blob: 186cb4c381dee4af85d69a569f65d355131a29b2 [file] [log] [blame]
Georg Brandl6c89a792012-01-25 22:36:25 +01001:mod:`functools` --- Higher-order functions and operations on callable objects
Georg Brandl116aa622007-08-15 14:28:22 +00002==============================================================================
3
4.. module:: functools
Georg Brandl6c89a792012-01-25 22:36:25 +01005 :synopsis: Higher-order functions and operations on callable objects.
Terry Jan Reedyfa089b92016-06-11 15:02:54 -04006
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Peter Harris <scav@blueyonder.co.uk>
8.. moduleauthor:: Raymond Hettinger <python@rcn.com>
9.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
Łukasz Langa6f692512013-06-05 12:20:24 +020010.. moduleauthor:: Łukasz Langa <lukasz@langa.pl>
Pablo Galindo99e6c262020-01-23 15:29:52 +000011.. moduleauthor:: Pablo Galindo <pablogsal@gmail.com>
Georg Brandl116aa622007-08-15 14:28:22 +000012.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>
13
Raymond Hettinger05ce0792011-01-10 21:16:07 +000014**Source code:** :source:`Lib/functools.py`
15
Pablo Galindo99e6c262020-01-23 15:29:52 +000016.. testsetup:: default
17
18 import functools
19 from functools import *
20
Raymond Hettinger05ce0792011-01-10 21:16:07 +000021--------------
Georg Brandl116aa622007-08-15 14:28:22 +000022
Georg Brandl116aa622007-08-15 14:28:22 +000023The :mod:`functools` module is for higher-order functions: functions that act on
24or return other functions. In general, any callable object can be treated as a
25function for the purposes of this module.
26
Thomas Woutersed03b412007-08-28 21:37:11 +000027The :mod:`functools` module defines the following functions:
28
Raymond Hettinger21cdb712020-05-11 17:00:53 -070029.. decorator:: cache(user_function)
30
31 Simple lightweight unbounded function cache. Sometimes called
32 `"memoize" <https://en.wikipedia.org/wiki/Memoization>`_.
33
34 Returns the same as ``lru_cache(maxsize=None)``, creating a thin
35 wrapper around a dictionary lookup for the function arguments. Because it
36 never needs to evict old values, this is smaller and faster than
37 :func:`lru_cache()` with a size limit.
38
39 For example::
40
41 @cache
42 def factorial(n):
43 return n * factorial(n-1) if n else 1
44
45 >>> factorial(10) # no previously cached result, makes 11 recursive calls
46 3628800
47 >>> factorial(5) # just looks up cached value result
48 120
49 >>> factorial(12) # makes two new recursive calls, the other 10 are cached
50 479001600
51
52 .. versionadded:: 3.9
53
54
Carl Meyerd658dea2018-08-28 01:11:56 -060055.. decorator:: cached_property(func)
56
57 Transform a method of a class into a property whose value is computed once
58 and then cached as a normal attribute for the life of the instance. Similar
59 to :func:`property`, with the addition of caching. Useful for expensive
60 computed properties of instances that are otherwise effectively immutable.
61
62 Example::
63
64 class DataSet:
65 def __init__(self, sequence_of_numbers):
66 self._data = sequence_of_numbers
67
68 @cached_property
69 def stdev(self):
70 return statistics.stdev(self._data)
71
72 @cached_property
73 def variance(self):
74 return statistics.variance(self._data)
75
76 .. versionadded:: 3.8
77
78 .. note::
79
80 This decorator requires that the ``__dict__`` attribute on each instance
81 be a mutable mapping. This means it will not work with some types, such as
82 metaclasses (since the ``__dict__`` attributes on type instances are
83 read-only proxies for the class namespace), and those that specify
84 ``__slots__`` without including ``__dict__`` as one of the defined slots
85 (as such classes don't provide a ``__dict__`` attribute at all).
86
87
Éric Araujob10089e2010-11-18 14:22:08 +000088.. function:: cmp_to_key(func)
Raymond Hettingerc50846a2010-04-05 18:56:31 +000089
Raymond Hettinger86e9b6b2014-11-09 17:20:56 -080090 Transform an old-style comparison function to a :term:`key function`. Used
91 with tools that accept key functions (such as :func:`sorted`, :func:`min`,
Benjamin Petersoncca65312010-08-09 02:13:10 +000092 :func:`max`, :func:`heapq.nlargest`, :func:`heapq.nsmallest`,
93 :func:`itertools.groupby`). This function is primarily used as a transition
Ezio Melotti9ecb6be2012-01-16 08:28:54 +020094 tool for programs being converted from Python 2 which supported the use of
Benjamin Petersoncca65312010-08-09 02:13:10 +000095 comparison functions.
Raymond Hettingerc50846a2010-04-05 18:56:31 +000096
Georg Brandl6c89a792012-01-25 22:36:25 +010097 A comparison function is any callable that accept two arguments, compares them,
Benjamin Petersoncca65312010-08-09 02:13:10 +000098 and returns a negative number for less-than, zero for equality, or a positive
99 number for greater-than. A key function is a callable that accepts one
Raymond Hettinger86e9b6b2014-11-09 17:20:56 -0800100 argument and returns another value to be used as the sort key.
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000101
Benjamin Petersoncca65312010-08-09 02:13:10 +0000102 Example::
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000103
Benjamin Petersoncca65312010-08-09 02:13:10 +0000104 sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000105
Raymond Hettinger86e9b6b2014-11-09 17:20:56 -0800106 For sorting examples and a brief sorting tutorial, see :ref:`sortinghowto`.
107
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000108 .. versionadded:: 3.2
109
Georg Brandl67b21b72010-08-17 15:07:14 +0000110
Raymond Hettingerb8218682019-05-26 11:27:35 -0700111.. decorator:: lru_cache(user_function)
112 lru_cache(maxsize=128, typed=False)
Georg Brandl2e7346a2010-07-31 18:09:23 +0000113
114 Decorator to wrap a function with a memoizing callable that saves up to the
115 *maxsize* most recent calls. It can save time when an expensive or I/O bound
116 function is periodically called with the same arguments.
117
Raymond Hettinger7496b412010-11-30 19:15:45 +0000118 Since a dictionary is used to cache results, the positional and keyword
119 arguments to the function must be hashable.
Georg Brandl2e7346a2010-07-31 18:09:23 +0000120
Raymond Hettinger902bcd92018-09-14 00:53:20 -0700121 Distinct argument patterns may be considered to be distinct calls with
122 separate cache entries. For example, `f(a=1, b=2)` and `f(b=2, a=1)`
123 differ in their keyword argument order and may have two separate cache
124 entries.
125
Raymond Hettingerb8218682019-05-26 11:27:35 -0700126 If *user_function* is specified, it must be a callable. This allows the
127 *lru_cache* decorator to be applied directly to a user function, leaving
128 the *maxsize* at its default value of 128::
129
130 @lru_cache
131 def count_vowels(sentence):
132 sentence = sentence.casefold()
133 return sum(sentence.count(vowel) for vowel in 'aeiou')
134
Serhiy Storchakaecf41da2016-10-19 16:29:26 +0300135 If *maxsize* is set to ``None``, the LRU feature is disabled and the cache can
Raymond Hettingerad9eaea2020-05-03 16:45:13 -0700136 grow without bound.
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000137
Serhiy Storchaka4adf01c2016-10-19 18:30:05 +0300138 If *typed* is set to true, function arguments of different types will be
Raymond Hettingercd9fdfd2011-10-20 08:57:45 -0700139 cached separately. For example, ``f(3)`` and ``f(3.0)`` will be treated
140 as distinct calls with distinct results.
141
Manjusaka051ff522019-11-12 15:30:18 +0800142 The wrapped function is instrumented with a :func:`cache_parameters`
143 function that returns a new :class:`dict` showing the values for *maxsize*
144 and *typed*. This is for information purposes only. Mutating the values
145 has no effect.
146
Raymond Hettinger7496b412010-11-30 19:15:45 +0000147 To help measure the effectiveness of the cache and tune the *maxsize*
148 parameter, the wrapped function is instrumented with a :func:`cache_info`
149 function that returns a :term:`named tuple` showing *hits*, *misses*,
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000150 *maxsize* and *currsize*. In a multi-threaded environment, the hits
151 and misses are approximate.
Nick Coghlan234515a2010-11-30 06:19:46 +0000152
Raymond Hettinger7496b412010-11-30 19:15:45 +0000153 The decorator also provides a :func:`cache_clear` function for clearing or
154 invalidating the cache.
Georg Brandl2e7346a2010-07-31 18:09:23 +0000155
Raymond Hettinger3fccfcb2010-08-17 19:19:29 +0000156 The original underlying function is accessible through the
Raymond Hettinger7496b412010-11-30 19:15:45 +0000157 :attr:`__wrapped__` attribute. This is useful for introspection, for
158 bypassing the cache, or for rewrapping the function with a different cache.
Nick Coghlan98876832010-08-17 06:17:18 +0000159
Raymond Hettingercc038582010-11-30 20:02:57 +0000160 An `LRU (least recently used) cache
Allen Guo3d542112020-05-12 18:54:18 -0400161 <https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)>`_
162 works best when the most recent calls are the best predictors of upcoming
163 calls (for example, the most popular articles on a news server tend to
164 change each day). The cache's size limit assures that the cache does not
165 grow without bound on long-running processes such as web servers.
Raymond Hettinger7496b412010-11-30 19:15:45 +0000166
Raymond Hettingerf0e0f202018-11-25 16:24:52 -0800167 In general, the LRU cache should only be used when you want to reuse
168 previously computed values. Accordingly, it doesn't make sense to cache
169 functions with side-effects, functions that need to create distinct mutable
170 objects on each call, or impure functions such as time() or random().
171
Raymond Hettingercc038582010-11-30 20:02:57 +0000172 Example of an LRU cache for static web content::
Raymond Hettinger7496b412010-11-30 19:15:45 +0000173
Raymond Hettinger17328e42013-04-06 20:27:33 -0700174 @lru_cache(maxsize=32)
Raymond Hettinger7496b412010-11-30 19:15:45 +0000175 def get_pep(num):
176 'Retrieve text of a Python Enhancement Proposal'
177 resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
178 try:
179 with urllib.request.urlopen(resource) as s:
180 return s.read()
181 except urllib.error.HTTPError:
182 return 'Not Found'
183
184 >>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
185 ... pep = get_pep(n)
186 ... print(n, len(pep))
187
Raymond Hettinger17328e42013-04-06 20:27:33 -0700188 >>> get_pep.cache_info()
189 CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)
Georg Brandl2e7346a2010-07-31 18:09:23 +0000190
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000191 Example of efficiently computing
Georg Brandl5d941342016-02-26 19:37:12 +0100192 `Fibonacci numbers <https://en.wikipedia.org/wiki/Fibonacci_number>`_
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000193 using a cache to implement a
Georg Brandl5d941342016-02-26 19:37:12 +0100194 `dynamic programming <https://en.wikipedia.org/wiki/Dynamic_programming>`_
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000195 technique::
196
197 @lru_cache(maxsize=None)
198 def fib(n):
199 if n < 2:
200 return n
201 return fib(n-1) + fib(n-2)
202
Raymond Hettinger17328e42013-04-06 20:27:33 -0700203 >>> [fib(n) for n in range(16)]
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000204 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
205
Raymond Hettinger17328e42013-04-06 20:27:33 -0700206 >>> fib.cache_info()
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000207 CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)
208
Georg Brandl2e7346a2010-07-31 18:09:23 +0000209 .. versionadded:: 3.2
210
Raymond Hettingercd9fdfd2011-10-20 08:57:45 -0700211 .. versionchanged:: 3.3
212 Added the *typed* option.
213
Raymond Hettingerb8218682019-05-26 11:27:35 -0700214 .. versionchanged:: 3.8
215 Added the *user_function* option.
216
Manjusaka051ff522019-11-12 15:30:18 +0800217 .. versionadded:: 3.9
218 Added the function :func:`cache_parameters`
219
Georg Brandl8a1caa22010-07-29 16:01:11 +0000220.. decorator:: total_ordering
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000221
222 Given a class defining one or more rich comparison ordering methods, this
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000223 class decorator supplies the rest. This simplifies the effort involved
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000224 in specifying all of the possible rich comparison operations:
225
226 The class must define one of :meth:`__lt__`, :meth:`__le__`,
227 :meth:`__gt__`, or :meth:`__ge__`.
228 In addition, the class should supply an :meth:`__eq__` method.
229
230 For example::
231
232 @total_ordering
233 class Student:
Nick Coghlanf05d9812013-10-02 00:02:03 +1000234 def _is_valid_operand(self, other):
235 return (hasattr(other, "lastname") and
236 hasattr(other, "firstname"))
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000237 def __eq__(self, other):
Nick Coghlanf05d9812013-10-02 00:02:03 +1000238 if not self._is_valid_operand(other):
239 return NotImplemented
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000240 return ((self.lastname.lower(), self.firstname.lower()) ==
241 (other.lastname.lower(), other.firstname.lower()))
242 def __lt__(self, other):
Nick Coghlanf05d9812013-10-02 00:02:03 +1000243 if not self._is_valid_operand(other):
244 return NotImplemented
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000245 return ((self.lastname.lower(), self.firstname.lower()) <
246 (other.lastname.lower(), other.firstname.lower()))
247
Nick Coghlanf05d9812013-10-02 00:02:03 +1000248 .. note::
249
250 While this decorator makes it easy to create well behaved totally
251 ordered types, it *does* come at the cost of slower execution and
252 more complex stack traces for the derived comparison methods. If
253 performance benchmarking indicates this is a bottleneck for a given
254 application, implementing all six rich comparison methods instead is
255 likely to provide an easy speed boost.
256
Ben Avrahamibef7d292020-10-06 20:40:50 +0300257 .. note::
258
259 This decorator makes no attempt to override methods that have been
260 declared in the class *or its superclasses*. Meaning that if a
261 superclass defines a comparison operator, *total_ordering* will not
262 implement it again, even if the original method is abstract.
263
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000264 .. versionadded:: 3.2
265
Nick Coghlanf05d9812013-10-02 00:02:03 +1000266 .. versionchanged:: 3.4
267 Returning NotImplemented from the underlying comparison function for
268 unrecognised types is now supported.
Georg Brandl67b21b72010-08-17 15:07:14 +0000269
Serhiy Storchaka2085bd02019-06-01 11:00:15 +0300270.. function:: partial(func, /, *args, **keywords)
Georg Brandl116aa622007-08-15 14:28:22 +0000271
Andrei Petre83a07652018-10-22 23:11:20 -0700272 Return a new :ref:`partial object<partial-objects>` which when called
273 will behave like *func* called with the positional arguments *args*
274 and keyword arguments *keywords*. If more arguments are supplied to the
275 call, they are appended to *args*. If additional keyword arguments are
276 supplied, they extend and override *keywords*.
Georg Brandl116aa622007-08-15 14:28:22 +0000277 Roughly equivalent to::
278
Serhiy Storchaka2085bd02019-06-01 11:00:15 +0300279 def partial(func, /, *args, **keywords):
Georg Brandl116aa622007-08-15 14:28:22 +0000280 def newfunc(*fargs, **fkeywords):
Sergey Fedoseevb981fec2018-10-20 02:42:07 +0500281 newkeywords = {**keywords, **fkeywords}
Martin Panter0c0da482016-06-12 01:46:50 +0000282 return func(*args, *fargs, **newkeywords)
Georg Brandl116aa622007-08-15 14:28:22 +0000283 newfunc.func = func
284 newfunc.args = args
285 newfunc.keywords = keywords
286 return newfunc
287
288 The :func:`partial` is used for partial function application which "freezes"
289 some portion of a function's arguments and/or keywords resulting in a new object
290 with a simplified signature. For example, :func:`partial` can be used to create
291 a callable that behaves like the :func:`int` function where the *base* argument
Christian Heimesfe337bf2008-03-23 21:54:12 +0000292 defaults to two:
Georg Brandl116aa622007-08-15 14:28:22 +0000293
Christian Heimesfe337bf2008-03-23 21:54:12 +0000294 >>> from functools import partial
Georg Brandl116aa622007-08-15 14:28:22 +0000295 >>> basetwo = partial(int, base=2)
296 >>> basetwo.__doc__ = 'Convert base 2 string to an int.'
297 >>> basetwo('10010')
298 18
299
300
Serhiy Storchaka70c5f2a2019-06-01 11:38:24 +0300301.. class:: partialmethod(func, /, *args, **keywords)
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000302
303 Return a new :class:`partialmethod` descriptor which behaves
304 like :class:`partial` except that it is designed to be used as a method
305 definition rather than being directly callable.
306
307 *func* must be a :term:`descriptor` or a callable (objects which are both,
308 like normal functions, are handled as descriptors).
309
310 When *func* is a descriptor (such as a normal Python function,
311 :func:`classmethod`, :func:`staticmethod`, :func:`abstractmethod` or
312 another instance of :class:`partialmethod`), calls to ``__get__`` are
313 delegated to the underlying descriptor, and an appropriate
Andrei Petre83a07652018-10-22 23:11:20 -0700314 :ref:`partial object<partial-objects>` returned as the result.
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000315
316 When *func* is a non-descriptor callable, an appropriate bound method is
317 created dynamically. This behaves like a normal Python function when
318 used as a method: the *self* argument will be inserted as the first
319 positional argument, even before the *args* and *keywords* supplied to
320 the :class:`partialmethod` constructor.
321
322 Example::
323
Serhiy Storchakae042a452019-06-10 13:35:52 +0300324 >>> class Cell:
Benjamin Peterson3a434032014-03-30 15:07:09 -0400325 ... def __init__(self):
326 ... self._alive = False
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000327 ... @property
328 ... def alive(self):
329 ... return self._alive
330 ... def set_state(self, state):
331 ... self._alive = bool(state)
Nick Coghlan3daaf5f2013-11-04 23:32:16 +1000332 ... set_alive = partialmethod(set_state, True)
333 ... set_dead = partialmethod(set_state, False)
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000334 ...
335 >>> c = Cell()
336 >>> c.alive
337 False
338 >>> c.set_alive()
339 >>> c.alive
340 True
341
342 .. versionadded:: 3.4
343
344
Georg Brandl58f9e4f2008-04-19 22:18:33 +0000345.. function:: reduce(function, iterable[, initializer])
Georg Brandl116aa622007-08-15 14:28:22 +0000346
Brendan Jurd9df10022018-10-01 16:52:10 +1000347 Apply *function* of two arguments cumulatively to the items of *iterable*, from
348 left to right, so as to reduce the iterable to a single value. For example,
Georg Brandl116aa622007-08-15 14:28:22 +0000349 ``reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])`` calculates ``((((1+2)+3)+4)+5)``.
350 The left argument, *x*, is the accumulated value and the right argument, *y*, is
Brendan Jurd9df10022018-10-01 16:52:10 +1000351 the update value from the *iterable*. If the optional *initializer* is present,
352 it is placed before the items of the iterable in the calculation, and serves as
353 a default when the iterable is empty. If *initializer* is not given and
354 *iterable* contains only one item, the first item is returned.
Georg Brandl116aa622007-08-15 14:28:22 +0000355
Raymond Hettinger558dcf32014-12-16 18:16:57 -0800356 Roughly equivalent to::
Raymond Hettinger64801682013-10-12 16:04:17 -0700357
358 def reduce(function, iterable, initializer=None):
359 it = iter(iterable)
360 if initializer is None:
361 value = next(it)
362 else:
363 value = initializer
364 for element in it:
365 value = function(value, element)
366 return value
367
Gerrit Hollbd81cbd2018-07-04 23:26:32 +0100368 See :func:`itertools.accumulate` for an iterator that yields all intermediate
369 values.
Georg Brandl116aa622007-08-15 14:28:22 +0000370
Daisuke Miyakawa0e61e672017-10-12 23:39:43 +0900371.. decorator:: singledispatch
Łukasz Langa6f692512013-06-05 12:20:24 +0200372
Daisuke Miyakawa0e61e672017-10-12 23:39:43 +0900373 Transform a function into a :term:`single-dispatch <single
Łukasz Langafdcf2b72013-06-07 22:54:03 +0200374 dispatch>` :term:`generic function`.
Łukasz Langa6f692512013-06-05 12:20:24 +0200375
376 To define a generic function, decorate it with the ``@singledispatch``
377 decorator. Note that the dispatch happens on the type of the first argument,
378 create your function accordingly::
379
380 >>> from functools import singledispatch
381 >>> @singledispatch
382 ... def fun(arg, verbose=False):
383 ... if verbose:
384 ... print("Let me just say,", end=" ")
385 ... print(arg)
386
387 To add overloaded implementations to the function, use the :func:`register`
Łukasz Langae5697532017-12-11 13:56:31 -0800388 attribute of the generic function. It is a decorator. For functions
389 annotated with types, the decorator will infer the type of the first
390 argument automatically::
Łukasz Langa6f692512013-06-05 12:20:24 +0200391
Łukasz Langae5697532017-12-11 13:56:31 -0800392 >>> @fun.register
393 ... def _(arg: int, verbose=False):
Łukasz Langa6f692512013-06-05 12:20:24 +0200394 ... if verbose:
395 ... print("Strength in numbers, eh?", end=" ")
396 ... print(arg)
397 ...
Łukasz Langae5697532017-12-11 13:56:31 -0800398 >>> @fun.register
399 ... def _(arg: list, verbose=False):
Łukasz Langa6f692512013-06-05 12:20:24 +0200400 ... if verbose:
401 ... print("Enumerate this:")
402 ... for i, elem in enumerate(arg):
403 ... print(i, elem)
404
Łukasz Langae5697532017-12-11 13:56:31 -0800405 For code which doesn't use type annotations, the appropriate type
406 argument can be passed explicitly to the decorator itself::
407
408 >>> @fun.register(complex)
409 ... def _(arg, verbose=False):
410 ... if verbose:
411 ... print("Better than complicated.", end=" ")
412 ... print(arg.real, arg.imag)
413 ...
414
415
Łukasz Langa6f692512013-06-05 12:20:24 +0200416 To enable registering lambdas and pre-existing functions, the
417 :func:`register` attribute can be used in a functional form::
418
419 >>> def nothing(arg, verbose=False):
420 ... print("Nothing.")
421 ...
422 >>> fun.register(type(None), nothing)
423
424 The :func:`register` attribute returns the undecorated function which
425 enables decorator stacking, pickling, as well as creating unit tests for
426 each variant independently::
427
428 >>> @fun.register(float)
429 ... @fun.register(Decimal)
430 ... def fun_num(arg, verbose=False):
431 ... if verbose:
432 ... print("Half of your number:", end=" ")
433 ... print(arg / 2)
434 ...
435 >>> fun_num is fun
436 False
437
438 When called, the generic function dispatches on the type of the first
439 argument::
440
441 >>> fun("Hello, world.")
442 Hello, world.
443 >>> fun("test.", verbose=True)
444 Let me just say, test.
445 >>> fun(42, verbose=True)
446 Strength in numbers, eh? 42
447 >>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
448 Enumerate this:
449 0 spam
450 1 spam
451 2 eggs
452 3 spam
453 >>> fun(None)
454 Nothing.
455 >>> fun(1.23)
456 0.615
457
458 Where there is no registered implementation for a specific type, its
459 method resolution order is used to find a more generic implementation.
460 The original function decorated with ``@singledispatch`` is registered
461 for the base ``object`` type, which means it is used if no better
462 implementation is found.
463
Batuhan Taşkaya24555ce2019-11-19 11:16:46 +0300464 If an implementation registered to :term:`abstract base class`, virtual
465 subclasses will be dispatched to that implementation::
466
467 >>> from collections.abc import Mapping
468 >>> @fun.register
469 ... def _(arg: Mapping, verbose=False):
470 ... if verbose:
471 ... print("Keys & Values")
472 ... for key, value in arg.items():
473 ... print(key, "=>", value)
474 ...
475 >>> fun({"a": "b"})
476 a => b
477
Łukasz Langa6f692512013-06-05 12:20:24 +0200478 To check which implementation will the generic function choose for
479 a given type, use the ``dispatch()`` attribute::
480
481 >>> fun.dispatch(float)
482 <function fun_num at 0x1035a2840>
483 >>> fun.dispatch(dict) # note: default implementation
484 <function fun at 0x103fe0000>
485
486 To access all registered implementations, use the read-only ``registry``
487 attribute::
488
489 >>> fun.registry.keys()
490 dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,
491 <class 'decimal.Decimal'>, <class 'list'>,
492 <class 'float'>])
493 >>> fun.registry[float]
494 <function fun_num at 0x1035a2840>
495 >>> fun.registry[object]
496 <function fun at 0x103fe0000>
497
498 .. versionadded:: 3.4
499
Łukasz Langae5697532017-12-11 13:56:31 -0800500 .. versionchanged:: 3.7
501 The :func:`register` attribute supports using type annotations.
502
Łukasz Langa6f692512013-06-05 12:20:24 +0200503
Ethan Smithc6512752018-05-26 16:38:33 -0400504.. class:: singledispatchmethod(func)
505
506 Transform a method into a :term:`single-dispatch <single
507 dispatch>` :term:`generic function`.
508
509 To define a generic method, decorate it with the ``@singledispatchmethod``
510 decorator. Note that the dispatch happens on the type of the first non-self
511 or non-cls argument, create your function accordingly::
512
513 class Negator:
514 @singledispatchmethod
515 def neg(self, arg):
516 raise NotImplementedError("Cannot negate a")
517
518 @neg.register
519 def _(self, arg: int):
520 return -arg
521
522 @neg.register
523 def _(self, arg: bool):
524 return not arg
525
526 ``@singledispatchmethod`` supports nesting with other decorators such as
527 ``@classmethod``. Note that to allow for ``dispatcher.register``,
528 ``singledispatchmethod`` must be the *outer most* decorator. Here is the
529 ``Negator`` class with the ``neg`` methods being class bound::
530
531 class Negator:
532 @singledispatchmethod
533 @classmethod
534 def neg(cls, arg):
535 raise NotImplementedError("Cannot negate a")
536
537 @neg.register
538 @classmethod
539 def _(cls, arg: int):
540 return -arg
541
542 @neg.register
543 @classmethod
544 def _(cls, arg: bool):
545 return not arg
546
547 The same pattern can be used for other similar decorators: ``staticmethod``,
548 ``abstractmethod``, and others.
549
Inada Naokibc284f02019-03-27 18:15:17 +0900550 .. versionadded:: 3.8
551
552
Georg Brandl036490d2009-05-17 13:00:36 +0000553.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
Georg Brandl116aa622007-08-15 14:28:22 +0000554
555 Update a *wrapper* function to look like the *wrapped* function. The optional
556 arguments are tuples to specify which attributes of the original function are
557 assigned directly to the matching attributes on the wrapper function and which
558 attributes of the wrapper function are updated with the corresponding attributes
559 from the original function. The default values for these arguments are the
Berker Peksag472233e2016-04-18 21:20:50 +0300560 module level constants ``WRAPPER_ASSIGNMENTS`` (which assigns to the wrapper
561 function's ``__module__``, ``__name__``, ``__qualname__``, ``__annotations__``
562 and ``__doc__``, the documentation string) and ``WRAPPER_UPDATES`` (which
563 updates the wrapper function's ``__dict__``, i.e. the instance dictionary).
Georg Brandl116aa622007-08-15 14:28:22 +0000564
Nick Coghlan98876832010-08-17 06:17:18 +0000565 To allow access to the original function for introspection and other purposes
566 (e.g. bypassing a caching decorator such as :func:`lru_cache`), this function
Nick Coghlan24c05bc2013-07-15 21:13:08 +1000567 automatically adds a ``__wrapped__`` attribute to the wrapper that refers to
568 the function being wrapped.
Nick Coghlan98876832010-08-17 06:17:18 +0000569
Christian Heimesd8654cf2007-12-02 15:22:16 +0000570 The main intended use for this function is in :term:`decorator` functions which
571 wrap the decorated function and return the wrapper. If the wrapper function is
572 not updated, the metadata of the returned function will reflect the wrapper
Georg Brandl116aa622007-08-15 14:28:22 +0000573 definition rather than the original function definition, which is typically less
574 than helpful.
575
Nick Coghlan98876832010-08-17 06:17:18 +0000576 :func:`update_wrapper` may be used with callables other than functions. Any
577 attributes named in *assigned* or *updated* that are missing from the object
578 being wrapped are ignored (i.e. this function will not attempt to set them
579 on the wrapper function). :exc:`AttributeError` is still raised if the
580 wrapper function itself is missing any attributes named in *updated*.
581
582 .. versionadded:: 3.2
Georg Brandl9e257012010-08-17 14:11:59 +0000583 Automatic addition of the ``__wrapped__`` attribute.
Nick Coghlan98876832010-08-17 06:17:18 +0000584
585 .. versionadded:: 3.2
Georg Brandl9e257012010-08-17 14:11:59 +0000586 Copying of the ``__annotations__`` attribute by default.
Nick Coghlan98876832010-08-17 06:17:18 +0000587
588 .. versionchanged:: 3.2
Georg Brandl9e257012010-08-17 14:11:59 +0000589 Missing attributes no longer trigger an :exc:`AttributeError`.
590
Nick Coghlan24c05bc2013-07-15 21:13:08 +1000591 .. versionchanged:: 3.4
592 The ``__wrapped__`` attribute now always refers to the wrapped
593 function, even if that function defined a ``__wrapped__`` attribute.
594 (see :issue:`17482`)
595
Georg Brandl116aa622007-08-15 14:28:22 +0000596
Georg Brandl8a1caa22010-07-29 16:01:11 +0000597.. decorator:: wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
Georg Brandl116aa622007-08-15 14:28:22 +0000598
Ezio Melotti67f6d5f2014-08-05 08:14:28 +0300599 This is a convenience function for invoking :func:`update_wrapper` as a
600 function decorator when defining a wrapper function. It is equivalent to
601 ``partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)``.
602 For example::
Georg Brandl116aa622007-08-15 14:28:22 +0000603
Christian Heimesfe337bf2008-03-23 21:54:12 +0000604 >>> from functools import wraps
Georg Brandl116aa622007-08-15 14:28:22 +0000605 >>> def my_decorator(f):
606 ... @wraps(f)
607 ... def wrapper(*args, **kwds):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000608 ... print('Calling decorated function')
Georg Brandl116aa622007-08-15 14:28:22 +0000609 ... return f(*args, **kwds)
610 ... return wrapper
611 ...
612 >>> @my_decorator
613 ... def example():
614 ... """Docstring"""
Georg Brandl6911e3c2007-09-04 07:15:32 +0000615 ... print('Called example function')
Georg Brandl116aa622007-08-15 14:28:22 +0000616 ...
617 >>> example()
618 Calling decorated function
619 Called example function
620 >>> example.__name__
621 'example'
622 >>> example.__doc__
623 'Docstring'
624
625 Without the use of this decorator factory, the name of the example function
626 would have been ``'wrapper'``, and the docstring of the original :func:`example`
627 would have been lost.
628
629
630.. _partial-objects:
631
632:class:`partial` Objects
633------------------------
634
635:class:`partial` objects are callable objects created by :func:`partial`. They
636have three read-only attributes:
637
638
639.. attribute:: partial.func
640
641 A callable object or function. Calls to the :class:`partial` object will be
642 forwarded to :attr:`func` with new arguments and keywords.
643
644
645.. attribute:: partial.args
646
647 The leftmost positional arguments that will be prepended to the positional
648 arguments provided to a :class:`partial` object call.
649
650
651.. attribute:: partial.keywords
652
653 The keyword arguments that will be supplied when the :class:`partial` object is
654 called.
655
656:class:`partial` objects are like :class:`function` objects in that they are
657callable, weak referencable, and can have attributes. There are some important
Martin Panterbae5d812016-06-18 03:57:31 +0000658differences. For instance, the :attr:`~definition.__name__` and :attr:`__doc__` attributes
Georg Brandl116aa622007-08-15 14:28:22 +0000659are not created automatically. Also, :class:`partial` objects defined in
660classes behave like static methods and do not transform into bound methods
Pablo Galindo2f172d82020-06-01 00:41:14 +0100661during instance attribute look-up.