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001078 "Return a copy of the instance."
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001079 return NormalDist(x1._mu, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001080
1081 def __neg__(x1):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001082 "Negates mu while keeping sigma the same."
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001083 return NormalDist(-x1._mu, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001084
1085 __radd__ = __add__
1086
1087 def __rsub__(x1, x2):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001088 "Subtract a NormalDist from a constant or another NormalDist."
Raymond Hettinger11c79532019-02-23 14:44:07 -08001089 return -(x1 - x2)
1090
1091 __rmul__ = __mul__
1092
1093 def __eq__(x1, x2):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001094 "Two NormalDist objects are equal if their mu and sigma are both equal."
Raymond Hettinger11c79532019-02-23 14:44:07 -08001095 if not isinstance(x2, NormalDist):
1096 return NotImplemented
Miss Islington (bot)652a1cb2019-10-18 14:41:19 -07001097 return x1._mu == x2._mu and x1._sigma == x2._sigma
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001098
1099 def __hash__(self):
Miss Islington (bot)e8b3a2e2019-07-21 12:38:58 -07001100 "NormalDist objects hash equal if their mu and sigma are both equal."
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001101 return hash((self._mu, self._sigma))
Raymond Hettinger11c79532019-02-23 14:44:07 -08001102
1103 def __repr__(self):
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001104 return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
Raymond Hettinger11c79532019-02-23 14:44:07 -08001105
Miss Islington (bot)5779c532019-08-23 15:39:27 -07001106# If available, use C implementation
1107try:
1108 from _statistics import _normal_dist_inv_cdf
1109except ImportError:
1110 pass
1111
Raymond Hettinger11c79532019-02-23 14:44:07 -08001112
1113if __name__ == '__main__':
1114
1115 # Show math operations computed analytically in comparsion
1116 # to a monte carlo simulation of the same operations
1117
1118 from math import isclose
1119 from operator import add, sub, mul, truediv
1120 from itertools import repeat
Raymond Hettingerfc06a192019-03-12 00:43:27 -07001121 import doctest
Raymond Hettinger11c79532019-02-23 14:44:07 -08001122
1123 g1 = NormalDist(10, 20)
1124 g2 = NormalDist(-5, 25)
1125
1126 # Test scaling by a constant
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001127 assert (g1 * 5 / 5).mean == g1.mean
1128 assert (g1 * 5 / 5).stdev == g1.stdev
Raymond Hettinger11c79532019-02-23 14:44:07 -08001129
1130 n = 100_000
1131 G1 = g1.samples(n)
1132 G2 = g2.samples(n)
1133
1134 for func in (add, sub):
1135 print(f'\nTest {func.__name__} with another NormalDist:')
1136 print(func(g1, g2))
1137 print(NormalDist.from_samples(map(func, G1, G2)))
1138
1139 const = 11
1140 for func in (add, sub, mul, truediv):
1141 print(f'\nTest {func.__name__} with a constant:')
1142 print(func(g1, const))
1143 print(NormalDist.from_samples(map(func, G1, repeat(const))))
1144
1145 const = 19
1146 for func in (add, sub, mul):
1147 print(f'\nTest constant with {func.__name__}:')
1148 print(func(const, g1))
1149 print(NormalDist.from_samples(map(func, repeat(const), G1)))
1150
1151 def assert_close(G1, G2):
Miss Islington (bot)c613c332019-07-21 00:55:13 -07001152 assert isclose(G1.mean, G1.mean, rel_tol=0.01), (G1, G2)
1153 assert isclose(G1.stdev, G2.stdev, rel_tol=0.01), (G1, G2)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001154
1155 X = NormalDist(-105, 73)
1156 Y = NormalDist(31, 47)
1157 s = 32.75
1158 n = 100_000
1159
1160 S = NormalDist.from_samples([x + s for x in X.samples(n)])
1161 assert_close(X + s, S)
1162
1163 S = NormalDist.from_samples([x - s for x in X.samples(n)])
1164 assert_close(X - s, S)
1165
1166 S = NormalDist.from_samples([x * s for x in X.samples(n)])
1167 assert_close(X * s, S)
1168
1169 S = NormalDist.from_samples([x / s for x in X.samples(n)])
1170 assert_close(X / s, S)
1171
1172 S = NormalDist.from_samples([x + y for x, y in zip(X.samples(n),
1173 Y.samples(n))])
1174 assert_close(X + Y, S)
1175
1176 S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
1177 Y.samples(n))])
1178 assert_close(X - Y, S)
Raymond Hettingerfc06a192019-03-12 00:43:27 -07001179
1180 print(doctest.testmod())