blob: c201e87dcb857f8444473fc8ff1559317bb70b4d [file] [log] [blame]
Vinay Sajipc63619b2010-12-19 12:56:57 +00001.. _logging-cookbook:
2
3================
4Logging Cookbook
5================
6
7:Author: Vinay Sajip <vinay_sajip at red-dove dot com>
8
Georg Brandl375aec22011-01-15 17:03:02 +00009This page contains a number of recipes related to logging, which have been found
10useful in the past.
Vinay Sajipc63619b2010-12-19 12:56:57 +000011
Vinay Sajipc63619b2010-12-19 12:56:57 +000012.. currentmodule:: logging
13
14Using logging in multiple modules
15---------------------------------
16
Vinay Sajip1397ce12010-12-24 12:03:48 +000017Multiple calls to ``logging.getLogger('someLogger')`` return a reference to the
18same logger object. This is true not only within the same module, but also
19across modules as long as it is in the same Python interpreter process. It is
20true for references to the same object; additionally, application code can
21define and configure a parent logger in one module and create (but not
22configure) a child logger in a separate module, and all logger calls to the
23child will pass up to the parent. Here is a main module::
Vinay Sajipc63619b2010-12-19 12:56:57 +000024
25 import logging
26 import auxiliary_module
27
28 # create logger with 'spam_application'
29 logger = logging.getLogger('spam_application')
30 logger.setLevel(logging.DEBUG)
31 # create file handler which logs even debug messages
32 fh = logging.FileHandler('spam.log')
33 fh.setLevel(logging.DEBUG)
34 # create console handler with a higher log level
35 ch = logging.StreamHandler()
36 ch.setLevel(logging.ERROR)
37 # create formatter and add it to the handlers
38 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
39 fh.setFormatter(formatter)
40 ch.setFormatter(formatter)
41 # add the handlers to the logger
42 logger.addHandler(fh)
43 logger.addHandler(ch)
44
45 logger.info('creating an instance of auxiliary_module.Auxiliary')
46 a = auxiliary_module.Auxiliary()
47 logger.info('created an instance of auxiliary_module.Auxiliary')
48 logger.info('calling auxiliary_module.Auxiliary.do_something')
49 a.do_something()
50 logger.info('finished auxiliary_module.Auxiliary.do_something')
51 logger.info('calling auxiliary_module.some_function()')
52 auxiliary_module.some_function()
53 logger.info('done with auxiliary_module.some_function()')
54
55Here is the auxiliary module::
56
57 import logging
58
59 # create logger
60 module_logger = logging.getLogger('spam_application.auxiliary')
61
62 class Auxiliary:
63 def __init__(self):
64 self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
65 self.logger.info('creating an instance of Auxiliary')
66 def do_something(self):
67 self.logger.info('doing something')
68 a = 1 + 1
69 self.logger.info('done doing something')
70
71 def some_function():
72 module_logger.info('received a call to "some_function"')
73
74The output looks like this::
75
76 2005-03-23 23:47:11,663 - spam_application - INFO -
77 creating an instance of auxiliary_module.Auxiliary
78 2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
79 creating an instance of Auxiliary
80 2005-03-23 23:47:11,665 - spam_application - INFO -
81 created an instance of auxiliary_module.Auxiliary
82 2005-03-23 23:47:11,668 - spam_application - INFO -
83 calling auxiliary_module.Auxiliary.do_something
84 2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
85 doing something
86 2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
87 done doing something
88 2005-03-23 23:47:11,670 - spam_application - INFO -
89 finished auxiliary_module.Auxiliary.do_something
90 2005-03-23 23:47:11,671 - spam_application - INFO -
91 calling auxiliary_module.some_function()
92 2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
93 received a call to 'some_function'
94 2005-03-23 23:47:11,673 - spam_application - INFO -
95 done with auxiliary_module.some_function()
96
97Multiple handlers and formatters
98--------------------------------
99
100Loggers are plain Python objects. The :func:`addHandler` method has no minimum
101or maximum quota for the number of handlers you may add. Sometimes it will be
102beneficial for an application to log all messages of all severities to a text
103file while simultaneously logging errors or above to the console. To set this
104up, simply configure the appropriate handlers. The logging calls in the
105application code will remain unchanged. Here is a slight modification to the
106previous simple module-based configuration example::
107
108 import logging
109
110 logger = logging.getLogger('simple_example')
111 logger.setLevel(logging.DEBUG)
112 # create file handler which logs even debug messages
113 fh = logging.FileHandler('spam.log')
114 fh.setLevel(logging.DEBUG)
115 # create console handler with a higher log level
116 ch = logging.StreamHandler()
117 ch.setLevel(logging.ERROR)
118 # create formatter and add it to the handlers
119 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
120 ch.setFormatter(formatter)
121 fh.setFormatter(formatter)
122 # add the handlers to logger
123 logger.addHandler(ch)
124 logger.addHandler(fh)
125
126 # 'application' code
127 logger.debug('debug message')
128 logger.info('info message')
129 logger.warn('warn message')
130 logger.error('error message')
131 logger.critical('critical message')
132
133Notice that the 'application' code does not care about multiple handlers. All
134that changed was the addition and configuration of a new handler named *fh*.
135
136The ability to create new handlers with higher- or lower-severity filters can be
137very helpful when writing and testing an application. Instead of using many
138``print`` statements for debugging, use ``logger.debug``: Unlike the print
139statements, which you will have to delete or comment out later, the logger.debug
140statements can remain intact in the source code and remain dormant until you
141need them again. At that time, the only change that needs to happen is to
142modify the severity level of the logger and/or handler to debug.
143
144.. _multiple-destinations:
145
146Logging to multiple destinations
147--------------------------------
148
149Let's say you want to log to console and file with different message formats and
150in differing circumstances. Say you want to log messages with levels of DEBUG
151and higher to file, and those messages at level INFO and higher to the console.
152Let's also assume that the file should contain timestamps, but the console
153messages should not. Here's how you can achieve this::
154
155 import logging
156
157 # set up logging to file - see previous section for more details
158 logging.basicConfig(level=logging.DEBUG,
159 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
160 datefmt='%m-%d %H:%M',
161 filename='/temp/myapp.log',
162 filemode='w')
163 # define a Handler which writes INFO messages or higher to the sys.stderr
164 console = logging.StreamHandler()
165 console.setLevel(logging.INFO)
166 # set a format which is simpler for console use
167 formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
168 # tell the handler to use this format
169 console.setFormatter(formatter)
170 # add the handler to the root logger
171 logging.getLogger('').addHandler(console)
172
173 # Now, we can log to the root logger, or any other logger. First the root...
174 logging.info('Jackdaws love my big sphinx of quartz.')
175
176 # Now, define a couple of other loggers which might represent areas in your
177 # application:
178
179 logger1 = logging.getLogger('myapp.area1')
180 logger2 = logging.getLogger('myapp.area2')
181
182 logger1.debug('Quick zephyrs blow, vexing daft Jim.')
183 logger1.info('How quickly daft jumping zebras vex.')
184 logger2.warning('Jail zesty vixen who grabbed pay from quack.')
185 logger2.error('The five boxing wizards jump quickly.')
186
187When you run this, on the console you will see ::
188
189 root : INFO Jackdaws love my big sphinx of quartz.
190 myapp.area1 : INFO How quickly daft jumping zebras vex.
191 myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
192 myapp.area2 : ERROR The five boxing wizards jump quickly.
193
194and in the file you will see something like ::
195
196 10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.
197 10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
198 10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.
199 10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
200 10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.
201
202As you can see, the DEBUG message only shows up in the file. The other messages
203are sent to both destinations.
204
205This example uses console and file handlers, but you can use any number and
206combination of handlers you choose.
207
208
209Configuration server example
210----------------------------
211
212Here is an example of a module using the logging configuration server::
213
214 import logging
215 import logging.config
216 import time
217 import os
218
219 # read initial config file
220 logging.config.fileConfig('logging.conf')
221
222 # create and start listener on port 9999
223 t = logging.config.listen(9999)
224 t.start()
225
226 logger = logging.getLogger('simpleExample')
227
228 try:
229 # loop through logging calls to see the difference
230 # new configurations make, until Ctrl+C is pressed
231 while True:
232 logger.debug('debug message')
233 logger.info('info message')
234 logger.warn('warn message')
235 logger.error('error message')
236 logger.critical('critical message')
237 time.sleep(5)
238 except KeyboardInterrupt:
239 # cleanup
240 logging.config.stopListening()
241 t.join()
242
243And here is a script that takes a filename and sends that file to the server,
244properly preceded with the binary-encoded length, as the new logging
245configuration::
246
247 #!/usr/bin/env python
248 import socket, sys, struct
249
Vinay Sajip689b68a2010-12-22 15:04:15 +0000250 with open(sys.argv[1], 'rb') as f:
251 data_to_send = f.read()
Vinay Sajipc63619b2010-12-19 12:56:57 +0000252
253 HOST = 'localhost'
254 PORT = 9999
255 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
256 print('connecting...')
257 s.connect((HOST, PORT))
258 print('sending config...')
259 s.send(struct.pack('>L', len(data_to_send)))
260 s.send(data_to_send)
261 s.close()
262 print('complete')
263
264
265Dealing with handlers that block
266--------------------------------
267
268.. currentmodule:: logging.handlers
269
270Sometimes you have to get your logging handlers to do their work without
271blocking the thread you’re logging from. This is common in Web applications,
272though of course it also occurs in other scenarios.
273
274A common culprit which demonstrates sluggish behaviour is the
275:class:`SMTPHandler`: sending emails can take a long time, for a
276number of reasons outside the developer’s control (for example, a poorly
277performing mail or network infrastructure). But almost any network-based
278handler can block: Even a :class:`SocketHandler` operation may do a
279DNS query under the hood which is too slow (and this query can be deep in the
280socket library code, below the Python layer, and outside your control).
281
282One solution is to use a two-part approach. For the first part, attach only a
283:class:`QueueHandler` to those loggers which are accessed from
284performance-critical threads. They simply write to their queue, which can be
285sized to a large enough capacity or initialized with no upper bound to their
286size. The write to the queue will typically be accepted quickly, though you
Georg Brandl375aec22011-01-15 17:03:02 +0000287will probably need to catch the :exc:`queue.Full` exception as a precaution
Vinay Sajipc63619b2010-12-19 12:56:57 +0000288in your code. If you are a library developer who has performance-critical
289threads in their code, be sure to document this (together with a suggestion to
290attach only ``QueueHandlers`` to your loggers) for the benefit of other
291developers who will use your code.
292
293The second part of the solution is :class:`QueueListener`, which has been
294designed as the counterpart to :class:`QueueHandler`. A
295:class:`QueueListener` is very simple: it’s passed a queue and some handlers,
296and it fires up an internal thread which listens to its queue for LogRecords
297sent from ``QueueHandlers`` (or any other source of ``LogRecords``, for that
298matter). The ``LogRecords`` are removed from the queue and passed to the
299handlers for processing.
300
301The advantage of having a separate :class:`QueueListener` class is that you
302can use the same instance to service multiple ``QueueHandlers``. This is more
303resource-friendly than, say, having threaded versions of the existing handler
304classes, which would eat up one thread per handler for no particular benefit.
305
306An example of using these two classes follows (imports omitted)::
307
308 que = queue.Queue(-1) # no limit on size
309 queue_handler = QueueHandler(que)
310 handler = logging.StreamHandler()
311 listener = QueueListener(que, handler)
312 root = logging.getLogger()
313 root.addHandler(queue_handler)
314 formatter = logging.Formatter('%(threadName)s: %(message)s')
315 handler.setFormatter(formatter)
316 listener.start()
317 # The log output will display the thread which generated
318 # the event (the main thread) rather than the internal
319 # thread which monitors the internal queue. This is what
320 # you want to happen.
321 root.warning('Look out!')
322 listener.stop()
323
324which, when run, will produce::
325
326 MainThread: Look out!
327
328
329.. _network-logging:
330
331Sending and receiving logging events across a network
332-----------------------------------------------------
333
334Let's say you want to send logging events across a network, and handle them at
335the receiving end. A simple way of doing this is attaching a
336:class:`SocketHandler` instance to the root logger at the sending end::
337
338 import logging, logging.handlers
339
340 rootLogger = logging.getLogger('')
341 rootLogger.setLevel(logging.DEBUG)
342 socketHandler = logging.handlers.SocketHandler('localhost',
343 logging.handlers.DEFAULT_TCP_LOGGING_PORT)
344 # don't bother with a formatter, since a socket handler sends the event as
345 # an unformatted pickle
346 rootLogger.addHandler(socketHandler)
347
348 # Now, we can log to the root logger, or any other logger. First the root...
349 logging.info('Jackdaws love my big sphinx of quartz.')
350
351 # Now, define a couple of other loggers which might represent areas in your
352 # application:
353
354 logger1 = logging.getLogger('myapp.area1')
355 logger2 = logging.getLogger('myapp.area2')
356
357 logger1.debug('Quick zephyrs blow, vexing daft Jim.')
358 logger1.info('How quickly daft jumping zebras vex.')
359 logger2.warning('Jail zesty vixen who grabbed pay from quack.')
360 logger2.error('The five boxing wizards jump quickly.')
361
362At the receiving end, you can set up a receiver using the :mod:`socketserver`
363module. Here is a basic working example::
364
365 import pickle
366 import logging
367 import logging.handlers
368 import socketserver
369 import struct
370
371
372 class LogRecordStreamHandler(socketserver.StreamRequestHandler):
373 """Handler for a streaming logging request.
374
375 This basically logs the record using whatever logging policy is
376 configured locally.
377 """
378
379 def handle(self):
380 """
381 Handle multiple requests - each expected to be a 4-byte length,
382 followed by the LogRecord in pickle format. Logs the record
383 according to whatever policy is configured locally.
384 """
385 while True:
386 chunk = self.connection.recv(4)
387 if len(chunk) < 4:
388 break
389 slen = struct.unpack('>L', chunk)[0]
390 chunk = self.connection.recv(slen)
391 while len(chunk) < slen:
392 chunk = chunk + self.connection.recv(slen - len(chunk))
393 obj = self.unPickle(chunk)
394 record = logging.makeLogRecord(obj)
395 self.handleLogRecord(record)
396
397 def unPickle(self, data):
398 return pickle.loads(data)
399
400 def handleLogRecord(self, record):
401 # if a name is specified, we use the named logger rather than the one
402 # implied by the record.
403 if self.server.logname is not None:
404 name = self.server.logname
405 else:
406 name = record.name
407 logger = logging.getLogger(name)
408 # N.B. EVERY record gets logged. This is because Logger.handle
409 # is normally called AFTER logger-level filtering. If you want
410 # to do filtering, do it at the client end to save wasting
411 # cycles and network bandwidth!
412 logger.handle(record)
413
414 class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
415 """
416 Simple TCP socket-based logging receiver suitable for testing.
417 """
418
419 allow_reuse_address = 1
420
421 def __init__(self, host='localhost',
422 port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
423 handler=LogRecordStreamHandler):
424 socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
425 self.abort = 0
426 self.timeout = 1
427 self.logname = None
428
429 def serve_until_stopped(self):
430 import select
431 abort = 0
432 while not abort:
433 rd, wr, ex = select.select([self.socket.fileno()],
434 [], [],
435 self.timeout)
436 if rd:
437 self.handle_request()
438 abort = self.abort
439
440 def main():
441 logging.basicConfig(
442 format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
443 tcpserver = LogRecordSocketReceiver()
444 print('About to start TCP server...')
445 tcpserver.serve_until_stopped()
446
447 if __name__ == '__main__':
448 main()
449
450First run the server, and then the client. On the client side, nothing is
451printed on the console; on the server side, you should see something like::
452
453 About to start TCP server...
454 59 root INFO Jackdaws love my big sphinx of quartz.
455 59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
456 69 myapp.area1 INFO How quickly daft jumping zebras vex.
457 69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
458 69 myapp.area2 ERROR The five boxing wizards jump quickly.
459
460Note that there are some security issues with pickle in some scenarios. If
461these affect you, you can use an alternative serialization scheme by overriding
462the :meth:`makePickle` method and implementing your alternative there, as
463well as adapting the above script to use your alternative serialization.
464
465
466.. _context-info:
467
468Adding contextual information to your logging output
469----------------------------------------------------
470
471Sometimes you want logging output to contain contextual information in
472addition to the parameters passed to the logging call. For example, in a
473networked application, it may be desirable to log client-specific information
474in the log (e.g. remote client's username, or IP address). Although you could
475use the *extra* parameter to achieve this, it's not always convenient to pass
476the information in this way. While it might be tempting to create
477:class:`Logger` instances on a per-connection basis, this is not a good idea
478because these instances are not garbage collected. While this is not a problem
479in practice, when the number of :class:`Logger` instances is dependent on the
480level of granularity you want to use in logging an application, it could
481be hard to manage if the number of :class:`Logger` instances becomes
482effectively unbounded.
483
484
485Using LoggerAdapters to impart contextual information
486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
487
488An easy way in which you can pass contextual information to be output along
489with logging event information is to use the :class:`LoggerAdapter` class.
490This class is designed to look like a :class:`Logger`, so that you can call
491:meth:`debug`, :meth:`info`, :meth:`warning`, :meth:`error`,
492:meth:`exception`, :meth:`critical` and :meth:`log`. These methods have the
493same signatures as their counterparts in :class:`Logger`, so you can use the
494two types of instances interchangeably.
495
496When you create an instance of :class:`LoggerAdapter`, you pass it a
497:class:`Logger` instance and a dict-like object which contains your contextual
498information. When you call one of the logging methods on an instance of
499:class:`LoggerAdapter`, it delegates the call to the underlying instance of
500:class:`Logger` passed to its constructor, and arranges to pass the contextual
501information in the delegated call. Here's a snippet from the code of
502:class:`LoggerAdapter`::
503
504 def debug(self, msg, *args, **kwargs):
505 """
506 Delegate a debug call to the underlying logger, after adding
507 contextual information from this adapter instance.
508 """
509 msg, kwargs = self.process(msg, kwargs)
510 self.logger.debug(msg, *args, **kwargs)
511
512The :meth:`process` method of :class:`LoggerAdapter` is where the contextual
513information is added to the logging output. It's passed the message and
514keyword arguments of the logging call, and it passes back (potentially)
515modified versions of these to use in the call to the underlying logger. The
516default implementation of this method leaves the message alone, but inserts
517an 'extra' key in the keyword argument whose value is the dict-like object
518passed to the constructor. Of course, if you had passed an 'extra' keyword
519argument in the call to the adapter, it will be silently overwritten.
520
521The advantage of using 'extra' is that the values in the dict-like object are
522merged into the :class:`LogRecord` instance's __dict__, allowing you to use
523customized strings with your :class:`Formatter` instances which know about
524the keys of the dict-like object. If you need a different method, e.g. if you
525want to prepend or append the contextual information to the message string,
526you just need to subclass :class:`LoggerAdapter` and override :meth:`process`
527to do what you need. Here's an example script which uses this class, which
528also illustrates what dict-like behaviour is needed from an arbitrary
529'dict-like' object for use in the constructor::
530
531 import logging
532
533 class ConnInfo:
534 """
535 An example class which shows how an arbitrary class can be used as
536 the 'extra' context information repository passed to a LoggerAdapter.
537 """
538
539 def __getitem__(self, name):
540 """
541 To allow this instance to look like a dict.
542 """
543 from random import choice
544 if name == 'ip':
545 result = choice(['127.0.0.1', '192.168.0.1'])
546 elif name == 'user':
547 result = choice(['jim', 'fred', 'sheila'])
548 else:
549 result = self.__dict__.get(name, '?')
550 return result
551
552 def __iter__(self):
553 """
554 To allow iteration over keys, which will be merged into
555 the LogRecord dict before formatting and output.
556 """
557 keys = ['ip', 'user']
558 keys.extend(self.__dict__.keys())
559 return keys.__iter__()
560
561 if __name__ == '__main__':
562 from random import choice
563 levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
564 a1 = logging.LoggerAdapter(logging.getLogger('a.b.c'),
565 { 'ip' : '123.231.231.123', 'user' : 'sheila' })
566 logging.basicConfig(level=logging.DEBUG,
567 format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
568 a1.debug('A debug message')
569 a1.info('An info message with %s', 'some parameters')
570 a2 = logging.LoggerAdapter(logging.getLogger('d.e.f'), ConnInfo())
571 for x in range(10):
572 lvl = choice(levels)
573 lvlname = logging.getLevelName(lvl)
574 a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')
575
576When this script is run, the output should look something like this::
577
578 2008-01-18 14:49:54,023 a.b.c DEBUG IP: 123.231.231.123 User: sheila A debug message
579 2008-01-18 14:49:54,023 a.b.c INFO IP: 123.231.231.123 User: sheila An info message with some parameters
580 2008-01-18 14:49:54,023 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
581 2008-01-18 14:49:54,033 d.e.f INFO IP: 192.168.0.1 User: jim A message at INFO level with 2 parameters
582 2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
583 2008-01-18 14:49:54,033 d.e.f ERROR IP: 127.0.0.1 User: fred A message at ERROR level with 2 parameters
584 2008-01-18 14:49:54,033 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
585 2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
586 2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: jim A message at WARNING level with 2 parameters
587 2008-01-18 14:49:54,033 d.e.f INFO IP: 192.168.0.1 User: fred A message at INFO level with 2 parameters
588 2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
589 2008-01-18 14:49:54,033 d.e.f WARNING IP: 127.0.0.1 User: jim A message at WARNING level with 2 parameters
590
591
592.. _filters-contextual:
593
594Using Filters to impart contextual information
595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
596
597You can also add contextual information to log output using a user-defined
598:class:`Filter`. ``Filter`` instances are allowed to modify the ``LogRecords``
599passed to them, including adding additional attributes which can then be output
600using a suitable format string, or if needed a custom :class:`Formatter`.
601
602For example in a web application, the request being processed (or at least,
603the interesting parts of it) can be stored in a threadlocal
604(:class:`threading.local`) variable, and then accessed from a ``Filter`` to
605add, say, information from the request - say, the remote IP address and remote
606user's username - to the ``LogRecord``, using the attribute names 'ip' and
607'user' as in the ``LoggerAdapter`` example above. In that case, the same format
608string can be used to get similar output to that shown above. Here's an example
609script::
610
611 import logging
612 from random import choice
613
614 class ContextFilter(logging.Filter):
615 """
616 This is a filter which injects contextual information into the log.
617
618 Rather than use actual contextual information, we just use random
619 data in this demo.
620 """
621
622 USERS = ['jim', 'fred', 'sheila']
623 IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']
624
625 def filter(self, record):
626
627 record.ip = choice(ContextFilter.IPS)
628 record.user = choice(ContextFilter.USERS)
629 return True
630
631 if __name__ == '__main__':
632 levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
Vinay Sajipc63619b2010-12-19 12:56:57 +0000633 logging.basicConfig(level=logging.DEBUG,
634 format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
635 a1 = logging.getLogger('a.b.c')
636 a2 = logging.getLogger('d.e.f')
637
638 f = ContextFilter()
639 a1.addFilter(f)
640 a2.addFilter(f)
641 a1.debug('A debug message')
642 a1.info('An info message with %s', 'some parameters')
643 for x in range(10):
644 lvl = choice(levels)
645 lvlname = logging.getLevelName(lvl)
646 a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')
647
648which, when run, produces something like::
649
650 2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug message
651 2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info message with some parameters
652 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
653 2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message at ERROR level with 2 parameters
654 2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message at DEBUG level with 2 parameters
655 2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message at ERROR level with 2 parameters
656 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
657 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
658 2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message at DEBUG level with 2 parameters
659 2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
660 2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message at DEBUG level with 2 parameters
661 2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message at INFO level with 2 parameters
662
663
664.. _multiple-processes:
665
666Logging to a single file from multiple processes
667------------------------------------------------
668
669Although logging is thread-safe, and logging to a single file from multiple
670threads in a single process *is* supported, logging to a single file from
671*multiple processes* is *not* supported, because there is no standard way to
672serialize access to a single file across multiple processes in Python. If you
673need to log to a single file from multiple processes, one way of doing this is
674to have all the processes log to a :class:`SocketHandler`, and have a separate
675process which implements a socket server which reads from the socket and logs
676to file. (If you prefer, you can dedicate one thread in one of the existing
677processes to perform this function.) The following section documents this
678approach in more detail and includes a working socket receiver which can be
679used as a starting point for you to adapt in your own applications.
680
681If you are using a recent version of Python which includes the
682:mod:`multiprocessing` module, you could write your own handler which uses the
683:class:`Lock` class from this module to serialize access to the file from
684your processes. The existing :class:`FileHandler` and subclasses do not make
685use of :mod:`multiprocessing` at present, though they may do so in the future.
686Note that at present, the :mod:`multiprocessing` module does not provide
687working lock functionality on all platforms (see
688http://bugs.python.org/issue3770).
689
690.. currentmodule:: logging.handlers
691
692Alternatively, you can use a ``Queue`` and a :class:`QueueHandler` to send
693all logging events to one of the processes in your multi-process application.
694The following example script demonstrates how you can do this; in the example
695a separate listener process listens for events sent by other processes and logs
696them according to its own logging configuration. Although the example only
697demonstrates one way of doing it (for example, you may want to use a listener
Georg Brandl7a0afd32011-02-07 15:44:27 +0000698thread rather than a separate listener process -- the implementation would be
Vinay Sajipc63619b2010-12-19 12:56:57 +0000699analogous) it does allow for completely different logging configurations for
700the listener and the other processes in your application, and can be used as
701the basis for code meeting your own specific requirements::
702
703 # You'll need these imports in your own code
704 import logging
705 import logging.handlers
706 import multiprocessing
707
708 # Next two import lines for this demo only
709 from random import choice, random
710 import time
711
712 #
713 # Because you'll want to define the logging configurations for listener and workers, the
714 # listener and worker process functions take a configurer parameter which is a callable
715 # for configuring logging for that process. These functions are also passed the queue,
716 # which they use for communication.
717 #
718 # In practice, you can configure the listener however you want, but note that in this
719 # simple example, the listener does not apply level or filter logic to received records.
Georg Brandl7a0afd32011-02-07 15:44:27 +0000720 # In practice, you would probably want to do this logic in the worker processes, to avoid
Vinay Sajipc63619b2010-12-19 12:56:57 +0000721 # sending events which would be filtered out between processes.
722 #
723 # The size of the rotated files is made small so you can see the results easily.
724 def listener_configurer():
725 root = logging.getLogger()
Raymond Hettingerb34705f2011-06-26 15:29:06 +0200726 h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)
Vinay Sajipc63619b2010-12-19 12:56:57 +0000727 f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
728 h.setFormatter(f)
729 root.addHandler(h)
730
731 # This is the listener process top-level loop: wait for logging events
732 # (LogRecords)on the queue and handle them, quit when you get a None for a
733 # LogRecord.
734 def listener_process(queue, configurer):
735 configurer()
736 while True:
737 try:
738 record = queue.get()
739 if record is None: # We send this as a sentinel to tell the listener to quit.
740 break
741 logger = logging.getLogger(record.name)
742 logger.handle(record) # No level or filter logic applied - just do it!
743 except (KeyboardInterrupt, SystemExit):
744 raise
745 except:
746 import sys, traceback
747 print >> sys.stderr, 'Whoops! Problem:'
748 traceback.print_exc(file=sys.stderr)
749
750 # Arrays used for random selections in this demo
751
752 LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
753 logging.ERROR, logging.CRITICAL]
754
755 LOGGERS = ['a.b.c', 'd.e.f']
756
757 MESSAGES = [
758 'Random message #1',
759 'Random message #2',
760 'Random message #3',
761 ]
762
763 # The worker configuration is done at the start of the worker process run.
764 # Note that on Windows you can't rely on fork semantics, so each process
765 # will run the logging configuration code when it starts.
766 def worker_configurer(queue):
767 h = logging.handlers.QueueHandler(queue) # Just the one handler needed
768 root = logging.getLogger()
769 root.addHandler(h)
770 root.setLevel(logging.DEBUG) # send all messages, for demo; no other level or filter logic applied.
771
772 # This is the worker process top-level loop, which just logs ten events with
773 # random intervening delays before terminating.
774 # The print messages are just so you know it's doing something!
775 def worker_process(queue, configurer):
776 configurer(queue)
777 name = multiprocessing.current_process().name
778 print('Worker started: %s' % name)
779 for i in range(10):
780 time.sleep(random())
781 logger = logging.getLogger(choice(LOGGERS))
782 level = choice(LEVELS)
783 message = choice(MESSAGES)
784 logger.log(level, message)
785 print('Worker finished: %s' % name)
786
787 # Here's where the demo gets orchestrated. Create the queue, create and start
788 # the listener, create ten workers and start them, wait for them to finish,
789 # then send a None to the queue to tell the listener to finish.
790 def main():
791 queue = multiprocessing.Queue(-1)
792 listener = multiprocessing.Process(target=listener_process,
793 args=(queue, listener_configurer))
794 listener.start()
795 workers = []
796 for i in range(10):
797 worker = multiprocessing.Process(target=worker_process,
798 args=(queue, worker_configurer))
799 workers.append(worker)
800 worker.start()
801 for w in workers:
802 w.join()
803 queue.put_nowait(None)
804 listener.join()
805
806 if __name__ == '__main__':
807 main()
808
Vinay Sajipe6f1e432010-12-26 18:47:51 +0000809A variant of the above script keeps the logging in the main process, in a
810separate thread::
811
812 import logging
813 import logging.config
814 import logging.handlers
815 from multiprocessing import Process, Queue
816 import random
817 import threading
818 import time
819
820 def logger_thread(q):
821 while True:
822 record = q.get()
823 if record is None:
824 break
825 logger = logging.getLogger(record.name)
826 logger.handle(record)
827
828
829 def worker_process(q):
830 qh = logging.handlers.QueueHandler(q)
831 root = logging.getLogger()
832 root.setLevel(logging.DEBUG)
833 root.addHandler(qh)
834 levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
835 logging.CRITICAL]
836 loggers = ['foo', 'foo.bar', 'foo.bar.baz',
837 'spam', 'spam.ham', 'spam.ham.eggs']
838 for i in range(100):
839 lvl = random.choice(levels)
840 logger = logging.getLogger(random.choice(loggers))
841 logger.log(lvl, 'Message no. %d', i)
842
843 if __name__ == '__main__':
844 q = Queue()
845 d = {
846 'version': 1,
847 'formatters': {
848 'detailed': {
849 'class': 'logging.Formatter',
850 'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
851 }
852 },
853 'handlers': {
854 'console': {
855 'class': 'logging.StreamHandler',
856 'level': 'INFO',
857 },
858 'file': {
859 'class': 'logging.FileHandler',
860 'filename': 'mplog.log',
861 'mode': 'w',
862 'formatter': 'detailed',
863 },
864 'foofile': {
865 'class': 'logging.FileHandler',
866 'filename': 'mplog-foo.log',
867 'mode': 'w',
868 'formatter': 'detailed',
869 },
870 'errors': {
871 'class': 'logging.FileHandler',
872 'filename': 'mplog-errors.log',
873 'mode': 'w',
874 'level': 'ERROR',
875 'formatter': 'detailed',
876 },
877 },
878 'loggers': {
879 'foo': {
880 'handlers' : ['foofile']
881 }
882 },
883 'root': {
884 'level': 'DEBUG',
885 'handlers': ['console', 'file', 'errors']
886 },
887 }
888 workers = []
889 for i in range(5):
890 wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))
891 workers.append(wp)
892 wp.start()
893 logging.config.dictConfig(d)
894 lp = threading.Thread(target=logger_thread, args=(q,))
895 lp.start()
896 # At this point, the main process could do some useful work of its own
897 # Once it's done that, it can wait for the workers to terminate...
898 for wp in workers:
899 wp.join()
900 # And now tell the logging thread to finish up, too
901 q.put(None)
902 lp.join()
903
904This variant shows how you can e.g. apply configuration for particular loggers
905- e.g. the ``foo`` logger has a special handler which stores all events in the
906``foo`` subsystem in a file ``mplog-foo.log``. This will be used by the logging
907machinery in the main process (even though the logging events are generated in
908the worker processes) to direct the messages to the appropriate destinations.
Vinay Sajipc63619b2010-12-19 12:56:57 +0000909
910Using file rotation
911-------------------
912
913.. sectionauthor:: Doug Hellmann, Vinay Sajip (changes)
914.. (see <http://blog.doughellmann.com/2007/05/pymotw-logging.html>)
915
916Sometimes you want to let a log file grow to a certain size, then open a new
917file and log to that. You may want to keep a certain number of these files, and
918when that many files have been created, rotate the files so that the number of
Georg Brandl7a0afd32011-02-07 15:44:27 +0000919files and the size of the files both remain bounded. For this usage pattern, the
Vinay Sajipc63619b2010-12-19 12:56:57 +0000920logging package provides a :class:`RotatingFileHandler`::
921
922 import glob
923 import logging
924 import logging.handlers
925
926 LOG_FILENAME = 'logging_rotatingfile_example.out'
927
928 # Set up a specific logger with our desired output level
929 my_logger = logging.getLogger('MyLogger')
930 my_logger.setLevel(logging.DEBUG)
931
932 # Add the log message handler to the logger
933 handler = logging.handlers.RotatingFileHandler(
934 LOG_FILENAME, maxBytes=20, backupCount=5)
935
936 my_logger.addHandler(handler)
937
938 # Log some messages
939 for i in range(20):
940 my_logger.debug('i = %d' % i)
941
942 # See what files are created
943 logfiles = glob.glob('%s*' % LOG_FILENAME)
944
945 for filename in logfiles:
946 print(filename)
947
948The result should be 6 separate files, each with part of the log history for the
949application::
950
951 logging_rotatingfile_example.out
952 logging_rotatingfile_example.out.1
953 logging_rotatingfile_example.out.2
954 logging_rotatingfile_example.out.3
955 logging_rotatingfile_example.out.4
956 logging_rotatingfile_example.out.5
957
958The most current file is always :file:`logging_rotatingfile_example.out`,
959and each time it reaches the size limit it is renamed with the suffix
960``.1``. Each of the existing backup files is renamed to increment the suffix
961(``.1`` becomes ``.2``, etc.) and the ``.6`` file is erased.
962
963Obviously this example sets the log length much much too small as an extreme
964example. You would want to set *maxBytes* to an appropriate value.
965
966.. _zeromq-handlers:
967
Vinay Sajip7d101292010-12-26 21:22:33 +0000968Subclassing QueueHandler - a ZeroMQ example
969-------------------------------------------
Vinay Sajipc63619b2010-12-19 12:56:57 +0000970
971You can use a :class:`QueueHandler` subclass to send messages to other kinds
972of queues, for example a ZeroMQ 'publish' socket. In the example below,the
973socket is created separately and passed to the handler (as its 'queue')::
974
975 import zmq # using pyzmq, the Python binding for ZeroMQ
976 import json # for serializing records portably
977
978 ctx = zmq.Context()
979 sock = zmq.Socket(ctx, zmq.PUB) # or zmq.PUSH, or other suitable value
980 sock.bind('tcp://*:5556') # or wherever
981
982 class ZeroMQSocketHandler(QueueHandler):
983 def enqueue(self, record):
984 data = json.dumps(record.__dict__)
985 self.queue.send(data)
986
987 handler = ZeroMQSocketHandler(sock)
988
989
990Of course there are other ways of organizing this, for example passing in the
991data needed by the handler to create the socket::
992
993 class ZeroMQSocketHandler(QueueHandler):
994 def __init__(self, uri, socktype=zmq.PUB, ctx=None):
995 self.ctx = ctx or zmq.Context()
996 socket = zmq.Socket(self.ctx, socktype)
997 socket.bind(uri)
998 QueueHandler.__init__(self, socket)
999
1000 def enqueue(self, record):
1001 data = json.dumps(record.__dict__)
1002 self.queue.send(data)
1003
1004 def close(self):
1005 self.queue.close()
1006
1007
Vinay Sajip7d101292010-12-26 21:22:33 +00001008Subclassing QueueListener - a ZeroMQ example
1009--------------------------------------------
Vinay Sajipc63619b2010-12-19 12:56:57 +00001010
1011You can also subclass :class:`QueueListener` to get messages from other kinds
1012of queues, for example a ZeroMQ 'subscribe' socket. Here's an example::
1013
1014 class ZeroMQSocketListener(QueueListener):
1015 def __init__(self, uri, *handlers, **kwargs):
1016 self.ctx = kwargs.get('ctx') or zmq.Context()
1017 socket = zmq.Socket(self.ctx, zmq.SUB)
1018 socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to everything
1019 socket.connect(uri)
1020
1021 def dequeue(self):
1022 msg = self.queue.recv()
1023 return logging.makeLogRecord(json.loads(msg))
1024
1025
Vinay Sajip7d101292010-12-26 21:22:33 +00001026.. seealso::
Vinay Sajipc63619b2010-12-19 12:56:57 +00001027
Vinay Sajip7d101292010-12-26 21:22:33 +00001028 Module :mod:`logging`
1029 API reference for the logging module.
1030
1031 Module :mod:`logging.config`
1032 Configuration API for the logging module.
1033
1034 Module :mod:`logging.handlers`
1035 Useful handlers included with the logging module.
1036
1037 :ref:`A basic logging tutorial <logging-basic-tutorial>`
1038
1039 :ref:`A more advanced logging tutorial <logging-advanced-tutorial>`