blob: 387b53c2be26c069561f5de9eaf4231a0dd8b670 [file] [log] [blame]
Fred Drake6659c301998-03-03 22:02:19 +00001\documentclass{manual}
Fred Drake1b0b2a42001-03-13 17:56:08 +00002\usepackage[T1]{fontenc}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003
Guido van Rossum02455691997-07-17 16:21:52 +00004% Things to do:
5% Add a section on file I/O
6% Write a chapter entitled ``Some Useful Modules''
Fred Drake20082d92000-04-03 04:26:58 +00007% --re, math+cmath
Guido van Rossum02455691997-07-17 16:21:52 +00008% Should really move the Python startup file info to an appendix
Guido van Rossum02455691997-07-17 16:21:52 +00009
Guido van Rossumdccc2981997-12-30 04:40:25 +000010\title{Python Tutorial}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000011
Guido van Rossum16cd7f91994-10-06 10:29:26 +000012\input{boilerplate}
Guido van Rossum83eb9621993-11-23 16:28:45 +000013
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000014\begin{document}
15
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000016\maketitle
17
Fred Drake9f86b661998-07-28 21:55:19 +000018\ifhtml
19\chapter*{Front Matter\label{front}}
20\fi
21
Guido van Rossum16cd7f91994-10-06 10:29:26 +000022\input{copyright}
23
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000024\begin{abstract}
25
26\noindent
Guido van Rossumdccc2981997-12-30 04:40:25 +000027Python is an easy to learn, powerful programming language. It has
28efficient high-level data structures and a simple but effective
29approach to object-oriented programming. Python's elegant syntax and
30dynamic typing, together with its interpreted nature, make it an ideal
31language for scripting and rapid application development in many areas
32on most platforms.
33
34The Python interpreter and the extensive standard library are freely
35available in source or binary form for all major platforms from the
Fred Drake17f690f2001-07-14 02:14:42 +000036Python Web site, \url{http://www.python.org/}, and can be freely
Guido van Rossumdccc2981997-12-30 04:40:25 +000037distributed. The same site also contains distributions of and
38pointers to many free third party Python modules, programs and tools,
39and additional documentation.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000040
Guido van Rossum4410c751991-06-04 20:22:18 +000041The Python interpreter is easily extended with new functions and data
Fred Drakeee84d591999-03-10 17:25:30 +000042types implemented in C or \Cpp{} (or other languages callable from C).
Guido van Rossumdccc2981997-12-30 04:40:25 +000043Python is also suitable as an extension language for customizable
44applications.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000045
Guido van Rossum6fc178f1991-08-16 09:13:42 +000046This tutorial introduces the reader informally to the basic concepts
47and features of the Python language and system. It helps to have a
Guido van Rossumdccc2981997-12-30 04:40:25 +000048Python interpreter handy for hands-on experience, but all examples are
49self-contained, so the tutorial can be read off-line as well.
Guido van Rossum2292b8e1991-01-23 16:31:24 +000050
Guido van Rossumdccc2981997-12-30 04:40:25 +000051For a description of standard objects and modules, see the
Fred Drake37f15741999-11-10 16:21:37 +000052\citetitle[../lib/lib.html]{Python Library Reference} document. The
53\citetitle[../ref/ref.html]{Python Reference Manual} gives a more
54formal definition of the language. To write extensions in C or
Fred Drakec37b65e2001-11-28 07:26:15 +000055\Cpp, read \citetitle[../ext/ext.html]{Extending and Embedding the
Fred Drake37f15741999-11-10 16:21:37 +000056Python Interpreter} and \citetitle[../api/api.html]{Python/C API
57Reference}. There are also several books covering Python in depth.
Guido van Rossumdccc2981997-12-30 04:40:25 +000058
59This tutorial does not attempt to be comprehensive and cover every
60single feature, or even every commonly used feature. Instead, it
61introduces many of Python's most noteworthy features, and will give
62you a good idea of the language's flavor and style. After reading it,
63you will be able to read and write Python modules and programs, and
64you will be ready to learn more about the various Python library
Fred Drake37f15741999-11-10 16:21:37 +000065modules described in the \citetitle[../lib/lib.html]{Python Library
66Reference}.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000067
68\end{abstract}
69
Fred Drake4d4f9e71998-01-13 22:25:02 +000070\tableofcontents
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000071
Guido van Rossum5e0759d1992-08-07 16:06:24 +000072
Fred Drakeb7833d31998-09-11 16:21:55 +000073\chapter{Whetting Your Appetite \label{intro}}
Guido van Rossum3a26dd81996-10-24 22:12:48 +000074
Guido van Rossum6fc178f1991-08-16 09:13:42 +000075If you ever wrote a large shell script, you probably know this
76feeling: you'd love to add yet another feature, but it's already so
77slow, and so big, and so complicated; or the feature involves a system
Fred Drakeee84d591999-03-10 17:25:30 +000078call or other function that is only accessible from C \ldots Usually
Guido van Rossum6fc178f1991-08-16 09:13:42 +000079the problem at hand isn't serious enough to warrant rewriting the
Fred Drakeee84d591999-03-10 17:25:30 +000080script in C; perhaps the problem requires variable-length strings or
Guido van Rossum02455691997-07-17 16:21:52 +000081other data types (like sorted lists of file names) that are easy in
Fred Drakeee84d591999-03-10 17:25:30 +000082the shell but lots of work to implement in C, or perhaps you're not
83sufficiently familiar with C.
Guido van Rossum02455691997-07-17 16:21:52 +000084
Fred Drakeee84d591999-03-10 17:25:30 +000085Another situation: perhaps you have to work with several C libraries,
86and the usual C write/compile/test/re-compile cycle is too slow. You
Guido van Rossum02455691997-07-17 16:21:52 +000087need to develop software more quickly. Possibly perhaps you've
88written a program that could use an extension language, and you don't
89want to design a language, write and debug an interpreter for it, then
90tie it into your application.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000091
Guido van Rossum6fc178f1991-08-16 09:13:42 +000092In such cases, Python may be just the language for you. Python is
93simple to use, but it is a real programming language, offering much
94more structure and support for large programs than the shell has. On
Fred Drakeee84d591999-03-10 17:25:30 +000095the other hand, it also offers much more error checking than C, and,
Fred Drakeeee08cd1997-12-04 15:43:15 +000096being a \emph{very-high-level language}, it has high-level data types
Guido van Rossum6fc178f1991-08-16 09:13:42 +000097built in, such as flexible arrays and dictionaries that would cost you
Fred Drakeee84d591999-03-10 17:25:30 +000098days to implement efficiently in C. Because of its more general data
Fred Drakeeee08cd1997-12-04 15:43:15 +000099types Python is applicable to a much larger problem domain than
100\emph{Awk} or even \emph{Perl}, yet many things are at least as easy
101in Python as in those languages.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000102
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000103Python allows you to split up your program in modules that can be
104reused in other Python programs. It comes with a large collection of
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000105standard modules that you can use as the basis of your programs --- or
106as examples to start learning to program in Python. There are also
107built-in modules that provide things like file I/O, system calls,
Fred Drake17f690f2001-07-14 02:14:42 +0000108sockets, and even interfaces to graphical user interface toolkits like Tk.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000109
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000110Python is an interpreted language, which can save you considerable time
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000111during program development because no compilation and linking is
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000112necessary. The interpreter can be used interactively, which makes it
113easy to experiment with features of the language, to write throw-away
114programs, or to test functions during bottom-up program development.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000115It is also a handy desk calculator.
116
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000117Python allows writing very compact and readable programs. Programs
Fred Drake20082d92000-04-03 04:26:58 +0000118written in Python are typically much shorter than equivalent C or
119\Cpp{} programs, for several reasons:
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000120\begin{itemize}
121\item
122the high-level data types allow you to express complex operations in a
123single statement;
124\item
125statement grouping is done by indentation instead of begin/end
126brackets;
127\item
128no variable or argument declarations are necessary.
129\end{itemize}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000130
Fred Drakeee84d591999-03-10 17:25:30 +0000131Python is \emph{extensible}: if you know how to program in C it is easy
Guido van Rossum02455691997-07-17 16:21:52 +0000132to add a new built-in function or module to the interpreter, either to
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000133perform critical operations at maximum speed, or to link Python
134programs to libraries that may only be available in binary form (such
135as a vendor-specific graphics library). Once you are really hooked,
Fred Drakeee84d591999-03-10 17:25:30 +0000136you can link the Python interpreter into an application written in C
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000137and use it as an extension or command language for that application.
138
Guido van Rossum02455691997-07-17 16:21:52 +0000139By the way, the language is named after the BBC show ``Monty Python's
140Flying Circus'' and has nothing to do with nasty reptiles. Making
141references to Monty Python skits in documentation is not only allowed,
Guido van Rossumdccc2981997-12-30 04:40:25 +0000142it is encouraged!
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000143
Fred Drakeb7833d31998-09-11 16:21:55 +0000144\section{Where From Here \label{where}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000145
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000146Now that you are all excited about Python, you'll want to examine it
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000147in some more detail. Since the best way to learn a language is
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000148using it, you are invited here to do so.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000149
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000150In the next chapter, the mechanics of using the interpreter are
151explained. This is rather mundane information, but essential for
152trying out the examples shown later.
153
Guido van Rossum4410c751991-06-04 20:22:18 +0000154The rest of the tutorial introduces various features of the Python
Fred Drakef64f8a01999-06-10 15:30:21 +0000155language and system through examples, beginning with simple
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000156expressions, statements and data types, through functions and modules,
Guido van Rossum6938f061994-08-01 12:22:53 +0000157and finally touching upon advanced concepts like exceptions
158and user-defined classes.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000159
Fred Drakeb7833d31998-09-11 16:21:55 +0000160\chapter{Using the Python Interpreter \label{using}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000161
Fred Drakeb7833d31998-09-11 16:21:55 +0000162\section{Invoking the Interpreter \label{invoking}}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000163
Fred Drake20082d92000-04-03 04:26:58 +0000164The Python interpreter is usually installed as
165\file{/usr/local/bin/python} on those machines where it is available;
166putting \file{/usr/local/bin} in your \UNIX{} shell's search path
167makes it possible to start it by typing the command
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000168
Fred Drake8842e861998-02-13 07:16:30 +0000169\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000170python
Fred Drake8842e861998-02-13 07:16:30 +0000171\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000172
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000173to the shell. Since the choice of the directory where the interpreter
174lives is an installation option, other places are possible; check with
Fred Drakeeee08cd1997-12-04 15:43:15 +0000175your local Python guru or system administrator. (E.g.,
176\file{/usr/local/python} is a popular alternative location.)
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000177
Fred Drake5d6e4022001-04-11 04:38:34 +0000178Typing an end-of-file character (\kbd{Control-D} on \UNIX,
Fred Drake5443c492000-07-08 05:18:54 +0000179\kbd{Control-Z} on DOS or Windows) at the primary prompt causes the
180interpreter to exit with a zero exit status. If that doesn't work,
181you can exit the interpreter by typing the following commands:
182\samp{import sys; sys.exit()}.
Guido van Rossum02455691997-07-17 16:21:52 +0000183
184The interpreter's line-editing features usually aren't very
Fred Drakec37b65e2001-11-28 07:26:15 +0000185sophisticated. On \UNIX, whoever installed the interpreter may have
Guido van Rossum02455691997-07-17 16:21:52 +0000186enabled support for the GNU readline library, which adds more
187elaborate interactive editing and history features. Perhaps the
188quickest check to see whether command line editing is supported is
189typing Control-P to the first Python prompt you get. If it beeps, you
Fred Drake5443c492000-07-08 05:18:54 +0000190have command line editing; see Appendix \ref{interacting} for an
191introduction to the keys. If nothing appears to happen, or if
192\code{\^P} is echoed, command line editing isn't available; you'll
193only be able to use backspace to remove characters from the current
194line.
Guido van Rossum02455691997-07-17 16:21:52 +0000195
Fred Drake6dc2aae1996-12-13 21:56:03 +0000196The interpreter operates somewhat like the \UNIX{} shell: when called
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000197with standard input connected to a tty device, it reads and executes
198commands interactively; when called with a file name argument or with
Fred Drakeeee08cd1997-12-04 15:43:15 +0000199a file as standard input, it reads and executes a \emph{script} from
Guido van Rossum02455691997-07-17 16:21:52 +0000200that file.
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000201
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000202A third way of starting the interpreter is
Fred Drake37f15741999-11-10 16:21:37 +0000203\samp{\program{python} \programopt{-c} \var{command} [arg] ...}, which
204executes the statement(s) in \var{command}, analogous to the shell's
205\programopt{-c} option. Since Python statements often contain spaces
206or other characters that are special to the shell, it is best to quote
207\var{command} in its entirety with double quotes.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000208
Fred Drakeeee08cd1997-12-04 15:43:15 +0000209Note that there is a difference between \samp{python file} and
210\samp{python <file}. In the latter case, input requests from the
211program, such as calls to \code{input()} and \code{raw_input()}, are
212satisfied from \emph{file}. Since this file has already been read
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000213until the end by the parser before the program starts executing, the
Fred Drake5d6e4022001-04-11 04:38:34 +0000214program will encounter end-of-file immediately. In the former case
215(which is usually what you want) they are satisfied from whatever file
216or device is connected to standard input of the Python interpreter.
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000217
Guido van Rossumb2c65561993-05-12 08:53:36 +0000218When a script file is used, it is sometimes useful to be able to run
219the script and enter interactive mode afterwards. This can be done by
Fred Drake37f15741999-11-10 16:21:37 +0000220passing \programopt{-i} before the script. (This does not work if the
221script is read from standard input, for the same reason as explained
222in the previous paragraph.)
Guido van Rossumb2c65561993-05-12 08:53:36 +0000223
Fred Drakeb7833d31998-09-11 16:21:55 +0000224\subsection{Argument Passing \label{argPassing}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000225
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000226When known to the interpreter, the script name and additional
Fred Drakeeee08cd1997-12-04 15:43:15 +0000227arguments thereafter are passed to the script in the variable
228\code{sys.argv}, which is a list of strings. Its length is at least
229one; when no script and no arguments are given, \code{sys.argv[0]} is
230an empty string. When the script name is given as \code{'-'} (meaning
Fred Drake37f15741999-11-10 16:21:37 +0000231standard input), \code{sys.argv[0]} is set to \code{'-'}. When
232\programopt{-c} \var{command} is used, \code{sys.argv[0]} is set to
233\code{'-c'}. Options found after \programopt{-c} \var{command} are
234not consumed by the Python interpreter's option processing but left in
235\code{sys.argv} for the command to handle.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000236
Fred Drakeb7833d31998-09-11 16:21:55 +0000237\subsection{Interactive Mode \label{interactive}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000238
Guido van Rossumdd010801991-06-07 14:31:11 +0000239When commands are read from a tty, the interpreter is said to be in
Fred Drakeeee08cd1997-12-04 15:43:15 +0000240\emph{interactive mode}. In this mode it prompts for the next command
241with the \emph{primary prompt}, usually three greater-than signs
Fred Drake31b761e2000-09-29 15:17:36 +0000242(\samp{>\code{>}>~}); for continuation lines it prompts with the
Fred Drake20082d92000-04-03 04:26:58 +0000243\emph{secondary prompt}, by default three dots (\samp{...~}).
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000244The interpreter prints a welcome message stating its version number
Fred Drakeed514942001-07-06 17:28:39 +0000245and a copyright notice before printing the first prompt:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000246
Fred Drake8842e861998-02-13 07:16:30 +0000247\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000248python
Fred Drakeee84d591999-03-10 17:25:30 +0000249Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Fred Drakeeee08cd1997-12-04 15:43:15 +0000250Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000251>>>
Fred Drake8842e861998-02-13 07:16:30 +0000252\end{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000253
Fred Drake20082d92000-04-03 04:26:58 +0000254Continuation lines are needed when entering a multi-line construct.
255As an example, take a look at this \keyword{if} statement:
256
257\begin{verbatim}
258>>> the_world_is_flat = 1
259>>> if the_world_is_flat:
260... print "Be careful not to fall off!"
261...
262Be careful not to fall off!
263\end{verbatim}
264
265
Fred Drakeb7833d31998-09-11 16:21:55 +0000266\section{The Interpreter and Its Environment \label{interp}}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000267
Fred Drakeb7833d31998-09-11 16:21:55 +0000268\subsection{Error Handling \label{error}}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000269
270When an error occurs, the interpreter prints an error
271message and a stack trace. In interactive mode, it then returns to
272the primary prompt; when input came from a file, it exits with a
273nonzero exit status after printing
Fred Drakeeee08cd1997-12-04 15:43:15 +0000274the stack trace. (Exceptions handled by an \code{except} clause in a
275\code{try} statement are not errors in this context.) Some errors are
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000276unconditionally fatal and cause an exit with a nonzero exit; this
277applies to internal inconsistencies and some cases of running out of
278memory. All error messages are written to the standard error stream;
279normal output from the executed commands is written to standard
280output.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000281
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000282Typing the interrupt character (usually Control-C or DEL) to the
283primary or secondary prompt cancels the input and returns to the
Fred Drake93aa0f21999-04-05 21:39:17 +0000284primary prompt.\footnote{
Guido van Rossum6938f061994-08-01 12:22:53 +0000285 A problem with the GNU Readline package may prevent this.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000286}
Fred Drakeeee08cd1997-12-04 15:43:15 +0000287Typing an interrupt while a command is executing raises the
288\code{KeyboardInterrupt} exception, which may be handled by a
289\code{try} statement.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000290
Fred Drakeb7833d31998-09-11 16:21:55 +0000291\subsection{Executable Python Scripts \label{scripts}}
Guido van Rossum4410c751991-06-04 20:22:18 +0000292
Fred Drake6dc2aae1996-12-13 21:56:03 +0000293On BSD'ish \UNIX{} systems, Python scripts can be made directly
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000294executable, like shell scripts, by putting the line
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000295
Fred Drake8842e861998-02-13 07:16:30 +0000296\begin{verbatim}
Fred Drake9e63faa1997-10-15 14:37:24 +0000297#! /usr/bin/env python
Fred Drake8842e861998-02-13 07:16:30 +0000298\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000299
Fred Drake391564f1998-04-01 23:11:56 +0000300(assuming that the interpreter is on the user's \envvar{PATH}) at the
301beginning of the script and giving the file an executable mode. The
Fred Drakebdadf0f1999-04-29 13:20:25 +0000302\samp{\#!} must be the first two characters of the file. Note that
303the hash, or pound, character, \character{\#}, is used to start a
304comment in Python.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000305
Fred Drakeb7833d31998-09-11 16:21:55 +0000306\subsection{The Interactive Startup File \label{startup}}
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000307
Fred Drake8842e861998-02-13 07:16:30 +0000308% XXX This should probably be dumped in an appendix, since most people
309% don't use Python interactively in non-trivial ways.
Guido van Rossum02455691997-07-17 16:21:52 +0000310
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000311When you use Python interactively, it is frequently handy to have some
312standard commands executed every time the interpreter is started. You
Fred Drakeeee08cd1997-12-04 15:43:15 +0000313can do this by setting an environment variable named
Fred Drake391564f1998-04-01 23:11:56 +0000314\envvar{PYTHONSTARTUP} to the name of a file containing your start-up
Fred Drake20082d92000-04-03 04:26:58 +0000315commands. This is similar to the \file{.profile} feature of the
316\UNIX{} shells.
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000317
318This file is only read in interactive sessions, not when Python reads
Fred Drakeeee08cd1997-12-04 15:43:15 +0000319commands from a script, and not when \file{/dev/tty} is given as the
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000320explicit source of commands (which otherwise behaves like an
Fred Drake13494372000-09-12 16:23:48 +0000321interactive session). It is executed in the same namespace where
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000322interactive commands are executed, so that objects that it defines or
323imports can be used without qualification in the interactive session.
Fred Drakeeee08cd1997-12-04 15:43:15 +0000324You can also change the prompts \code{sys.ps1} and \code{sys.ps2} in
Guido van Rossum7b3c8a11992-09-08 09:20:13 +0000325this file.
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000326
327If you want to read an additional start-up file from the current
Fred Drakeed514942001-07-06 17:28:39 +0000328directory, you can program this in the global start-up file using code
329like \samp{if os.path.isfile('.pythonrc.py'):
Fred Drake5443c492000-07-08 05:18:54 +0000330execfile('.pythonrc.py')}. If you want to use the startup file in a
331script, you must do this explicitly in the script:
Fred Drake8842e861998-02-13 07:16:30 +0000332
333\begin{verbatim}
334import os
Fred Drake5443c492000-07-08 05:18:54 +0000335filename = os.environ.get('PYTHONSTARTUP')
336if filename and os.path.isfile(filename):
337 execfile(filename)
Fred Drake8842e861998-02-13 07:16:30 +0000338\end{verbatim}
Guido van Rossum9a4e3fc1992-09-03 21:27:55 +0000339
Fred Drake72389881998-04-13 01:31:10 +0000340
Fred Drakeb7833d31998-09-11 16:21:55 +0000341\chapter{An Informal Introduction to Python \label{informal}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000342
343In the following examples, input and output are distinguished by the
Fred Drake31b761e2000-09-29 15:17:36 +0000344presence or absence of prompts (\samp{>\code{>}>~} and \samp{...~}): to repeat
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000345the example, you must type everything after the prompt, when the
346prompt appears; lines that do not begin with a prompt are output from
Fred Drakebdadf0f1999-04-29 13:20:25 +0000347the interpreter. %
Guido van Rossum02455691997-07-17 16:21:52 +0000348%\footnote{
349% I'd prefer to use different fonts to distinguish input
350% from output, but the amount of LaTeX hacking that would require
351% is currently beyond my ability.
352%}
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000353Note that a secondary prompt on a line by itself in an example means
354you must type a blank line; this is used to end a multi-line command.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000355
Fred Drakebdadf0f1999-04-29 13:20:25 +0000356Many of the examples in this manual, even those entered at the
357interactive prompt, include comments. Comments in Python start with
358the hash character, \character{\#}, and extend to the end of the
359physical line. A comment may appear at the start of a line or
360following whitespace or code, but not within a string literal. A hash
361character within a string literal is just a hash character.
362
363Some examples:
364
365\begin{verbatim}
366# this is the first comment
367SPAM = 1 # and this is the second comment
368 # ... and now a third!
369STRING = "# This is not a comment."
370\end{verbatim}
371
372
Fred Drakeb7833d31998-09-11 16:21:55 +0000373\section{Using Python as a Calculator \label{calculator}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000374
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000375Let's try some simple Python commands. Start the interpreter and wait
Fred Drake31b761e2000-09-29 15:17:36 +0000376for the primary prompt, \samp{>\code{>}>~}. (It shouldn't take long.)
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000377
Fred Drakeb7833d31998-09-11 16:21:55 +0000378\subsection{Numbers \label{numbers}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000379
380The interpreter acts as a simple calculator: you can type an
381expression at it and it will write the value. Expression syntax is
Fred Drake20082d92000-04-03 04:26:58 +0000382straightforward: the operators \code{+}, \code{-}, \code{*} and
383\code{/} work just like in most other languages (for example, Pascal
384or C); parentheses can be used for grouping. For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000385
Fred Drake8842e861998-02-13 07:16:30 +0000386\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000387>>> 2+2
3884
Guido van Rossum6938f061994-08-01 12:22:53 +0000389>>> # This is a comment
390... 2+2
3914
392>>> 2+2 # and a comment on the same line as code
3934
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000394>>> (50-5*6)/4
3955
Guido van Rossum6938f061994-08-01 12:22:53 +0000396>>> # Integer division returns the floor:
397... 7/3
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003982
Guido van Rossum6938f061994-08-01 12:22:53 +0000399>>> 7/-3
400-3
Fred Drake8842e861998-02-13 07:16:30 +0000401\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000402
Fred Drakeee84d591999-03-10 17:25:30 +0000403Like in C, the equal sign (\character{=}) is used to assign a value to a
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000404variable. The value of an assignment is not written:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000405
Fred Drake8842e861998-02-13 07:16:30 +0000406\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000407>>> width = 20
408>>> height = 5*9
409>>> width * height
410900
Fred Drake8842e861998-02-13 07:16:30 +0000411\end{verbatim}
Fred Drake20082d92000-04-03 04:26:58 +0000412
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000413A value can be assigned to several variables simultaneously:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000414
Fred Drake8842e861998-02-13 07:16:30 +0000415\begin{verbatim}
Guido van Rossum6938f061994-08-01 12:22:53 +0000416>>> x = y = z = 0 # Zero x, y and z
417>>> x
4180
419>>> y
4200
421>>> z
4220
Fred Drake8842e861998-02-13 07:16:30 +0000423\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +0000424
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000425There is full support for floating point; operators with mixed type
426operands convert the integer operand to floating point:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000427
Fred Drake8842e861998-02-13 07:16:30 +0000428\begin{verbatim}
Tim Petersbd695a72001-05-22 06:54:14 +0000429>>> 3 * 3.75 / 1.5
4307.5
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000431>>> 7.0 / 2
4323.5
Fred Drake8842e861998-02-13 07:16:30 +0000433\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +0000434
Guido van Rossum02455691997-07-17 16:21:52 +0000435Complex numbers are also supported; imaginary numbers are written with
Fred Drake8842e861998-02-13 07:16:30 +0000436a suffix of \samp{j} or \samp{J}. Complex numbers with a nonzero
437real component are written as \samp{(\var{real}+\var{imag}j)}, or can
438be created with the \samp{complex(\var{real}, \var{imag})} function.
Guido van Rossum02455691997-07-17 16:21:52 +0000439
Fred Drake8842e861998-02-13 07:16:30 +0000440\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +0000441>>> 1j * 1J
442(-1+0j)
443>>> 1j * complex(0,1)
444(-1+0j)
445>>> 3+1j*3
446(3+3j)
447>>> (3+1j)*3
448(9+3j)
449>>> (1+2j)/(1+1j)
450(1.5+0.5j)
Fred Drake8842e861998-02-13 07:16:30 +0000451\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +0000452
Guido van Rossum02455691997-07-17 16:21:52 +0000453Complex numbers are always represented as two floating point numbers,
454the real and imaginary part. To extract these parts from a complex
Fred Drake8842e861998-02-13 07:16:30 +0000455number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.
Guido van Rossum02455691997-07-17 16:21:52 +0000456
Fred Drake8842e861998-02-13 07:16:30 +0000457\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +0000458>>> a=1.5+0.5j
459>>> a.real
4601.5
461>>> a.imag
4620.5
Fred Drake8842e861998-02-13 07:16:30 +0000463\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +0000464
Guido van Rossum02455691997-07-17 16:21:52 +0000465The conversion functions to floating point and integer
Fred Drake8842e861998-02-13 07:16:30 +0000466(\function{float()}, \function{int()} and \function{long()}) don't
467work for complex numbers --- there is no one correct way to convert a
468complex number to a real number. Use \code{abs(\var{z})} to get its
469magnitude (as a float) or \code{z.real} to get its real part.
Guido van Rossum02455691997-07-17 16:21:52 +0000470
Fred Drake8842e861998-02-13 07:16:30 +0000471\begin{verbatim}
Tim Petersbd695a72001-05-22 06:54:14 +0000472>>> a=3.0+4.0j
Guido van Rossum02455691997-07-17 16:21:52 +0000473>>> float(a)
Fred Drake162c6a62001-02-14 03:20:18 +0000474Traceback (most recent call last):
Guido van Rossum02455691997-07-17 16:21:52 +0000475 File "<stdin>", line 1, in ?
476TypeError: can't convert complex to float; use e.g. abs(z)
477>>> a.real
Tim Petersbd695a72001-05-22 06:54:14 +00004783.0
479>>> a.imag
4804.0
481>>> abs(a) # sqrt(a.real**2 + a.imag**2)
4825.0
483>>>
Fred Drake8842e861998-02-13 07:16:30 +0000484\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +0000485
Guido van Rossum02455691997-07-17 16:21:52 +0000486In interactive mode, the last printed expression is assigned to the
487variable \code{_}. This means that when you are using Python as a
488desk calculator, it is somewhat easier to continue calculations, for
489example:
490
491\begin{verbatim}
Tim Petersbd695a72001-05-22 06:54:14 +0000492>>> tax = 12.5 / 100
493>>> price = 100.50
Guido van Rossum02455691997-07-17 16:21:52 +0000494>>> price * tax
Tim Petersbd695a72001-05-22 06:54:14 +000049512.5625
Guido van Rossum02455691997-07-17 16:21:52 +0000496>>> price + _
Tim Petersbd695a72001-05-22 06:54:14 +0000497113.0625
Guido van Rossum02455691997-07-17 16:21:52 +0000498>>> round(_, 2)
Tim Petersbd695a72001-05-22 06:54:14 +0000499113.06
500>>>
Guido van Rossum02455691997-07-17 16:21:52 +0000501\end{verbatim}
502
503This variable should be treated as read-only by the user. Don't
504explicitly assign a value to it --- you would create an independent
505local variable with the same name masking the built-in variable with
506its magic behavior.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000507
Fred Drakeb7833d31998-09-11 16:21:55 +0000508\subsection{Strings \label{strings}}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000509
Guido van Rossum02455691997-07-17 16:21:52 +0000510Besides numbers, Python can also manipulate strings, which can be
511expressed in several ways. They can be enclosed in single quotes or
512double quotes:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000513
Fred Drake8842e861998-02-13 07:16:30 +0000514\begin{verbatim}
Guido van Rossume5f8b601995-01-04 19:12:49 +0000515>>> 'spam eggs'
516'spam eggs'
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000517>>> 'doesn\'t'
Guido van Rossum6938f061994-08-01 12:22:53 +0000518"doesn't"
519>>> "doesn't"
520"doesn't"
521>>> '"Yes," he said.'
522'"Yes," he said.'
523>>> "\"Yes,\" he said."
524'"Yes," he said.'
525>>> '"Isn\'t," she said.'
526'"Isn\'t," she said.'
Fred Drake8842e861998-02-13 07:16:30 +0000527\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000528
Fred Drakeba5c41d2001-09-06 18:41:15 +0000529String literals can span multiple lines in several ways. Continuation
530lines can be used, with a backslash as the last character on the line
531indicating that the next line is a logical continuation of the line:
Guido van Rossum02455691997-07-17 16:21:52 +0000532
533\begin{verbatim}
534hello = "This is a rather long string containing\n\
535several lines of text just as you would do in C.\n\
536 Note that whitespace at the beginning of the line is\
Fred Drakeba5c41d2001-09-06 18:41:15 +0000537 significant."
538
Guido van Rossum02455691997-07-17 16:21:52 +0000539print hello
540\end{verbatim}
541
Fred Drakeba5c41d2001-09-06 18:41:15 +0000542Note that newlines would still need to be embedded in the string using
543\code{\e n}; the newline following the trailing backslash is
544discarded. This example would print the following:
Fred Drake8842e861998-02-13 07:16:30 +0000545
Guido van Rossum02455691997-07-17 16:21:52 +0000546\begin{verbatim}
547This is a rather long string containing
548several lines of text just as you would do in C.
549 Note that whitespace at the beginning of the line is significant.
550\end{verbatim}
551
Fred Drakeba5c41d2001-09-06 18:41:15 +0000552If we make the string literal a ``raw'' string, however, the
553\code{\e n} sequences are not converted to newlines, but the backslash
554at the end of the line, and the newline character in the source, are
555both included in the string as data. Thus, the example:
556
557\begin{verbatim}
558hello = r"This is a rather long string containing\n\
559several lines of text much as you would do in C."
560
561print hello
562\end{verbatim}
563
564would print:
565
566\begin{verbatim}
567This is a rather long string containing\n\
568several lines of text much as you would do in C.
569\end{verbatim}
570
Guido van Rossum02455691997-07-17 16:21:52 +0000571Or, strings can be surrounded in a pair of matching triple-quotes:
Fred Drakeba5c41d2001-09-06 18:41:15 +0000572\code{"""} or \code{'\code{'}'}. End of lines do not need to be escaped
Guido van Rossum02455691997-07-17 16:21:52 +0000573when using triple-quotes, but they will be included in the string.
574
575\begin{verbatim}
576print """
577Usage: thingy [OPTIONS]
578 -h Display this usage message
579 -H hostname Hostname to connect to
580"""
581\end{verbatim}
582
583produces the following output:
584
Fred Drake8842e861998-02-13 07:16:30 +0000585\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +0000586Usage: thingy [OPTIONS]
587 -h Display this usage message
588 -H hostname Hostname to connect to
Fred Drake8842e861998-02-13 07:16:30 +0000589\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000590
Guido van Rossum02455691997-07-17 16:21:52 +0000591The interpreter prints the result of string operations in the same way
592as they are typed for input: inside quotes, and with quotes and other
593funny characters escaped by backslashes, to show the precise
594value. The string is enclosed in double quotes if the string contains
595a single quote and no double quotes, else it's enclosed in single
Fred Drake8842e861998-02-13 07:16:30 +0000596quotes. (The \keyword{print} statement, described later, can be used
597to write strings without quotes or escapes.)
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000598
Fred Drake20082d92000-04-03 04:26:58 +0000599Strings can be concatenated (glued together) with the
600\code{+} operator, and repeated with \code{*}:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000601
Fred Drake8842e861998-02-13 07:16:30 +0000602\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000603>>> word = 'Help' + 'A'
604>>> word
605'HelpA'
606>>> '<' + word*5 + '>'
607'<HelpAHelpAHelpAHelpAHelpA>'
Fred Drake8842e861998-02-13 07:16:30 +0000608\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000609
Guido van Rossum02455691997-07-17 16:21:52 +0000610Two string literals next to each other are automatically concatenated;
Fred Drake8842e861998-02-13 07:16:30 +0000611the first line above could also have been written \samp{word = 'Help'
Guido van Rossume51aa5b1999-01-06 23:14:14 +0000612'A'}; this only works with two literals, not with arbitrary string
613expressions:
614
615\begin{verbatim}
Fred Drake0ba58151999-09-14 18:00:49 +0000616>>> import string
Guido van Rossume51aa5b1999-01-06 23:14:14 +0000617>>> 'str' 'ing' # <- This is ok
618'string'
619>>> string.strip('str') + 'ing' # <- This is ok
620'string'
621>>> string.strip('str') 'ing' # <- This is invalid
Fred Drake13af4282001-09-21 21:10:05 +0000622 File "<stdin>", line 1, in ?
Guido van Rossume51aa5b1999-01-06 23:14:14 +0000623 string.strip('str') 'ing'
624 ^
625SyntaxError: invalid syntax
626\end{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000627
Fred Drakeee84d591999-03-10 17:25:30 +0000628Strings can be subscripted (indexed); like in C, the first character
Guido van Rossum02455691997-07-17 16:21:52 +0000629of a string has subscript (index) 0. There is no separate character
630type; a character is simply a string of size one. Like in Icon,
Fred Drake8842e861998-02-13 07:16:30 +0000631substrings can be specified with the \emph{slice notation}: two indices
Guido van Rossum02455691997-07-17 16:21:52 +0000632separated by a colon.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000633
Fred Drake8842e861998-02-13 07:16:30 +0000634\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000635>>> word[4]
636'A'
637>>> word[0:2]
638'He'
639>>> word[2:4]
640'lp'
Fred Drake8842e861998-02-13 07:16:30 +0000641\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000642
Fred Drake20082d92000-04-03 04:26:58 +0000643Unlike a C string, Python strings cannot be changed. Assigning to an
644indexed position in the string results in an error:
645
646\begin{verbatim}
647>>> word[0] = 'x'
Fred Drake162c6a62001-02-14 03:20:18 +0000648Traceback (most recent call last):
Fred Drake20082d92000-04-03 04:26:58 +0000649 File "<stdin>", line 1, in ?
650TypeError: object doesn't support item assignment
Fred Drake67fdaa42001-03-06 07:19:34 +0000651>>> word[:1] = 'Splat'
Fred Drake162c6a62001-02-14 03:20:18 +0000652Traceback (most recent call last):
Fred Drake20082d92000-04-03 04:26:58 +0000653 File "<stdin>", line 1, in ?
654TypeError: object doesn't support slice assignment
655\end{verbatim}
656
657However, creating a new string with the combined content is easy and
658efficient:
659
660\begin{verbatim}
661>>> 'x' + word[1:]
662'xelpA'
Fred Drake67fdaa42001-03-06 07:19:34 +0000663>>> 'Splat' + word[4]
Fred Drake20082d92000-04-03 04:26:58 +0000664'SplatA'
665\end{verbatim}
666
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000667Slice indices have useful defaults; an omitted first index defaults to
668zero, an omitted second index defaults to the size of the string being
669sliced.
670
Fred Drake8842e861998-02-13 07:16:30 +0000671\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000672>>> word[:2] # The first two characters
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000673'He'
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000674>>> word[2:] # All but the first two characters
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000675'lpA'
Fred Drake8842e861998-02-13 07:16:30 +0000676\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000677
Fred Drake20082d92000-04-03 04:26:58 +0000678Here's a useful invariant of slice operations:
679\code{s[:i] + s[i:]} equals \code{s}.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000680
Fred Drake8842e861998-02-13 07:16:30 +0000681\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000682>>> word[:2] + word[2:]
683'HelpA'
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000684>>> word[:3] + word[3:]
685'HelpA'
Fred Drake8842e861998-02-13 07:16:30 +0000686\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000687
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000688Degenerate slice indices are handled gracefully: an index that is too
689large is replaced by the string size, an upper bound smaller than the
690lower bound returns an empty string.
691
Fred Drake8842e861998-02-13 07:16:30 +0000692\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000693>>> word[1:100]
694'elpA'
695>>> word[10:]
696''
697>>> word[2:1]
698''
Fred Drake8842e861998-02-13 07:16:30 +0000699\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000700
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000701Indices may be negative numbers, to start counting from the right.
702For example:
703
Fred Drake8842e861998-02-13 07:16:30 +0000704\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000705>>> word[-1] # The last character
706'A'
707>>> word[-2] # The last-but-one character
708'p'
709>>> word[-2:] # The last two characters
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000710'pA'
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000711>>> word[:-2] # All but the last two characters
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000712'Hel'
Fred Drake8842e861998-02-13 07:16:30 +0000713\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000714
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000715But note that -0 is really the same as 0, so it does not count from
716the right!
717
Fred Drake8842e861998-02-13 07:16:30 +0000718\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000719>>> word[-0] # (since -0 equals 0)
720'H'
Fred Drake8842e861998-02-13 07:16:30 +0000721\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000722
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000723Out-of-range negative slice indices are truncated, but don't try this
724for single-element (non-slice) indices:
725
Fred Drake8842e861998-02-13 07:16:30 +0000726\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000727>>> word[-100:]
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000728'HelpA'
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000729>>> word[-10] # error
Fred Drake162c6a62001-02-14 03:20:18 +0000730Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +0000731 File "<stdin>", line 1, in ?
Guido van Rossum6938f061994-08-01 12:22:53 +0000732IndexError: string index out of range
Fred Drake8842e861998-02-13 07:16:30 +0000733\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000734
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000735The best way to remember how slices work is to think of the indices as
Fred Drakeeee08cd1997-12-04 15:43:15 +0000736pointing \emph{between} characters, with the left edge of the first
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000737character numbered 0. Then the right edge of the last character of a
Fred Drakeeee08cd1997-12-04 15:43:15 +0000738string of \var{n} characters has index \var{n}, for example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000739
Fred Drake8842e861998-02-13 07:16:30 +0000740\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000741 +---+---+---+---+---+
742 | H | e | l | p | A |
743 +---+---+---+---+---+
744 0 1 2 3 4 5
745-5 -4 -3 -2 -1
Fred Drake8842e861998-02-13 07:16:30 +0000746\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000747
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000748The first row of numbers gives the position of the indices 0...5 in
749the string; the second row gives the corresponding negative indices.
Fred Drakeeee08cd1997-12-04 15:43:15 +0000750The slice from \var{i} to \var{j} consists of all characters between
751the edges labeled \var{i} and \var{j}, respectively.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000752
Fred Drake20082d92000-04-03 04:26:58 +0000753For non-negative indices, the length of a slice is the difference of
Fred Drakeed514942001-07-06 17:28:39 +0000754the indices, if both are within bounds. For example, the length of
Fred Drakeeee08cd1997-12-04 15:43:15 +0000755\code{word[1:3]} is 2.
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000756
Fred Drake8842e861998-02-13 07:16:30 +0000757The built-in function \function{len()} returns the length of a string:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000758
Fred Drake8842e861998-02-13 07:16:30 +0000759\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000760>>> s = 'supercalifragilisticexpialidocious'
761>>> len(s)
76234
Fred Drake8842e861998-02-13 07:16:30 +0000763\end{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000764
Fred Drake9dc30bb2000-04-06 14:17:03 +0000765
766\subsection{Unicode Strings \label{unicodeStrings}}
767\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
768
Fred Drake30f76ff2000-06-30 16:06:19 +0000769Starting with Python 2.0 a new data type for storing text data is
Fred Drake9dc30bb2000-04-06 14:17:03 +0000770available to the programmer: the Unicode object. It can be used to
Fred Drake17f690f2001-07-14 02:14:42 +0000771store and manipulate Unicode data (see \url{http://www.unicode.org/})
Thomas Woutersf9b526d2000-07-16 19:05:38 +0000772and integrates well with the existing string objects providing
Fred Drake9dc30bb2000-04-06 14:17:03 +0000773auto-conversions where necessary.
774
775Unicode has the advantage of providing one ordinal for every character
776in every script used in modern and ancient texts. Previously, there
777were only 256 possible ordinals for script characters and texts were
778typically bound to a code page which mapped the ordinals to script
779characters. This lead to very much confusion especially with respect
Fred Drake31b761e2000-09-29 15:17:36 +0000780to internationalization (usually written as \samp{i18n} ---
781\character{i} + 18 characters + \character{n}) of software. Unicode
782solves these problems by defining one code page for all scripts.
Fred Drake9dc30bb2000-04-06 14:17:03 +0000783
784Creating Unicode strings in Python is just as simple as creating
785normal strings:
786
787\begin{verbatim}
788>>> u'Hello World !'
789u'Hello World !'
790\end{verbatim}
791
792The small \character{u} in front of the quote indicates that an
793Unicode string is supposed to be created. If you want to include
794special characters in the string, you can do so by using the Python
795\emph{Unicode-Escape} encoding. The following example shows how:
796
797\begin{verbatim}
Tim Peters657ebef2000-11-29 05:51:59 +0000798>>> u'Hello\u0020World !'
Fred Drake9dc30bb2000-04-06 14:17:03 +0000799u'Hello World !'
800\end{verbatim}
801
Fred Drake4a6f1df2000-11-29 06:03:45 +0000802The escape sequence \code{\e u0020} indicates to insert the Unicode
Ka-Ping Yee54019962001-02-13 22:20:22 +0000803character with the ordinal value 0x0020 (the space character) at the
Fred Drake9dc30bb2000-04-06 14:17:03 +0000804given position.
805
806Other characters are interpreted by using their respective ordinal
Ka-Ping Yee54019962001-02-13 22:20:22 +0000807values directly as Unicode ordinals. If you have literal strings
808in the standard Latin-1 encoding that is used in many Western countries,
809you will find it convenient that the lower 256 characters
810of Unicode are the same as the 256 characters of Latin-1.
Fred Drake9dc30bb2000-04-06 14:17:03 +0000811
Ka-Ping Yee54019962001-02-13 22:20:22 +0000812For experts, there is also a raw mode just like the one for normal
813strings. You have to prefix the opening quote with 'ur' to have
Fred Drake9dc30bb2000-04-06 14:17:03 +0000814Python use the \emph{Raw-Unicode-Escape} encoding. It will only apply
Fred Drake4a6f1df2000-11-29 06:03:45 +0000815the above \code{\e uXXXX} conversion if there is an uneven number of
Fred Drake9dc30bb2000-04-06 14:17:03 +0000816backslashes in front of the small 'u'.
817
818\begin{verbatim}
819>>> ur'Hello\u0020World !'
820u'Hello World !'
821>>> ur'Hello\\u0020World !'
822u'Hello\\\\u0020World !'
823\end{verbatim}
824
Fred Drakeed514942001-07-06 17:28:39 +0000825The raw mode is most useful when you have to enter lots of
826backslashes, as can be necessary in regular expressions.
Fred Drake9dc30bb2000-04-06 14:17:03 +0000827
828Apart from these standard encodings, Python provides a whole set of
Thomas Woutersf9b526d2000-07-16 19:05:38 +0000829other ways of creating Unicode strings on the basis of a known
Fred Drake9dc30bb2000-04-06 14:17:03 +0000830encoding.
831
Ka-Ping Yee54019962001-02-13 22:20:22 +0000832The built-in function \function{unicode()}\bifuncindex{unicode} provides
833access to all registered Unicode codecs (COders and DECoders). Some of
834the more well known encodings which these codecs can convert are
835\emph{Latin-1}, \emph{ASCII}, \emph{UTF-8}, and \emph{UTF-16}.
836The latter two are variable-length encodings that store each Unicode
837character in one or more bytes. The default encoding is
838normally set to ASCII, which passes through characters in the range
8390 to 127 and rejects any other characters with an error.
840When a Unicode string is printed, written to a file, or converted
841with \function{str()}, conversion takes place using this default encoding.
Fred Drake9dc30bb2000-04-06 14:17:03 +0000842
843\begin{verbatim}
Ka-Ping Yee54019962001-02-13 22:20:22 +0000844>>> u"abc"
845u'abc'
846>>> str(u"abc")
847'abc'
Fred Drake9dc30bb2000-04-06 14:17:03 +0000848>>> u"äöü"
Ka-Ping Yee54019962001-02-13 22:20:22 +0000849u'\xe4\xf6\xfc'
850>>> str(u"äöü")
851Traceback (most recent call last):
852 File "<stdin>", line 1, in ?
853UnicodeError: ASCII encoding error: ordinal not in range(128)
854\end{verbatim}
855
856To convert a Unicode string into an 8-bit string using a specific
857encoding, Unicode objects provide an \function{encode()} method
858that takes one argument, the name of the encoding. Lowercase names
859for encodings are preferred.
860
861\begin{verbatim}
862>>> u"äöü".encode('utf-8')
863'\xc3\xa4\xc3\xb6\xc3\xbc'
Fred Drake9dc30bb2000-04-06 14:17:03 +0000864\end{verbatim}
865
866If you have data in a specific encoding and want to produce a
867corresponding Unicode string from it, you can use the
Ka-Ping Yee54019962001-02-13 22:20:22 +0000868\function{unicode()} function with the encoding name as the second
Fred Drake9dc30bb2000-04-06 14:17:03 +0000869argument.
870
871\begin{verbatim}
Ka-Ping Yee54019962001-02-13 22:20:22 +0000872>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
873u'\xe4\xf6\xfc'
Fred Drake9dc30bb2000-04-06 14:17:03 +0000874\end{verbatim}
875
Fred Drakeb7833d31998-09-11 16:21:55 +0000876\subsection{Lists \label{lists}}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000877
Fred Drakeeee08cd1997-12-04 15:43:15 +0000878Python knows a number of \emph{compound} data types, used to group
879together other values. The most versatile is the \emph{list}, which
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000880can be written as a list of comma-separated values (items) between
881square brackets. List items need not all have the same type.
882
Fred Drake8842e861998-02-13 07:16:30 +0000883\begin{verbatim}
Guido van Rossume5f8b601995-01-04 19:12:49 +0000884>>> a = ['spam', 'eggs', 100, 1234]
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000885>>> a
Guido van Rossume5f8b601995-01-04 19:12:49 +0000886['spam', 'eggs', 100, 1234]
Fred Drake8842e861998-02-13 07:16:30 +0000887\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000888
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000889Like string indices, list indices start at 0, and lists can be sliced,
890concatenated and so on:
891
Fred Drake8842e861998-02-13 07:16:30 +0000892\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000893>>> a[0]
Guido van Rossume5f8b601995-01-04 19:12:49 +0000894'spam'
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000895>>> a[3]
8961234
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000897>>> a[-2]
898100
899>>> a[1:-1]
Guido van Rossume5f8b601995-01-04 19:12:49 +0000900['eggs', 100]
901>>> a[:2] + ['bacon', 2*2]
902['spam', 'eggs', 'bacon', 4]
Guido van Rossum4410c751991-06-04 20:22:18 +0000903>>> 3*a[:3] + ['Boe!']
Guido van Rossume5f8b601995-01-04 19:12:49 +0000904['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boe!']
Fred Drake8842e861998-02-13 07:16:30 +0000905\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000906
Fred Drakeeee08cd1997-12-04 15:43:15 +0000907Unlike strings, which are \emph{immutable}, it is possible to change
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000908individual elements of a list:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000909
Fred Drake8842e861998-02-13 07:16:30 +0000910\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000911>>> a
Guido van Rossume5f8b601995-01-04 19:12:49 +0000912['spam', 'eggs', 100, 1234]
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000913>>> a[2] = a[2] + 23
914>>> a
Guido van Rossume5f8b601995-01-04 19:12:49 +0000915['spam', 'eggs', 123, 1234]
Fred Drake8842e861998-02-13 07:16:30 +0000916\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000917
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000918Assignment to slices is also possible, and this can even change the size
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000919of the list:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000920
Fred Drake8842e861998-02-13 07:16:30 +0000921\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000922>>> # Replace some items:
Guido van Rossum6938f061994-08-01 12:22:53 +0000923... a[0:2] = [1, 12]
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000924>>> a
925[1, 12, 123, 1234]
926>>> # Remove some:
Guido van Rossum6938f061994-08-01 12:22:53 +0000927... a[0:2] = []
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000928>>> a
929[123, 1234]
930>>> # Insert some:
Guido van Rossum6938f061994-08-01 12:22:53 +0000931... a[1:1] = ['bletch', 'xyzzy']
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000932>>> a
933[123, 'bletch', 'xyzzy', 1234]
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000934>>> a[:0] = a # Insert (a copy of) itself at the beginning
935>>> a
936[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
Fred Drake8842e861998-02-13 07:16:30 +0000937\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000938
Fred Drake8842e861998-02-13 07:16:30 +0000939The built-in function \function{len()} also applies to lists:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000940
Fred Drake8842e861998-02-13 07:16:30 +0000941\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000942>>> len(a)
Guido van Rossuma8d754e1992-01-07 16:44:35 +00009438
Fred Drake8842e861998-02-13 07:16:30 +0000944\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000945
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000946It is possible to nest lists (create lists containing other lists),
947for example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000948
Fred Drake8842e861998-02-13 07:16:30 +0000949\begin{verbatim}
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000950>>> q = [2, 3]
951>>> p = [1, q, 4]
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000952>>> len(p)
9533
954>>> p[1]
955[2, 3]
956>>> p[1][0]
9572
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000958>>> p[1].append('xtra') # See section 5.1
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000959>>> p
960[1, [2, 3, 'xtra'], 4]
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000961>>> q
962[2, 3, 'xtra']
Fred Drake8842e861998-02-13 07:16:30 +0000963\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000964
Fred Drakeeee08cd1997-12-04 15:43:15 +0000965Note that in the last example, \code{p[1]} and \code{q} really refer to
966the same object! We'll come back to \emph{object semantics} later.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000967
Fred Drakeb7833d31998-09-11 16:21:55 +0000968\section{First Steps Towards Programming \label{firstSteps}}
Guido van Rossum2292b8e1991-01-23 16:31:24 +0000969
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000970Of course, we can use Python for more complicated tasks than adding
971two and two together. For instance, we can write an initial
Fred Drake979d0412001-04-03 17:41:56 +0000972sub-sequence of the \emph{Fibonacci} series as follows:
Guido van Rossuma8d754e1992-01-07 16:44:35 +0000973
Fred Drake8842e861998-02-13 07:16:30 +0000974\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000975>>> # Fibonacci series:
Guido van Rossum6938f061994-08-01 12:22:53 +0000976... # the sum of two elements defines the next
977... a, b = 0, 1
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000978>>> while b < 10:
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000979... print b
980... a, b = b, a+b
981...
9821
9831
9842
9853
9865
9878
Fred Drake8842e861998-02-13 07:16:30 +0000988\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +0000989
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000990This example introduces several new features.
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000991
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000992\begin{itemize}
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000993
Guido van Rossumd9bf55d1991-01-11 16:35:08 +0000994\item
Fred Drakeeee08cd1997-12-04 15:43:15 +0000995The first line contains a \emph{multiple assignment}: the variables
996\code{a} and \code{b} simultaneously get the new values 0 and 1. On the
Guido van Rossum6fc178f1991-08-16 09:13:42 +0000997last line this is used again, demonstrating that the expressions on
998the right-hand side are all evaluated first before any of the
Fred Drake20082d92000-04-03 04:26:58 +0000999assignments take place. The right-hand side expressions are evaluated
1000from the left to the right.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001001
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001002\item
Fred Drake8842e861998-02-13 07:16:30 +00001003The \keyword{while} loop executes as long as the condition (here:
Fred Drakeee84d591999-03-10 17:25:30 +00001004\code{b < 10}) remains true. In Python, like in C, any non-zero
Fred Drake8842e861998-02-13 07:16:30 +00001005integer value is true; zero is false. The condition may also be a
1006string or list value, in fact any sequence; anything with a non-zero
1007length is true, empty sequences are false. The test used in the
1008example is a simple comparison. The standard comparison operators are
Fred Drake20082d92000-04-03 04:26:58 +00001009written the same as in C: \code{<} (less than), \code{>} (greater than),
1010\code{==} (equal to), \code{<=} (less than or equal to),
1011\code{>=} (greater than or equal to) and \code{!=} (not equal to).
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001012
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001013\item
Fred Drakeeee08cd1997-12-04 15:43:15 +00001014The \emph{body} of the loop is \emph{indented}: indentation is Python's
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001015way of grouping statements. Python does not (yet!) provide an
1016intelligent input line editing facility, so you have to type a tab or
1017space(s) for each indented line. In practice you will prepare more
1018complicated input for Python with a text editor; most text editors have
1019an auto-indent facility. When a compound statement is entered
1020interactively, it must be followed by a blank line to indicate
1021completion (since the parser cannot guess when you have typed the last
Fred Drake20082d92000-04-03 04:26:58 +00001022line). Note that each line within a basic block must be indented by
1023the same amount.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001024
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001025\item
Fred Drake8842e861998-02-13 07:16:30 +00001026The \keyword{print} statement writes the value of the expression(s) it is
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001027given. It differs from just writing the expression you want to write
1028(as we did earlier in the calculator examples) in the way it handles
Guido van Rossum16cd7f91994-10-06 10:29:26 +00001029multiple expressions and strings. Strings are printed without quotes,
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001030and a space is inserted between items, so you can format things nicely,
1031like this:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001032
Fred Drake8842e861998-02-13 07:16:30 +00001033\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001034>>> i = 256*256
1035>>> print 'The value of i is', i
1036The value of i is 65536
Fred Drake8842e861998-02-13 07:16:30 +00001037\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001038
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001039A trailing comma avoids the newline after the output:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001040
Fred Drake8842e861998-02-13 07:16:30 +00001041\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001042>>> a, b = 0, 1
1043>>> while b < 1000:
1044... print b,
1045... a, b = b, a+b
1046...
10471 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
Fred Drake8842e861998-02-13 07:16:30 +00001048\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001049
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001050Note that the interpreter inserts a newline before it prints the next
1051prompt if the last line was not completed.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001052
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001053\end{itemize}
1054
Guido van Rossum5e0759d1992-08-07 16:06:24 +00001055
Fred Drakeb7833d31998-09-11 16:21:55 +00001056\chapter{More Control Flow Tools \label{moreControl}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001057
Fred Drake8842e861998-02-13 07:16:30 +00001058Besides the \keyword{while} statement just introduced, Python knows
1059the usual control flow statements known from other languages, with
1060some twists.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001061
Fred Drakeb7833d31998-09-11 16:21:55 +00001062\section{\keyword{if} Statements \label{if}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001063
Fred Drake20082d92000-04-03 04:26:58 +00001064Perhaps the most well-known statement type is the
1065\keyword{if} statement. For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001066
Fred Drake8842e861998-02-13 07:16:30 +00001067\begin{verbatim}
Fred Draked3ba10f2001-08-14 19:55:42 +00001068>>> x = int(raw_input("Please enter an integer: "))
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001069>>> if x < 0:
1070... x = 0
1071... print 'Negative changed to zero'
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001072... elif x == 0:
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001073... print 'Zero'
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001074... elif x == 1:
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001075... print 'Single'
1076... else:
1077... print 'More'
1078...
Fred Drake8842e861998-02-13 07:16:30 +00001079\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001080
Fred Drake20082d92000-04-03 04:26:58 +00001081There can be zero or more \keyword{elif} parts, and the
1082\keyword{else} part is optional. The keyword `\keyword{elif}' is
1083short for `else if', and is useful to avoid excessive indentation. An
1084\keyword{if} \ldots\ \keyword{elif} \ldots\ \keyword{elif} \ldots\ sequence
Fred Drake8842e861998-02-13 07:16:30 +00001085% Weird spacings happen here if the wrapping of the source text
1086% gets changed in the wrong way.
Fred Drake860106a2000-10-20 03:03:18 +00001087is a substitute for the \keyword{switch} or
1088\keyword{case} statements found in other languages.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001089
Fred Drakeb7833d31998-09-11 16:21:55 +00001090
1091\section{\keyword{for} Statements \label{for}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001092
Fred Drakef790b161998-11-30 20:37:24 +00001093The \keyword{for}\stindex{for} statement in Python differs a bit from
Fred Drakeee84d591999-03-10 17:25:30 +00001094what you may be used to in C or Pascal. Rather than always
Fred Drakef790b161998-11-30 20:37:24 +00001095iterating over an arithmetic progression of numbers (like in Pascal),
1096or giving the user the ability to define both the iteration step and
Fred Drake20082d92000-04-03 04:26:58 +00001097halting condition (as C), Python's
1098\keyword{for}\stindex{for} statement iterates over the items of any
Fred Drakeed514942001-07-06 17:28:39 +00001099sequence (a list or a string), in the order that they appear in
Fred Drake20082d92000-04-03 04:26:58 +00001100the sequence. For example (no pun intended):
Fred Drakef790b161998-11-30 20:37:24 +00001101% One suggestion was to give a real C example here, but that may only
1102% serve to confuse non-C programmers.
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001103
Fred Drake8842e861998-02-13 07:16:30 +00001104\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001105>>> # Measure some strings:
Guido van Rossum6938f061994-08-01 12:22:53 +00001106... a = ['cat', 'window', 'defenestrate']
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001107>>> for x in a:
1108... print x, len(x)
1109...
1110cat 3
1111window 6
1112defenestrate 12
Fred Drake8842e861998-02-13 07:16:30 +00001113\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001114
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001115It is not safe to modify the sequence being iterated over in the loop
Fred Drakeed514942001-07-06 17:28:39 +00001116(this can only happen for mutable sequence types, such as lists). If
1117you need to modify the list you are iterating over (for example, to
1118duplicate selected items) you must iterate over a copy. The slice
1119notation makes this particularly convenient:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001120
Fred Drake8842e861998-02-13 07:16:30 +00001121\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001122>>> for x in a[:]: # make a slice copy of the entire list
1123... if len(x) > 6: a.insert(0, x)
1124...
1125>>> a
1126['defenestrate', 'cat', 'window', 'defenestrate']
Fred Drake8842e861998-02-13 07:16:30 +00001127\end{verbatim}
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001128
Fred Drakeb7833d31998-09-11 16:21:55 +00001129
1130\section{The \function{range()} Function \label{range}}
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001131
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001132If you do need to iterate over a sequence of numbers, the built-in
Fred Drake8842e861998-02-13 07:16:30 +00001133function \function{range()} comes in handy. It generates lists
Fred Drakeed514942001-07-06 17:28:39 +00001134containing arithmetic progressions:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001135
Fred Drake8842e861998-02-13 07:16:30 +00001136\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001137>>> range(10)
1138[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Fred Drake8842e861998-02-13 07:16:30 +00001139\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001140
Fred Drake8842e861998-02-13 07:16:30 +00001141The given end point is never part of the generated list;
1142\code{range(10)} generates a list of 10 values, exactly the legal
1143indices for items of a sequence of length 10. It is possible to let
1144the range start at another number, or to specify a different increment
Fred Drake20082d92000-04-03 04:26:58 +00001145(even negative; sometimes this is called the `step'):
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001146
Fred Drake8842e861998-02-13 07:16:30 +00001147\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001148>>> range(5, 10)
1149[5, 6, 7, 8, 9]
1150>>> range(0, 10, 3)
1151[0, 3, 6, 9]
1152>>> range(-10, -100, -30)
1153[-10, -40, -70]
Fred Drake8842e861998-02-13 07:16:30 +00001154\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001155
Fred Drake20082d92000-04-03 04:26:58 +00001156To iterate over the indices of a sequence, combine
1157\function{range()} and \function{len()} as follows:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001158
Fred Drake8842e861998-02-13 07:16:30 +00001159\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001160>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001161>>> for i in range(len(a)):
1162... print i, a[i]
1163...
11640 Mary
11651 had
11662 a
11673 little
Guido van Rossum6fc178f1991-08-16 09:13:42 +000011684 lamb
Fred Drake8842e861998-02-13 07:16:30 +00001169\end{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001170
Fred Drake20082d92000-04-03 04:26:58 +00001171
Fred Drake391564f1998-04-01 23:11:56 +00001172\section{\keyword{break} and \keyword{continue} Statements, and
Fred Drakeb7833d31998-09-11 16:21:55 +00001173 \keyword{else} Clauses on Loops
1174 \label{break}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001175
Fred Drakeee84d591999-03-10 17:25:30 +00001176The \keyword{break} statement, like in C, breaks out of the smallest
Fred Drake8842e861998-02-13 07:16:30 +00001177enclosing \keyword{for} or \keyword{while} loop.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001178
Fred Drakeee84d591999-03-10 17:25:30 +00001179The \keyword{continue} statement, also borrowed from C, continues
Fred Drake8842e861998-02-13 07:16:30 +00001180with the next iteration of the loop.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001181
Fred Drake8842e861998-02-13 07:16:30 +00001182Loop statements may have an \code{else} clause; it is executed when
1183the loop terminates through exhaustion of the list (with
1184\keyword{for}) or when the condition becomes false (with
1185\keyword{while}), but not when the loop is terminated by a
1186\keyword{break} statement. This is exemplified by the following loop,
1187which searches for prime numbers:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001188
Fred Drake8842e861998-02-13 07:16:30 +00001189\begin{verbatim}
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001190>>> for n in range(2, 10):
1191... for x in range(2, n):
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001192... if n % x == 0:
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001193... print n, 'equals', x, '*', n/x
1194... break
1195... else:
Fred Drake8b0b8402001-05-21 16:55:39 +00001196... # loop fell through without finding a factor
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001197... print n, 'is a prime number'
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001198...
Guido van Rossum2292b8e1991-01-23 16:31:24 +000011992 is a prime number
12003 is a prime number
12014 equals 2 * 2
12025 is a prime number
12036 equals 2 * 3
12047 is a prime number
12058 equals 2 * 4
12069 equals 3 * 3
Fred Drake8842e861998-02-13 07:16:30 +00001207\end{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001208
Fred Drake31b761e2000-09-29 15:17:36 +00001209
Fred Drakeb7833d31998-09-11 16:21:55 +00001210\section{\keyword{pass} Statements \label{pass}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001211
Fred Drake8842e861998-02-13 07:16:30 +00001212The \keyword{pass} statement does nothing.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001213It can be used when a statement is required syntactically but the
1214program requires no action.
1215For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001216
Fred Drake8842e861998-02-13 07:16:30 +00001217\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001218>>> while 1:
1219... pass # Busy-wait for keyboard interrupt
1220...
Fred Drake8842e861998-02-13 07:16:30 +00001221\end{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001222
Fred Drake31b761e2000-09-29 15:17:36 +00001223
Fred Drakeb7833d31998-09-11 16:21:55 +00001224\section{Defining Functions \label{functions}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001225
1226We can create a function that writes the Fibonacci series to an
1227arbitrary boundary:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001228
Fred Drake8842e861998-02-13 07:16:30 +00001229\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001230>>> def fib(n): # write Fibonacci series up to n
Guido van Rossum02455691997-07-17 16:21:52 +00001231... "Print a Fibonacci series up to n"
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001232... a, b = 0, 1
Guido van Rossum16cd7f91994-10-06 10:29:26 +00001233... while b < n:
Fred Drakeeee08cd1997-12-04 15:43:15 +00001234... print b,
1235... a, b = b, a+b
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001236...
1237>>> # Now call the function we just defined:
Guido van Rossum6938f061994-08-01 12:22:53 +00001238... fib(2000)
Guido van Rossumd9bf55d1991-01-11 16:35:08 +000012391 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
Fred Drake8842e861998-02-13 07:16:30 +00001240\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001241
Fred Drake8842e861998-02-13 07:16:30 +00001242The keyword \keyword{def} introduces a function \emph{definition}. It
1243must be followed by the function name and the parenthesized list of
1244formal parameters. The statements that form the body of the function
Fred Drake20082d92000-04-03 04:26:58 +00001245start at the next line, and must be indented. The first statement of
1246the function body can optionally be a string literal; this string
1247literal is the function's \index{documentation strings}documentation
1248string, or \dfn{docstring}.\index{docstrings}\index{strings, documentation}
1249
1250There are tools which use docstrings to automatically produce online
1251or printed documentation, or to let the user interactively browse
1252through code; it's good practice to include docstrings in code that
1253you write, so try to make a habit of it.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001254
Fred Drakeeee08cd1997-12-04 15:43:15 +00001255The \emph{execution} of a function introduces a new symbol table used
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001256for the local variables of the function. More precisely, all variable
1257assignments in a function store the value in the local symbol table;
Guido van Rossum02455691997-07-17 16:21:52 +00001258whereas variable references first look in the local symbol table, then
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001259in the global symbol table, and then in the table of built-in names.
Fred Drake8842e861998-02-13 07:16:30 +00001260Thus, global variables cannot be directly assigned a value within a
1261function (unless named in a \keyword{global} statement), although
Guido van Rossum6938f061994-08-01 12:22:53 +00001262they may be referenced.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001263
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001264The actual parameters (arguments) to a function call are introduced in
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001265the local symbol table of the called function when it is called; thus,
Fred Drake20082d92000-04-03 04:26:58 +00001266arguments are passed using \emph{call by value} (where the
1267\emph{value} is always an object \emph{reference}, not the value of
1268the object).\footnote{
Fred Drakeeee08cd1997-12-04 15:43:15 +00001269 Actually, \emph{call by object reference} would be a better
Guido van Rossum6938f061994-08-01 12:22:53 +00001270 description, since if a mutable object is passed, the caller
Fred Drakeed514942001-07-06 17:28:39 +00001271 will see any changes the callee makes to it (items
Guido van Rossum6938f061994-08-01 12:22:53 +00001272 inserted into a list).
Fred Drake20082d92000-04-03 04:26:58 +00001273} When a function calls another function, a new local symbol table is
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001274created for that call.
1275
Fred Drake8842e861998-02-13 07:16:30 +00001276A function definition introduces the function name in the current
1277symbol table. The value of the function name
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001278has a type that is recognized by the interpreter as a user-defined
1279function. This value can be assigned to another name which can then
1280also be used as a function. This serves as a general renaming
1281mechanism:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001282
Fred Drake8842e861998-02-13 07:16:30 +00001283\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001284>>> fib
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001285<function object at 10042ed0>
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001286>>> f = fib
1287>>> f(100)
12881 1 2 3 5 8 13 21 34 55 89
Fred Drake8842e861998-02-13 07:16:30 +00001289\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001290
Fred Drakeeee08cd1997-12-04 15:43:15 +00001291You might object that \code{fib} is not a function but a procedure. In
Fred Drakeee84d591999-03-10 17:25:30 +00001292Python, like in C, procedures are just functions that don't return a
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001293value. In fact, technically speaking, procedures do return a value,
Fred Drakeeee08cd1997-12-04 15:43:15 +00001294albeit a rather boring one. This value is called \code{None} (it's a
1295built-in name). Writing the value \code{None} is normally suppressed by
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001296the interpreter if it would be the only value written. You can see it
1297if you really want to:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001298
Fred Drake8842e861998-02-13 07:16:30 +00001299\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001300>>> print fib(0)
1301None
Fred Drake8842e861998-02-13 07:16:30 +00001302\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001303
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001304It is simple to write a function that returns a list of the numbers of
1305the Fibonacci series, instead of printing it:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001306
Fred Drake8842e861998-02-13 07:16:30 +00001307\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001308>>> def fib2(n): # return Fibonacci series up to n
Guido van Rossum02455691997-07-17 16:21:52 +00001309... "Return a list containing the Fibonacci series up to n"
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001310... result = []
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001311... a, b = 0, 1
Guido van Rossum16cd7f91994-10-06 10:29:26 +00001312... while b < n:
Fred Drakeeee08cd1997-12-04 15:43:15 +00001313... result.append(b) # see below
1314... a, b = b, a+b
Guido van Rossum2292b8e1991-01-23 16:31:24 +00001315... return result
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001316...
1317>>> f100 = fib2(100) # call it
1318>>> f100 # write the result
1319[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
Fred Drake8842e861998-02-13 07:16:30 +00001320\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00001321
Guido van Rossum4410c751991-06-04 20:22:18 +00001322This example, as usual, demonstrates some new Python features:
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001323
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001324\begin{itemize}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001325
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001326\item
Fred Drake8842e861998-02-13 07:16:30 +00001327The \keyword{return} statement returns with a value from a function.
Fred Drake0fe5af92001-01-19 22:34:59 +00001328\keyword{return} without an expression argument returns \code{None}.
1329Falling off the end of a procedure also returns \code{None}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001330
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001331\item
Fred Drakeeee08cd1997-12-04 15:43:15 +00001332The statement \code{result.append(b)} calls a \emph{method} of the list
1333object \code{result}. A method is a function that `belongs' to an
1334object and is named \code{obj.methodname}, where \code{obj} is some
1335object (this may be an expression), and \code{methodname} is the name
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001336of a method that is defined by the object's type. Different types
1337define different methods. Methods of different types may have the
1338same name without causing ambiguity. (It is possible to define your
Fred Drakeeee08cd1997-12-04 15:43:15 +00001339own object types and methods, using \emph{classes}, as discussed later
Guido van Rossum6938f061994-08-01 12:22:53 +00001340in this tutorial.)
Fred Drake8842e861998-02-13 07:16:30 +00001341The method \method{append()} shown in the example, is defined for
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001342list objects; it adds a new element at the end of the list. In this
Fred Drake8842e861998-02-13 07:16:30 +00001343example it is equivalent to \samp{result = result + [b]}, but more
1344efficient.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001345
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001346\end{itemize}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001347
Fred Drakeb7833d31998-09-11 16:21:55 +00001348\section{More on Defining Functions \label{defining}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00001349
Guido van Rossum02455691997-07-17 16:21:52 +00001350It is also possible to define functions with a variable number of
1351arguments. There are three forms, which can be combined.
1352
Fred Drakeb7833d31998-09-11 16:21:55 +00001353\subsection{Default Argument Values \label{defaultArgs}}
Guido van Rossum02455691997-07-17 16:21:52 +00001354
1355The most useful form is to specify a default value for one or more
1356arguments. This creates a function that can be called with fewer
Fred Drakeed514942001-07-06 17:28:39 +00001357arguments than it is defined
Guido van Rossum02455691997-07-17 16:21:52 +00001358
1359\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001360def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
1361 while 1:
1362 ok = raw_input(prompt)
1363 if ok in ('y', 'ye', 'yes'): return 1
1364 if ok in ('n', 'no', 'nop', 'nope'): return 0
1365 retries = retries - 1
1366 if retries < 0: raise IOError, 'refusenik user'
1367 print complaint
Guido van Rossum02455691997-07-17 16:21:52 +00001368\end{verbatim}
1369
1370This function can be called either like this:
Fred Drakeeee08cd1997-12-04 15:43:15 +00001371\code{ask_ok('Do you really want to quit?')} or like this:
1372\code{ask_ok('OK to overwrite the file?', 2)}.
Guido van Rossum02455691997-07-17 16:21:52 +00001373
1374The default values are evaluated at the point of function definition
Fred Drakeed514942001-07-06 17:28:39 +00001375in the \emph{defining} scope, so that
Guido van Rossum02455691997-07-17 16:21:52 +00001376
1377\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001378i = 5
Fred Drake8b09f492001-09-06 18:21:30 +00001379
1380def f(arg=i):
1381 print arg
1382
Fred Drake8842e861998-02-13 07:16:30 +00001383i = 6
1384f()
Guido van Rossum02455691997-07-17 16:21:52 +00001385\end{verbatim}
1386
Fred Drakeeee08cd1997-12-04 15:43:15 +00001387will print \code{5}.
Guido van Rossum02455691997-07-17 16:21:52 +00001388
Guido van Rossumaee5e261998-08-07 17:45:09 +00001389\strong{Important warning:} The default value is evaluated only once.
1390This makes a difference when the default is a mutable object such as a
1391list or dictionary. For example, the following function accumulates
1392the arguments passed to it on subsequent calls:
1393
1394\begin{verbatim}
Fred Drake8b09f492001-09-06 18:21:30 +00001395def f(a, L=[]):
1396 L.append(a)
1397 return L
1398
Guido van Rossumaee5e261998-08-07 17:45:09 +00001399print f(1)
1400print f(2)
1401print f(3)
1402\end{verbatim}
1403
1404This will print
1405
1406\begin{verbatim}
1407[1]
1408[1, 2]
1409[1, 2, 3]
1410\end{verbatim}
1411
1412If you don't want the default to be shared between subsequent calls,
1413you can write the function like this instead:
1414
1415\begin{verbatim}
Fred Drake8b09f492001-09-06 18:21:30 +00001416def f(a, L=None):
1417 if L is None:
1418 L = []
1419 L.append(a)
1420 return L
Guido van Rossumaee5e261998-08-07 17:45:09 +00001421\end{verbatim}
1422
Fred Drakeb7833d31998-09-11 16:21:55 +00001423\subsection{Keyword Arguments \label{keywordArgs}}
Guido van Rossum02455691997-07-17 16:21:52 +00001424
1425Functions can also be called using
Fred Drake8842e861998-02-13 07:16:30 +00001426keyword arguments of the form \samp{\var{keyword} = \var{value}}. For
Guido van Rossum02455691997-07-17 16:21:52 +00001427instance, the following function:
1428
1429\begin{verbatim}
1430def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
1431 print "-- This parrot wouldn't", action,
1432 print "if you put", voltage, "Volts through it."
1433 print "-- Lovely plumage, the", type
1434 print "-- It's", state, "!"
1435\end{verbatim}
1436
1437could be called in any of the following ways:
1438
1439\begin{verbatim}
1440parrot(1000)
1441parrot(action = 'VOOOOOM', voltage = 1000000)
1442parrot('a thousand', state = 'pushing up the daisies')
1443parrot('a million', 'bereft of life', 'jump')
1444\end{verbatim}
1445
1446but the following calls would all be invalid:
1447
1448\begin{verbatim}
1449parrot() # required argument missing
1450parrot(voltage=5.0, 'dead') # non-keyword argument following keyword
1451parrot(110, voltage=220) # duplicate value for argument
1452parrot(actor='John Cleese') # unknown keyword
1453\end{verbatim}
1454
1455In general, an argument list must have any positional arguments
1456followed by any keyword arguments, where the keywords must be chosen
1457from the formal parameter names. It's not important whether a formal
Fred Drakef1ad2071999-06-30 15:32:50 +00001458parameter has a default value or not. No argument may receive a
Guido van Rossum02455691997-07-17 16:21:52 +00001459value more than once --- formal parameter names corresponding to
1460positional arguments cannot be used as keywords in the same calls.
Fred Drakef1ad2071999-06-30 15:32:50 +00001461Here's an example that fails due to this restriction:
1462
1463\begin{verbatim}
1464>>> def function(a):
1465... pass
1466...
1467>>> function(0, a=0)
Fred Drake162c6a62001-02-14 03:20:18 +00001468Traceback (most recent call last):
Fred Drakef1ad2071999-06-30 15:32:50 +00001469 File "<stdin>", line 1, in ?
1470TypeError: keyword parameter redefined
1471\end{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00001472
1473When a final formal parameter of the form \code{**\var{name}} is
1474present, it receives a dictionary containing all keyword arguments
1475whose keyword doesn't correspond to a formal parameter. This may be
Fred Drake20082d92000-04-03 04:26:58 +00001476combined with a formal parameter of the form
1477\code{*\var{name}} (described in the next subsection) which receives a
1478tuple containing the positional arguments beyond the formal parameter
1479list. (\code{*\var{name}} must occur before \code{**\var{name}}.)
1480For example, if we define a function like this:
Guido van Rossum02455691997-07-17 16:21:52 +00001481
1482\begin{verbatim}
1483def cheeseshop(kind, *arguments, **keywords):
1484 print "-- Do you have any", kind, '?'
1485 print "-- I'm sorry, we're all out of", kind
1486 for arg in arguments: print arg
1487 print '-'*40
1488 for kw in keywords.keys(): print kw, ':', keywords[kw]
1489\end{verbatim}
1490
1491It could be called like this:
1492
1493\begin{verbatim}
1494cheeseshop('Limburger', "It's very runny, sir.",
1495 "It's really very, VERY runny, sir.",
1496 client='John Cleese',
1497 shopkeeper='Michael Palin',
1498 sketch='Cheese Shop Sketch')
1499\end{verbatim}
1500
1501and of course it would print:
1502
1503\begin{verbatim}
1504-- Do you have any Limburger ?
1505-- I'm sorry, we're all out of Limburger
1506It's very runny, sir.
1507It's really very, VERY runny, sir.
1508----------------------------------------
1509client : John Cleese
1510shopkeeper : Michael Palin
1511sketch : Cheese Shop Sketch
1512\end{verbatim}
1513
Fred Drake31b761e2000-09-29 15:17:36 +00001514
Fred Drakeb7833d31998-09-11 16:21:55 +00001515\subsection{Arbitrary Argument Lists \label{arbitraryArgs}}
Guido van Rossum02455691997-07-17 16:21:52 +00001516
1517Finally, the least frequently used option is to specify that a
1518function can be called with an arbitrary number of arguments. These
1519arguments will be wrapped up in a tuple. Before the variable number
1520of arguments, zero or more normal arguments may occur.
1521
1522\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001523def fprintf(file, format, *args):
1524 file.write(format % args)
Guido van Rossum02455691997-07-17 16:21:52 +00001525\end{verbatim}
1526
Fred Drakea594baf1998-04-03 05:16:31 +00001527
Fred Drakeb7833d31998-09-11 16:21:55 +00001528\subsection{Lambda Forms \label{lambda}}
Fred Drakea594baf1998-04-03 05:16:31 +00001529
1530By popular demand, a few features commonly found in functional
1531programming languages and Lisp have been added to Python. With the
1532\keyword{lambda} keyword, small anonymous functions can be created.
1533Here's a function that returns the sum of its two arguments:
1534\samp{lambda a, b: a+b}. Lambda forms can be used wherever function
1535objects are required. They are syntactically restricted to a single
1536expression. Semantically, they are just syntactic sugar for a normal
1537function definition. Like nested function definitions, lambda forms
1538cannot reference variables from the containing scope, but this can be
Fred Drakeed514942001-07-06 17:28:39 +00001539overcome through the judicious use of default argument values:
Fred Drakea594baf1998-04-03 05:16:31 +00001540
1541\begin{verbatim}
Tim Petersc1134652000-11-27 06:38:04 +00001542>>> def make_incrementor(n):
1543... return lambda x, incr=n: x+incr
1544...
1545>>> f = make_incrementor(42)
1546>>> f(0)
154742
1548>>> f(1)
154943
1550>>>
Fred Drakea594baf1998-04-03 05:16:31 +00001551\end{verbatim}
1552
Fred Drake20082d92000-04-03 04:26:58 +00001553
Fred Drakeb7833d31998-09-11 16:21:55 +00001554\subsection{Documentation Strings \label{docstrings}}
Fred Drakea594baf1998-04-03 05:16:31 +00001555
1556There are emerging conventions about the content and formatting of
1557documentation strings.
Fred Drake20082d92000-04-03 04:26:58 +00001558\index{docstrings}\index{documentation strings}
1559\index{strings, documentation}
Fred Drakea594baf1998-04-03 05:16:31 +00001560
1561The first line should always be a short, concise summary of the
1562object's purpose. For brevity, it should not explicitly state the
1563object's name or type, since these are available by other means
1564(except if the name happens to be a verb describing a function's
1565operation). This line should begin with a capital letter and end with
1566a period.
1567
1568If there are more lines in the documentation string, the second line
1569should be blank, visually separating the summary from the rest of the
Fred Drake4b1a07a1999-03-12 18:21:32 +00001570description. The following lines should be one or more paragraphs
1571describing the object's calling conventions, its side effects, etc.
Fred Drakea594baf1998-04-03 05:16:31 +00001572
1573The Python parser does not strip indentation from multi-line string
1574literals in Python, so tools that process documentation have to strip
Fred Drake20082d92000-04-03 04:26:58 +00001575indentation if desired. This is done using the following convention.
1576The first non-blank line \emph{after} the first line of the string
1577determines the amount of indentation for the entire documentation
1578string. (We can't use the first line since it is generally adjacent
1579to the string's opening quotes so its indentation is not apparent in
1580the string literal.) Whitespace ``equivalent'' to this indentation is
1581then stripped from the start of all lines of the string. Lines that
1582are indented less should not occur, but if they occur all their
1583leading whitespace should be stripped. Equivalence of whitespace
1584should be tested after expansion of tabs (to 8 spaces, normally).
1585
1586Here is an example of a multi-line docstring:
1587
1588\begin{verbatim}
1589>>> def my_function():
1590... """Do nothing, but document it.
1591...
1592... No, really, it doesn't do anything.
1593... """
1594... pass
1595...
1596>>> print my_function.__doc__
1597Do nothing, but document it.
1598
1599 No, really, it doesn't do anything.
1600
1601\end{verbatim}
Fred Drakea594baf1998-04-03 05:16:31 +00001602
1603
1604
Fred Drakeb7833d31998-09-11 16:21:55 +00001605\chapter{Data Structures \label{structures}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001606
1607This chapter describes some things you've learned about already in
1608more detail, and adds some new things as well.
1609
Fred Drake20082d92000-04-03 04:26:58 +00001610
Fred Drakeb7833d31998-09-11 16:21:55 +00001611\section{More on Lists \label{moreLists}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001612
1613The list data type has some more methods. Here are all of the methods
Fred Drakeed688541998-02-11 22:29:17 +00001614of list objects:
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001615
Guido van Rossum7d9f8d71991-01-22 11:45:00 +00001616\begin{description}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001617
Fred Drake20082d92000-04-03 04:26:58 +00001618\item[\code{append(x)}]
1619Add an item to the end of the list;
1620equivalent to \code{a[len(a):] = [x]}.
1621
1622\item[\code{extend(L)}]
1623Extend the list by appending all the items in the given list;
1624equivalent to \code{a[len(a):] = L}.
1625
Fred Drakeeee08cd1997-12-04 15:43:15 +00001626\item[\code{insert(i, x)}]
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001627Insert an item at a given position. The first argument is the index of
Fred Drakeeee08cd1997-12-04 15:43:15 +00001628the element before which to insert, so \code{a.insert(0, x)} inserts at
1629the front of the list, and \code{a.insert(len(a), x)} is equivalent to
1630\code{a.append(x)}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001631
Fred Drake20082d92000-04-03 04:26:58 +00001632\item[\code{remove(x)}]
1633Remove the first item from the list whose value is \code{x}.
1634It is an error if there is no such item.
1635
1636\item[\code{pop(\optional{i})}]
1637Remove the item at the given position in the list, and return it. If
1638no index is specified, \code{a.pop()} returns the last item in the
1639list. The item is also removed from the list.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001640
Fred Drakeeee08cd1997-12-04 15:43:15 +00001641\item[\code{index(x)}]
1642Return the index in the list of the first item whose value is \code{x}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001643It is an error if there is no such item.
1644
Fred Drake20082d92000-04-03 04:26:58 +00001645\item[\code{count(x)}]
1646Return the number of times \code{x} appears in the list.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001647
Fred Drakeeee08cd1997-12-04 15:43:15 +00001648\item[\code{sort()}]
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001649Sort the items of the list, in place.
1650
Fred Drakeeee08cd1997-12-04 15:43:15 +00001651\item[\code{reverse()}]
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001652Reverse the elements of the list, in place.
1653
Guido van Rossum7d9f8d71991-01-22 11:45:00 +00001654\end{description}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001655
Fred Drake20082d92000-04-03 04:26:58 +00001656An example that uses most of the list methods:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001657
Fred Drake8842e861998-02-13 07:16:30 +00001658\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001659>>> a = [66.6, 333, 333, 1, 1234.5]
Guido van Rossum6938f061994-08-01 12:22:53 +00001660>>> print a.count(333), a.count(66.6), a.count('x')
16612 1 0
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001662>>> a.insert(2, -1)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001663>>> a.append(333)
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001664>>> a
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001665[66.6, 333, -1, 333, 1, 1234.5, 333]
1666>>> a.index(333)
16671
1668>>> a.remove(333)
1669>>> a
1670[66.6, -1, 333, 1, 1234.5, 333]
1671>>> a.reverse()
1672>>> a
1673[333, 1234.5, 1, 333, -1, 66.6]
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00001674>>> a.sort()
1675>>> a
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001676[-1, 1, 66.6, 333, 333, 1234.5]
Fred Drake8842e861998-02-13 07:16:30 +00001677\end{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001678
Fred Drake20082d92000-04-03 04:26:58 +00001679
1680\subsection{Using Lists as Stacks \label{lists-as-stacks}}
Fred Drake67fdaa42001-03-06 07:19:34 +00001681\sectionauthor{Ka-Ping Yee}{ping@lfw.org}
Fred Drake20082d92000-04-03 04:26:58 +00001682
1683The list methods make it very easy to use a list as a stack, where the
1684last element added is the first element retrieved (``last-in,
1685first-out''). To add an item to the top of the stack, use
1686\method{append()}. To retrieve an item from the top of the stack, use
1687\method{pop()} without an explicit index. For example:
1688
1689\begin{verbatim}
1690>>> stack = [3, 4, 5]
1691>>> stack.append(6)
1692>>> stack.append(7)
1693>>> stack
1694[3, 4, 5, 6, 7]
1695>>> stack.pop()
16967
1697>>> stack
1698[3, 4, 5, 6]
1699>>> stack.pop()
17006
1701>>> stack.pop()
17025
1703>>> stack
1704[3, 4]
1705\end{verbatim}
1706
1707
1708\subsection{Using Lists as Queues \label{lists-as-queues}}
Fred Drake67fdaa42001-03-06 07:19:34 +00001709\sectionauthor{Ka-Ping Yee}{ping@lfw.org}
Fred Drake20082d92000-04-03 04:26:58 +00001710
1711You can also use a list conveniently as a queue, where the first
1712element added is the first element retrieved (``first-in,
1713first-out''). To add an item to the back of the queue, use
1714\method{append()}. To retrieve an item from the front of the queue,
1715use \method{pop()} with \code{0} as the index. For example:
1716
1717\begin{verbatim}
1718>>> queue = ["Eric", "John", "Michael"]
1719>>> queue.append("Terry") # Terry arrives
1720>>> queue.append("Graham") # Graham arrives
1721>>> queue.pop(0)
1722'Eric'
1723>>> queue.pop(0)
1724'John'
1725>>> queue
1726['Michael', 'Terry', 'Graham']
1727\end{verbatim}
1728
1729
Fred Drakeb7833d31998-09-11 16:21:55 +00001730\subsection{Functional Programming Tools \label{functional}}
Guido van Rossum02455691997-07-17 16:21:52 +00001731
1732There are three built-in functions that are very useful when used with
Fred Drake8842e861998-02-13 07:16:30 +00001733lists: \function{filter()}, \function{map()}, and \function{reduce()}.
Guido van Rossum02455691997-07-17 16:21:52 +00001734
Fred Drake8842e861998-02-13 07:16:30 +00001735\samp{filter(\var{function}, \var{sequence})} returns a sequence (of
1736the same type, if possible) consisting of those items from the
1737sequence for which \code{\var{function}(\var{item})} is true. For
1738example, to compute some primes:
Guido van Rossum02455691997-07-17 16:21:52 +00001739
1740\begin{verbatim}
Fred Drakeee84d591999-03-10 17:25:30 +00001741>>> def f(x): return x % 2 != 0 and x % 3 != 0
Fred Drake8842e861998-02-13 07:16:30 +00001742...
1743>>> filter(f, range(2, 25))
1744[5, 7, 11, 13, 17, 19, 23]
Guido van Rossum02455691997-07-17 16:21:52 +00001745\end{verbatim}
1746
Fred Drake8842e861998-02-13 07:16:30 +00001747\samp{map(\var{function}, \var{sequence})} calls
1748\code{\var{function}(\var{item})} for each of the sequence's items and
1749returns a list of the return values. For example, to compute some
1750cubes:
Guido van Rossum02455691997-07-17 16:21:52 +00001751
1752\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001753>>> def cube(x): return x*x*x
1754...
1755>>> map(cube, range(1, 11))
1756[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
Guido van Rossum02455691997-07-17 16:21:52 +00001757\end{verbatim}
1758
1759More than one sequence may be passed; the function must then have as
1760many arguments as there are sequences and is called with the
Fred Drake8842e861998-02-13 07:16:30 +00001761corresponding item from each sequence (or \code{None} if some sequence
1762is shorter than another). If \code{None} is passed for the function,
Guido van Rossum02455691997-07-17 16:21:52 +00001763a function returning its argument(s) is substituted.
1764
1765Combining these two special cases, we see that
Fred Drake8842e861998-02-13 07:16:30 +00001766\samp{map(None, \var{list1}, \var{list2})} is a convenient way of
1767turning a pair of lists into a list of pairs. For example:
Guido van Rossum02455691997-07-17 16:21:52 +00001768
1769\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001770>>> seq = range(8)
1771>>> def square(x): return x*x
1772...
1773>>> map(None, seq, map(square, seq))
1774[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]
Guido van Rossum02455691997-07-17 16:21:52 +00001775\end{verbatim}
1776
Fred Drake8842e861998-02-13 07:16:30 +00001777\samp{reduce(\var{func}, \var{sequence})} returns a single value
1778constructed by calling the binary function \var{func} on the first two
1779items of the sequence, then on the result and the next item, and so
1780on. For example, to compute the sum of the numbers 1 through 10:
Guido van Rossum02455691997-07-17 16:21:52 +00001781
1782\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001783>>> def add(x,y): return x+y
1784...
1785>>> reduce(add, range(1, 11))
178655
Guido van Rossum02455691997-07-17 16:21:52 +00001787\end{verbatim}
1788
1789If there's only one item in the sequence, its value is returned; if
1790the sequence is empty, an exception is raised.
1791
1792A third argument can be passed to indicate the starting value. In this
1793case the starting value is returned for an empty sequence, and the
1794function is first applied to the starting value and the first sequence
1795item, then to the result and the next item, and so on. For example,
1796
1797\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00001798>>> def sum(seq):
1799... def add(x,y): return x+y
1800... return reduce(add, seq, 0)
1801...
1802>>> sum(range(1, 11))
180355
1804>>> sum([])
18050
Guido van Rossum02455691997-07-17 16:21:52 +00001806\end{verbatim}
1807
Fred Drake31b761e2000-09-29 15:17:36 +00001808
Skip Montanaro803d6e52000-08-12 18:09:51 +00001809\subsection{List Comprehensions}
1810
Skip Montanaro46dfa5f2000-08-22 02:43:07 +00001811List comprehensions provide a concise way to create lists without resorting
1812to use of \function{map()}, \function{filter()} and/or \keyword{lambda}.
1813The resulting list definition tends often to be clearer than lists built
1814using those constructs. Each list comprehension consists of an expression
1815following by a \keyword{for} clause, then zero or more \keyword{for} or
1816\keyword{if} clauses. The result will be a list resulting from evaluating
1817the expression in the context of the \keyword{for} and \keyword{if} clauses
1818which follow it. If the expression would evaluate to a tuple, it must be
1819parenthesized.
Skip Montanaro803d6e52000-08-12 18:09:51 +00001820
1821\begin{verbatim}
Fred Drake1aebadf2000-08-16 21:44:03 +00001822>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
1823>>> [weapon.strip() for weapon in freshfruit]
1824['banana', 'loganberry', 'passion fruit']
Skip Montanaro803d6e52000-08-12 18:09:51 +00001825>>> vec = [2, 4, 6]
Fred Drake1aebadf2000-08-16 21:44:03 +00001826>>> [3*x for x in vec]
Skip Montanaro803d6e52000-08-12 18:09:51 +00001827[6, 12, 18]
Fred Drake1aebadf2000-08-16 21:44:03 +00001828>>> [3*x for x in vec if x > 3]
1829[12, 18]
1830>>> [3*x for x in vec if x < 2]
1831[]
Skip Montanaro46dfa5f2000-08-22 02:43:07 +00001832>>> [{x: x**2} for x in vec]
1833[{2: 4}, {4: 16}, {6: 36}]
1834>>> [[x,x**2] for x in vec]
1835[[2, 4], [4, 16], [6, 36]]
1836>>> [x, x**2 for x in vec] # error - parens required for tuples
Fred Drake13af4282001-09-21 21:10:05 +00001837 File "<stdin>", line 1, in ?
Skip Montanaro46dfa5f2000-08-22 02:43:07 +00001838 [x, x**2 for x in vec]
1839 ^
1840SyntaxError: invalid syntax
1841>>> [(x, x**2) for x in vec]
1842[(2, 4), (4, 16), (6, 36)]
Skip Montanaro803d6e52000-08-12 18:09:51 +00001843>>> vec1 = [2, 4, 6]
1844>>> vec2 = [4, 3, -9]
Fred Drake1aebadf2000-08-16 21:44:03 +00001845>>> [x*y for x in vec1 for y in vec2]
Skip Montanaro803d6e52000-08-12 18:09:51 +00001846[8, 6, -18, 16, 12, -36, 24, 18, -54]
Fred Drake1aebadf2000-08-16 21:44:03 +00001847>>> [x+y for x in vec1 for y in vec2]
Skip Montanaro803d6e52000-08-12 18:09:51 +00001848[6, 5, -7, 8, 7, -5, 10, 9, -3]
1849\end{verbatim}
1850
Fred Drake31b761e2000-09-29 15:17:36 +00001851
Fred Drakeb7833d31998-09-11 16:21:55 +00001852\section{The \keyword{del} statement \label{del}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001853
1854There is a way to remove an item from a list given its index instead
Fred Drake81f7eb62000-08-12 20:08:04 +00001855of its value: the \keyword{del} statement. This can also be used to
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001856remove slices from a list (which we did earlier by assignment of an
1857empty list to the slice). For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001858
Fred Drake8842e861998-02-13 07:16:30 +00001859\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001860>>> a
1861[-1, 1, 66.6, 333, 333, 1234.5]
1862>>> del a[0]
1863>>> a
1864[1, 66.6, 333, 333, 1234.5]
1865>>> del a[2:4]
1866>>> a
1867[1, 66.6, 1234.5]
Fred Drake8842e861998-02-13 07:16:30 +00001868\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001869
1870\keyword{del} can also be used to delete entire variables:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001871
Fred Drake8842e861998-02-13 07:16:30 +00001872\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001873>>> del a
Fred Drake8842e861998-02-13 07:16:30 +00001874\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001875
Fred Drakeeee08cd1997-12-04 15:43:15 +00001876Referencing the name \code{a} hereafter is an error (at least until
Fred Drake6c2176e1998-02-26 21:47:54 +00001877another value is assigned to it). We'll find other uses for
1878\keyword{del} later.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001879
Fred Drake31b761e2000-09-29 15:17:36 +00001880
Fred Drakeb7833d31998-09-11 16:21:55 +00001881\section{Tuples and Sequences \label{tuples}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001882
Fred Drakeed514942001-07-06 17:28:39 +00001883We saw that lists and strings have many common properties, such as
Fred Drakeeee08cd1997-12-04 15:43:15 +00001884indexing and slicing operations. They are two examples of
1885\emph{sequence} data types. Since Python is an evolving language,
1886other sequence data types may be added. There is also another
1887standard sequence data type: the \emph{tuple}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001888
1889A tuple consists of a number of values separated by commas, for
1890instance:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001891
Fred Drake8842e861998-02-13 07:16:30 +00001892\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001893>>> t = 12345, 54321, 'hello!'
1894>>> t[0]
189512345
1896>>> t
1897(12345, 54321, 'hello!')
1898>>> # Tuples may be nested:
Guido van Rossum6938f061994-08-01 12:22:53 +00001899... u = t, (1, 2, 3, 4, 5)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001900>>> u
1901((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
Fred Drake8842e861998-02-13 07:16:30 +00001902\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001903
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001904As you see, on output tuples are alway enclosed in parentheses, so
1905that nested tuples are interpreted correctly; they may be input with
1906or without surrounding parentheses, although often parentheses are
1907necessary anyway (if the tuple is part of a larger expression).
1908
Fred Drakeed514942001-07-06 17:28:39 +00001909Tuples have many uses. For example: (x, y) coordinate pairs, employee
1910records from a database, etc. Tuples, like strings, are immutable: it
1911is not possible to assign to the individual items of a tuple (you can
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001912simulate much of the same effect with slicing and concatenation,
Fred Drake31b761e2000-09-29 15:17:36 +00001913though). It is also possible to create tuples which contain mutable
1914objects, such as lists.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001915
1916A special problem is the construction of tuples containing 0 or 1
Guido van Rossum6938f061994-08-01 12:22:53 +00001917items: the syntax has some extra quirks to accommodate these. Empty
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001918tuples are constructed by an empty pair of parentheses; a tuple with
1919one item is constructed by following a value with a comma
1920(it is not sufficient to enclose a single value in parentheses).
1921Ugly, but effective. For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001922
Fred Drake8842e861998-02-13 07:16:30 +00001923\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001924>>> empty = ()
1925>>> singleton = 'hello', # <-- note trailing comma
1926>>> len(empty)
19270
1928>>> len(singleton)
19291
1930>>> singleton
1931('hello',)
Fred Drake8842e861998-02-13 07:16:30 +00001932\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001933
Fred Drakeeee08cd1997-12-04 15:43:15 +00001934The statement \code{t = 12345, 54321, 'hello!'} is an example of
1935\emph{tuple packing}: the values \code{12345}, \code{54321} and
1936\code{'hello!'} are packed together in a tuple. The reverse operation
Fred Drakeed514942001-07-06 17:28:39 +00001937is also possible:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00001938
Fred Drake8842e861998-02-13 07:16:30 +00001939\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001940>>> x, y, z = t
Fred Drake8842e861998-02-13 07:16:30 +00001941\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00001942
Fred Drake31b761e2000-09-29 15:17:36 +00001943This is called, appropriately enough, \emph{sequence unpacking}.
1944Sequence unpacking requires that the list of variables on the left
1945have the same number of elements as the length of the sequence. Note
1946that multiple assignment is really just a combination of tuple packing
1947and sequence unpacking!
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001948
Fred Drake31b761e2000-09-29 15:17:36 +00001949There is a small bit of asymmetry here: packing multiple values
1950always creates a tuple, and unpacking works for any sequence.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001951
Guido van Rossumaee5e261998-08-07 17:45:09 +00001952% XXX Add a bit on the difference between tuples and lists.
Fred Drake31b761e2000-09-29 15:17:36 +00001953
Guido van Rossumaee5e261998-08-07 17:45:09 +00001954
Fred Drakeb7833d31998-09-11 16:21:55 +00001955\section{Dictionaries \label{dictionaries}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001956
Fred Drakeeee08cd1997-12-04 15:43:15 +00001957Another useful data type built into Python is the \emph{dictionary}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001958Dictionaries are sometimes found in other languages as ``associative
1959memories'' or ``associative arrays''. Unlike sequences, which are
Fred Drakeeee08cd1997-12-04 15:43:15 +00001960indexed by a range of numbers, dictionaries are indexed by \emph{keys},
Fred Drakef1ad2071999-06-30 15:32:50 +00001961which can be any immutable type; strings and numbers can always be
Guido van Rossum02455691997-07-17 16:21:52 +00001962keys. Tuples can be used as keys if they contain only strings,
Fred Drake31b761e2000-09-29 15:17:36 +00001963numbers, or tuples; if a tuple contains any mutable object either
1964directly or indirectly, it cannot be used as a key. You can't use
1965lists as keys, since lists can be modified in place using their
1966\method{append()} and \method{extend()} methods, as well as slice and
1967indexed assignments.
Guido van Rossum02455691997-07-17 16:21:52 +00001968
Guido van Rossum6938f061994-08-01 12:22:53 +00001969It is best to think of a dictionary as an unordered set of
Fred Drake31b761e2000-09-29 15:17:36 +00001970\emph{key: value} pairs, with the requirement that the keys are unique
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001971(within one dictionary).
Fred Drakeeee08cd1997-12-04 15:43:15 +00001972A pair of braces creates an empty dictionary: \code{\{\}}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001973Placing a comma-separated list of key:value pairs within the
1974braces adds initial key:value pairs to the dictionary; this is also the
1975way dictionaries are written on output.
1976
1977The main operations on a dictionary are storing a value with some key
1978and extracting the value given the key. It is also possible to delete
1979a key:value pair
Fred Drakeeee08cd1997-12-04 15:43:15 +00001980with \code{del}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001981If you store using a key that is already in use, the old value
1982associated with that key is forgotten. It is an error to extract a
Guido van Rossum6938f061994-08-01 12:22:53 +00001983value using a non-existent key.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001984
Fred Drake20082d92000-04-03 04:26:58 +00001985The \code{keys()} method of a dictionary object returns a list of all
1986the keys used in the dictionary, in random order (if you want it
1987sorted, just apply the \code{sort()} method to the list of keys). To
1988check whether a single key is in the dictionary, use the
1989\code{has_key()} method of the dictionary.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001990
1991Here is a small example using a dictionary:
1992
Fred Drake8842e861998-02-13 07:16:30 +00001993\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001994>>> tel = {'jack': 4098, 'sape': 4139}
1995>>> tel['guido'] = 4127
1996>>> tel
Guido van Rossum8f96f771991-11-12 15:45:03 +00001997{'sape': 4139, 'guido': 4127, 'jack': 4098}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00001998>>> tel['jack']
19994098
2000>>> del tel['sape']
2001>>> tel['irv'] = 4127
2002>>> tel
Guido van Rossum8f96f771991-11-12 15:45:03 +00002003{'guido': 4127, 'irv': 4127, 'jack': 4098}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002004>>> tel.keys()
2005['guido', 'irv', 'jack']
2006>>> tel.has_key('guido')
20071
Fred Drake8842e861998-02-13 07:16:30 +00002008\end{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002009
Fred Drakeb7833d31998-09-11 16:21:55 +00002010\section{More on Conditions \label{conditions}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002011
Fred Drakeeee08cd1997-12-04 15:43:15 +00002012The conditions used in \code{while} and \code{if} statements above can
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002013contain other operators besides comparisons.
2014
Fred Drakeeee08cd1997-12-04 15:43:15 +00002015The comparison operators \code{in} and \code{not in} check whether a value
2016occurs (does not occur) in a sequence. The operators \code{is} and
2017\code{is not} compare whether two objects are really the same object; this
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002018only matters for mutable objects like lists. All comparison operators
2019have the same priority, which is lower than that of all numerical
2020operators.
2021
Fred Drakeed514942001-07-06 17:28:39 +00002022Comparisons can be chained. For example, \code{a < b == c} tests
2023whether \code{a} is less than \code{b} and moreover \code{b} equals
2024\code{c}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002025
Fred Drakeeee08cd1997-12-04 15:43:15 +00002026Comparisons may be combined by the Boolean operators \code{and} and
2027\code{or}, and the outcome of a comparison (or of any other Boolean
2028expression) may be negated with \code{not}. These all have lower
2029priorities than comparison operators again; between them, \code{not} has
2030the highest priority, and \code{or} the lowest, so that
2031\code{A and not B or C} is equivalent to \code{(A and (not B)) or C}. Of
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002032course, parentheses can be used to express the desired composition.
2033
Fred Drakeeee08cd1997-12-04 15:43:15 +00002034The Boolean operators \code{and} and \code{or} are so-called
2035\emph{shortcut} operators: their arguments are evaluated from left to
2036right, and evaluation stops as soon as the outcome is determined.
2037E.g., if \code{A} and \code{C} are true but \code{B} is false, \code{A
2038and B and C} does not evaluate the expression C. In general, the
2039return value of a shortcut operator, when used as a general value and
2040not as a Boolean, is the last evaluated argument.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002041
2042It is possible to assign the result of a comparison or other Boolean
Guido van Rossum6938f061994-08-01 12:22:53 +00002043expression to a variable. For example,
2044
Fred Drake8842e861998-02-13 07:16:30 +00002045\begin{verbatim}
Guido van Rossum6938f061994-08-01 12:22:53 +00002046>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
2047>>> non_null = string1 or string2 or string3
2048>>> non_null
2049'Trondheim'
Fred Drake8842e861998-02-13 07:16:30 +00002050\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002051
Fred Drakeee84d591999-03-10 17:25:30 +00002052Note that in Python, unlike C, assignment cannot occur inside expressions.
Fred Drake20082d92000-04-03 04:26:58 +00002053C programmers may grumble about this, but it avoids a common class of
2054problems encountered in C programs: typing \code{=} in an expression when
2055\code{==} was intended.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002056
Fred Drake31b761e2000-09-29 15:17:36 +00002057
Fred Drakeb7833d31998-09-11 16:21:55 +00002058\section{Comparing Sequences and Other Types \label{comparing}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002059
2060Sequence objects may be compared to other objects with the same
Fred Drakeeee08cd1997-12-04 15:43:15 +00002061sequence type. The comparison uses \emph{lexicographical} ordering:
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002062first the first two items are compared, and if they differ this
2063determines the outcome of the comparison; if they are equal, the next
2064two items are compared, and so on, until either sequence is exhausted.
2065If two items to be compared are themselves sequences of the same type,
Guido van Rossum6938f061994-08-01 12:22:53 +00002066the lexicographical comparison is carried out recursively. If all
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002067items of two sequences compare equal, the sequences are considered
Fred Drake979d0412001-04-03 17:41:56 +00002068equal. If one sequence is an initial sub-sequence of the other, the
Fred Drake20c94912001-08-01 17:17:13 +00002069shorter sequence is the smaller (lesser) one. Lexicographical
2070ordering for strings uses the \ASCII{} ordering for individual
2071characters. Some examples of comparisons between sequences with the
2072same types:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002073
Fred Drake8842e861998-02-13 07:16:30 +00002074\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002075(1, 2, 3) < (1, 2, 4)
2076[1, 2, 3] < [1, 2, 4]
2077'ABC' < 'C' < 'Pascal' < 'Python'
2078(1, 2, 3, 4) < (1, 2, 4)
2079(1, 2) < (1, 2, -1)
Fred Drake511281a1999-04-16 13:17:04 +00002080(1, 2, 3) == (1.0, 2.0, 3.0)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002081(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
Fred Drake8842e861998-02-13 07:16:30 +00002082\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002083
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002084Note that comparing objects of different types is legal. The outcome
2085is deterministic but arbitrary: the types are ordered by their name.
2086Thus, a list is always smaller than a string, a string is always
2087smaller than a tuple, etc. Mixed numeric types are compared according
Fred Drake93aa0f21999-04-05 21:39:17 +00002088to their numeric value, so 0 equals 0.0, etc.\footnote{
Guido van Rossum6938f061994-08-01 12:22:53 +00002089 The rules for comparing objects of different types should
2090 not be relied upon; they may change in a future version of
2091 the language.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002092}
2093
Guido van Rossum5e0759d1992-08-07 16:06:24 +00002094
Fred Drakeb7833d31998-09-11 16:21:55 +00002095\chapter{Modules \label{modules}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002096
Guido van Rossum4410c751991-06-04 20:22:18 +00002097If you quit from the Python interpreter and enter it again, the
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002098definitions you have made (functions and variables) are lost.
2099Therefore, if you want to write a somewhat longer program, you are
2100better off using a text editor to prepare the input for the interpreter
Guido van Rossum16d6e711994-08-08 12:30:22 +00002101and running it with that file as input instead. This is known as creating a
Fred Drakeeee08cd1997-12-04 15:43:15 +00002102\emph{script}. As your program gets longer, you may want to split it
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002103into several files for easier maintenance. You may also want to use a
2104handy function that you've written in several programs without copying
2105its definition into each program.
2106
Guido van Rossum4410c751991-06-04 20:22:18 +00002107To support this, Python has a way to put definitions in a file and use
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002108them in a script or in an interactive instance of the interpreter.
Fred Drakeeee08cd1997-12-04 15:43:15 +00002109Such a file is called a \emph{module}; definitions from a module can be
2110\emph{imported} into other modules or into the \emph{main} module (the
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002111collection of variables that you have access to in a script
2112executed at the top level
2113and in calculator mode).
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002114
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002115A module is a file containing Python definitions and statements. The
Fred Drakeeee08cd1997-12-04 15:43:15 +00002116file name is the module name with the suffix \file{.py} appended. Within
Guido van Rossum6938f061994-08-01 12:22:53 +00002117a module, the module's name (as a string) is available as the value of
Fred Drakeeee08cd1997-12-04 15:43:15 +00002118the global variable \code{__name__}. For instance, use your favorite text
2119editor to create a file called \file{fibo.py} in the current directory
Guido van Rossum6938f061994-08-01 12:22:53 +00002120with the following contents:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002121
Fred Drake8842e861998-02-13 07:16:30 +00002122\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002123# Fibonacci numbers module
2124
2125def fib(n): # write Fibonacci series up to n
2126 a, b = 0, 1
Guido van Rossum16cd7f91994-10-06 10:29:26 +00002127 while b < n:
Fred Drakeeee08cd1997-12-04 15:43:15 +00002128 print b,
2129 a, b = b, a+b
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002130
2131def fib2(n): # return Fibonacci series up to n
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002132 result = []
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002133 a, b = 0, 1
Guido van Rossum16cd7f91994-10-06 10:29:26 +00002134 while b < n:
Fred Drakeeee08cd1997-12-04 15:43:15 +00002135 result.append(b)
2136 a, b = b, a+b
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002137 return result
Fred Drake8842e861998-02-13 07:16:30 +00002138\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002139
Guido van Rossum4410c751991-06-04 20:22:18 +00002140Now enter the Python interpreter and import this module with the
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002141following command:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002142
Fred Drake8842e861998-02-13 07:16:30 +00002143\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002144>>> import fibo
Fred Drake8842e861998-02-13 07:16:30 +00002145\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002146
Fred Drakef1ad2071999-06-30 15:32:50 +00002147This does not enter the names of the functions defined in \code{fibo}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002148directly in the current symbol table; it only enters the module name
Fred Drakef1ad2071999-06-30 15:32:50 +00002149\code{fibo} there.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002150Using the module name you can access the functions:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002151
Fred Drake8842e861998-02-13 07:16:30 +00002152\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002153>>> fibo.fib(1000)
21541 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
2155>>> fibo.fib2(100)
2156[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
Guido van Rossum6938f061994-08-01 12:22:53 +00002157>>> fibo.__name__
2158'fibo'
Fred Drake8842e861998-02-13 07:16:30 +00002159\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00002160
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002161If you intend to use a function often you can assign it to a local name:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002162
Fred Drake8842e861998-02-13 07:16:30 +00002163\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002164>>> fib = fibo.fib
2165>>> fib(500)
21661 1 2 3 5 8 13 21 34 55 89 144 233 377
Fred Drake8842e861998-02-13 07:16:30 +00002167\end{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002168
Guido van Rossum02455691997-07-17 16:21:52 +00002169
Fred Drakeb7833d31998-09-11 16:21:55 +00002170\section{More on Modules \label{moreModules}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002171
2172A module can contain executable statements as well as function
Fred Drake20082d92000-04-03 04:26:58 +00002173definitions.
2174These statements are intended to initialize the module.
2175They are executed only the
2176\emph{first} time the module is imported somewhere.\footnote{
Guido van Rossum6938f061994-08-01 12:22:53 +00002177 In fact function definitions are also `statements' that are
2178 `executed'; the execution enters the function name in the
2179 module's global symbol table.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002180}
2181
2182Each module has its own private symbol table, which is used as the
2183global symbol table by all functions defined in the module.
2184Thus, the author of a module can use global variables in the module
2185without worrying about accidental clashes with a user's global
2186variables.
2187On the other hand, if you know what you are doing you can touch a
2188module's global variables with the same notation used to refer to its
2189functions,
Fred Drakeeee08cd1997-12-04 15:43:15 +00002190\code{modname.itemname}.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002191
Fred Drake20082d92000-04-03 04:26:58 +00002192Modules can import other modules. It is customary but not required to
2193place all \keyword{import} statements at the beginning of a module (or
2194script, for that matter). The imported module names are placed in the
2195importing module's global symbol table.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002196
Fred Drake20082d92000-04-03 04:26:58 +00002197There is a variant of the \keyword{import} statement that imports
2198names from a module directly into the importing module's symbol
2199table. For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002200
Fred Drake8842e861998-02-13 07:16:30 +00002201\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002202>>> from fibo import fib, fib2
2203>>> fib(500)
22041 1 2 3 5 8 13 21 34 55 89 144 233 377
Fred Drake8842e861998-02-13 07:16:30 +00002205\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002206
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002207This does not introduce the module name from which the imports are taken
Fred Drakeeee08cd1997-12-04 15:43:15 +00002208in the local symbol table (so in the example, \code{fibo} is not
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002209defined).
2210
2211There is even a variant to import all names that a module defines:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002212
Fred Drake8842e861998-02-13 07:16:30 +00002213\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002214>>> from fibo import *
2215>>> fib(500)
22161 1 2 3 5 8 13 21 34 55 89 144 233 377
Fred Drake8842e861998-02-13 07:16:30 +00002217\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002218
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002219This imports all names except those beginning with an underscore
Fred Drakeeee08cd1997-12-04 15:43:15 +00002220(\code{_}).
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002221
Guido van Rossum02455691997-07-17 16:21:52 +00002222
Fred Drake31b761e2000-09-29 15:17:36 +00002223\subsection{The Module Search Path \label{searchPath}}
Guido van Rossumaee5e261998-08-07 17:45:09 +00002224
Fred Drake391564f1998-04-01 23:11:56 +00002225\indexiii{module}{search}{path}
Fred Drake8842e861998-02-13 07:16:30 +00002226When a module named \module{spam} is imported, the interpreter searches
Fred Drakeeee08cd1997-12-04 15:43:15 +00002227for a file named \file{spam.py} in the current directory,
Guido van Rossum02455691997-07-17 16:21:52 +00002228and then in the list of directories specified by
Fred Drake391564f1998-04-01 23:11:56 +00002229the environment variable \envvar{PYTHONPATH}. This has the same syntax as
Fred Drakeed514942001-07-06 17:28:39 +00002230the shell variable \envvar{PATH}, that is, a list of
Fred Drake391564f1998-04-01 23:11:56 +00002231directory names. When \envvar{PYTHONPATH} is not set, or when the file
Guido van Rossum02455691997-07-17 16:21:52 +00002232is not found there, the search continues in an installation-dependent
Fred Drakec37b65e2001-11-28 07:26:15 +00002233default path; on \UNIX, this is usually \file{.:/usr/local/lib/python}.
Guido van Rossum02455691997-07-17 16:21:52 +00002234
2235Actually, modules are searched in the list of directories given by the
Fred Drakeeee08cd1997-12-04 15:43:15 +00002236variable \code{sys.path} which is initialized from the directory
2237containing the input script (or the current directory),
Fred Drake391564f1998-04-01 23:11:56 +00002238\envvar{PYTHONPATH} and the installation-dependent default. This allows
Guido van Rossum02455691997-07-17 16:21:52 +00002239Python programs that know what they're doing to modify or replace the
2240module search path. See the section on Standard Modules later.
2241
2242\subsection{``Compiled'' Python files}
2243
2244As an important speed-up of the start-up time for short programs that
Fred Drakeeee08cd1997-12-04 15:43:15 +00002245use a lot of standard modules, if a file called \file{spam.pyc} exists
2246in the directory where \file{spam.py} is found, this is assumed to
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002247contain an already-``byte-compiled'' version of the module \module{spam}.
Fred Drake8842e861998-02-13 07:16:30 +00002248The modification time of the version of \file{spam.py} used to create
Fred Drake20082d92000-04-03 04:26:58 +00002249\file{spam.pyc} is recorded in \file{spam.pyc}, and the
2250\file{.pyc} file is ignored if these don't match.
Guido van Rossum02455691997-07-17 16:21:52 +00002251
Fred Drake20082d92000-04-03 04:26:58 +00002252Normally, you don't need to do anything to create the
2253\file{spam.pyc} file. Whenever \file{spam.py} is successfully
2254compiled, an attempt is made to write the compiled version to
2255\file{spam.pyc}. It is not an error if this attempt fails; if for any
2256reason the file is not written completely, the resulting
2257\file{spam.pyc} file will be recognized as invalid and thus ignored
2258later. The contents of the \file{spam.pyc} file are platform
2259independent, so a Python module directory can be shared by machines of
2260different architectures.
Guido van Rossum02455691997-07-17 16:21:52 +00002261
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002262Some tips for experts:
2263
2264\begin{itemize}
2265
2266\item
Fred Drake37f15741999-11-10 16:21:37 +00002267When the Python interpreter is invoked with the \programopt{-O} flag,
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002268optimized code is generated and stored in \file{.pyo} files.
2269The optimizer currently doesn't help much; it only removes
2270\keyword{assert} statements and \code{SET_LINENO} instructions.
Fred Drake37f15741999-11-10 16:21:37 +00002271When \programopt{-O} is used, \emph{all} bytecode is optimized;
2272\code{.pyc} files are ignored and \code{.py} files are compiled to
2273optimized bytecode.
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002274
2275\item
Fred Drake37f15741999-11-10 16:21:37 +00002276Passing two \programopt{-O} flags to the Python interpreter
2277(\programopt{-OO}) will cause the bytecode compiler to perform
2278optimizations that could in some rare cases result in malfunctioning
2279programs. Currently only \code{__doc__} strings are removed from the
2280bytecode, resulting in more compact \file{.pyo} files. Since some
2281programs may rely on having these available, you should only use this
2282option if you know what you're doing.
Guido van Rossum6b86a421999-01-28 15:07:47 +00002283
2284\item
Fred Drake20082d92000-04-03 04:26:58 +00002285A program doesn't run any faster when it is read from a \file{.pyc} or
2286\file{.pyo} file than when it is read from a \file{.py} file; the only
2287thing that's faster about \file{.pyc} or \file{.pyo} files is the
2288speed with which they are loaded.
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002289
2290\item
Guido van Rossum002f7aa1998-06-28 19:16:38 +00002291When a script is run by giving its name on the command line, the
2292bytecode for the script is never written to a \file{.pyc} or
2293\file{.pyo} file. Thus, the startup time of a script may be reduced
2294by moving most of its code to a module and having a small bootstrap
Fred Drake31b761e2000-09-29 15:17:36 +00002295script that imports that module. It is also possible to name a
2296\file{.pyc} or \file{.pyo} file directly on the command line.
Guido van Rossum002f7aa1998-06-28 19:16:38 +00002297
2298\item
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002299It is possible to have a file called \file{spam.pyc} (or
Fred Drake31b761e2000-09-29 15:17:36 +00002300\file{spam.pyo} when \programopt{-O} is used) without a file
2301\file{spam.py} for the same module. This can be used to distribute a
2302library of Python code in a form that is moderately hard to reverse
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002303engineer.
2304
2305\item
2306The module \module{compileall}\refstmodindex{compileall} can create
Fred Drake37f15741999-11-10 16:21:37 +00002307\file{.pyc} files (or \file{.pyo} files when \programopt{-O} is used) for
Guido van Rossum13c8ef61998-05-29 19:12:23 +00002308all modules in a directory.
2309
2310\end{itemize}
2311
Guido van Rossum02455691997-07-17 16:21:52 +00002312
Fred Drakeb7833d31998-09-11 16:21:55 +00002313\section{Standard Modules \label{standardModules}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002314
Guido van Rossum4410c751991-06-04 20:22:18 +00002315Python comes with a library of standard modules, described in a separate
Fred Drake37f15741999-11-10 16:21:37 +00002316document, the \citetitle[../lib/lib.html]{Python Library Reference}
2317(``Library Reference'' hereafter). Some modules are built into the
2318interpreter; these provide access to operations that are not part of
2319the core of the language but are nevertheless built in, either for
2320efficiency or to provide access to operating system primitives such as
Fred Drakeed514942001-07-06 17:28:39 +00002321system calls. The set of such modules is a configuration option which
2322also dependson the underlying platform For example,
Fred Drake37f15741999-11-10 16:21:37 +00002323the \module{amoeba} module is only provided on systems that somehow
Fred Drake8842e861998-02-13 07:16:30 +00002324support Amoeba primitives. One particular module deserves some
Fred Drake391564f1998-04-01 23:11:56 +00002325attention: \module{sys}\refstmodindex{sys}, which is built into every
Fred Drakeee84d591999-03-10 17:25:30 +00002326Python interpreter. The variables \code{sys.ps1} and
2327\code{sys.ps2} define the strings used as primary and secondary
2328prompts:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002329
Fred Drake8842e861998-02-13 07:16:30 +00002330\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002331>>> import sys
2332>>> sys.ps1
2333'>>> '
2334>>> sys.ps2
2335'... '
2336>>> sys.ps1 = 'C> '
2337C> print 'Yuck!'
2338Yuck!
2339C>
Fred Drake8842e861998-02-13 07:16:30 +00002340\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002341
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002342These two variables are only defined if the interpreter is in
2343interactive mode.
2344
Fred Drakeee84d591999-03-10 17:25:30 +00002345The variable \code{sys.path} is a list of strings that determine the
2346interpreter's search path for modules. It is initialized to a default
2347path taken from the environment variable \envvar{PYTHONPATH}, or from
2348a built-in default if \envvar{PYTHONPATH} is not set. You can modify
Fred Drakeed514942001-07-06 17:28:39 +00002349it using standard list operations:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002350
Fred Drake8842e861998-02-13 07:16:30 +00002351\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002352>>> import sys
2353>>> sys.path.append('/ufs/guido/lib/python')
Fred Drake8842e861998-02-13 07:16:30 +00002354\end{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002355
Fred Drakeb7833d31998-09-11 16:21:55 +00002356\section{The \function{dir()} Function \label{dir}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002357
Fred Drake8842e861998-02-13 07:16:30 +00002358The built-in function \function{dir()} is used to find out which names
2359a module defines. It returns a sorted list of strings:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002360
Fred Drake8842e861998-02-13 07:16:30 +00002361\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002362>>> import fibo, sys
2363>>> dir(fibo)
Guido van Rossum6938f061994-08-01 12:22:53 +00002364['__name__', 'fib', 'fib2']
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002365>>> dir(sys)
Guido van Rossum6938f061994-08-01 12:22:53 +00002366['__name__', 'argv', 'builtin_module_names', 'copyright', 'exit',
2367'maxint', 'modules', 'path', 'ps1', 'ps2', 'setprofile', 'settrace',
2368'stderr', 'stdin', 'stdout', 'version']
Fred Drake8842e861998-02-13 07:16:30 +00002369\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002370
Fred Drake8842e861998-02-13 07:16:30 +00002371Without arguments, \function{dir()} lists the names you have defined
2372currently:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002373
Fred Drake8842e861998-02-13 07:16:30 +00002374\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002375>>> a = [1, 2, 3, 4, 5]
2376>>> import fibo, sys
2377>>> fib = fibo.fib
2378>>> dir()
Guido van Rossum6938f061994-08-01 12:22:53 +00002379['__name__', 'a', 'fib', 'fibo', 'sys']
Fred Drake8842e861998-02-13 07:16:30 +00002380\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002381
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002382Note that it lists all types of names: variables, modules, functions, etc.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002383
Fred Drake8842e861998-02-13 07:16:30 +00002384\function{dir()} does not list the names of built-in functions and
2385variables. If you want a list of those, they are defined in the
Fred Drake391564f1998-04-01 23:11:56 +00002386standard module \module{__builtin__}\refbimodindex{__builtin__}:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002387
Fred Drake8842e861998-02-13 07:16:30 +00002388\begin{verbatim}
Guido van Rossum4bd023f1993-10-27 13:49:20 +00002389>>> import __builtin__
2390>>> dir(__builtin__)
Guido van Rossum6938f061994-08-01 12:22:53 +00002391['AccessError', 'AttributeError', 'ConflictError', 'EOFError', 'IOError',
2392'ImportError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
2393'MemoryError', 'NameError', 'None', 'OverflowError', 'RuntimeError',
2394'SyntaxError', 'SystemError', 'SystemExit', 'TypeError', 'ValueError',
2395'ZeroDivisionError', '__name__', 'abs', 'apply', 'chr', 'cmp', 'coerce',
2396'compile', 'dir', 'divmod', 'eval', 'execfile', 'filter', 'float',
2397'getattr', 'hasattr', 'hash', 'hex', 'id', 'input', 'int', 'len', 'long',
2398'map', 'max', 'min', 'oct', 'open', 'ord', 'pow', 'range', 'raw_input',
2399'reduce', 'reload', 'repr', 'round', 'setattr', 'str', 'type', 'xrange']
Fred Drake8842e861998-02-13 07:16:30 +00002400\end{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002401
Fred Drake31b761e2000-09-29 15:17:36 +00002402
Fred Drakeb7833d31998-09-11 16:21:55 +00002403\section{Packages \label{packages}}
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002404
2405Packages are a way of structuring Python's module namespace
Fred Drakeb7833d31998-09-11 16:21:55 +00002406by using ``dotted module names''. For example, the module name
2407\module{A.B} designates a submodule named \samp{B} in a package named
2408\samp{A}. Just like the use of modules saves the authors of different
2409modules from having to worry about each other's global variable names,
2410the use of dotted module names saves the authors of multi-module
Fred Drake20082d92000-04-03 04:26:58 +00002411packages like NumPy or the Python Imaging Library from having to worry
2412about each other's module names.
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002413
2414Suppose you want to design a collection of modules (a ``package'') for
2415the uniform handling of sound files and sound data. There are many
2416different sound file formats (usually recognized by their extension,
Fred Drakeed514942001-07-06 17:28:39 +00002417for example: \file{.wav}, \file{.aiff}, \file{.au}), so you may need
2418to create and maintain a growing collection of modules for the
2419conversion between the various file formats. There are also many
2420different operations you might want to perform on sound data (such as
2421mixing, adding echo, applying an equalizer function, creating an
2422artificial stereo effect), so in addition you will be writing a
2423never-ending stream of modules to perform these operations. Here's a
2424possible structure for your package (expressed in terms of a
2425hierarchical filesystem):
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002426
2427\begin{verbatim}
2428Sound/ Top-level package
2429 __init__.py Initialize the sound package
2430 Formats/ Subpackage for file format conversions
2431 __init__.py
2432 wavread.py
2433 wavwrite.py
2434 aiffread.py
2435 aiffwrite.py
2436 auread.py
2437 auwrite.py
2438 ...
2439 Effects/ Subpackage for sound effects
2440 __init__.py
2441 echo.py
2442 surround.py
2443 reverse.py
2444 ...
2445 Filters/ Subpackage for filters
2446 __init__.py
2447 equalizer.py
2448 vocoder.py
2449 karaoke.py
2450 ...
2451\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00002452
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002453The \file{__init__.py} files are required to make Python treat the
2454directories as containing packages; this is done to prevent
2455directories with a common name, such as \samp{string}, from
2456unintentionally hiding valid modules that occur later on the module
2457search path. In the simplest case, \file{__init__.py} can just be an
2458empty file, but it can also execute initialization code for the
2459package or set the \code{__all__} variable, described later.
2460
2461Users of the package can import individual modules from the
2462package, for example:
2463
2464\begin{verbatim}
2465import Sound.Effects.echo
2466\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00002467
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002468This loads the submodule \module{Sound.Effects.echo}. It must be referenced
Fred Drakeed514942001-07-06 17:28:39 +00002469with its full name.
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002470
2471\begin{verbatim}
2472Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)
2473\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00002474
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002475An alternative way of importing the submodule is:
2476
2477\begin{verbatim}
2478from Sound.Effects import echo
2479\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00002480
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002481This also loads the submodule \module{echo}, and makes it available without
2482its package prefix, so it can be used as follows:
2483
2484\begin{verbatim}
2485echo.echofilter(input, output, delay=0.7, atten=4)
2486\end{verbatim}
2487
2488Yet another variation is to import the desired function or variable directly:
2489
2490\begin{verbatim}
2491from Sound.Effects.echo import echofilter
2492\end{verbatim}
2493
2494Again, this loads the submodule \module{echo}, but this makes its function
Fred Drake20082d92000-04-03 04:26:58 +00002495\function{echofilter()} directly available:
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002496
2497\begin{verbatim}
2498echofilter(input, output, delay=0.7, atten=4)
2499\end{verbatim}
2500
2501Note that when using \code{from \var{package} import \var{item}}, the
Fred Drake20082d92000-04-03 04:26:58 +00002502item can be either a submodule (or subpackage) of the package, or some
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002503other name defined in the package, like a function, class or
2504variable. The \code{import} statement first tests whether the item is
2505defined in the package; if not, it assumes it is a module and attempts
Fred Drake20082d92000-04-03 04:26:58 +00002506to load it. If it fails to find it, an
2507\exception{ImportError} exception is raised.
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002508
2509Contrarily, when using syntax like \code{import
2510\var{item.subitem.subsubitem}}, each item except for the last must be
2511a package; the last item can be a module or a package but can't be a
2512class or function or variable defined in the previous item.
2513
Fred Drakeb7833d31998-09-11 16:21:55 +00002514\subsection{Importing * From a Package \label{pkg-import-star}}
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002515%The \code{__all__} Attribute
2516
2517Now what happens when the user writes \code{from Sound.Effects import
2518*}? Ideally, one would hope that this somehow goes out to the
2519filesystem, finds which submodules are present in the package, and
2520imports them all. Unfortunately, this operation does not work very
2521well on Mac and Windows platforms, where the filesystem does not
2522always have accurate information about the case of a filename! On
2523these platforms, there is no guaranteed way to know whether a file
2524\file{ECHO.PY} should be imported as a module \module{echo},
2525\module{Echo} or \module{ECHO}. (For example, Windows 95 has the
2526annoying practice of showing all file names with a capitalized first
2527letter.) The DOS 8+3 filename restriction adds another interesting
2528problem for long module names.
2529
2530The only solution is for the package author to provide an explicit
2531index of the package. The import statement uses the following
Fred Drake20082d92000-04-03 04:26:58 +00002532convention: if a package's \file{__init__.py} code defines a list
2533named \code{__all__}, it is taken to be the list of module names that
2534should be imported when \code{from \var{package} import *} is
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002535encountered. It is up to the package author to keep this list
2536up-to-date when a new version of the package is released. Package
2537authors may also decide not to support it, if they don't see a use for
2538importing * from their package. For example, the file
Fred Drake20082d92000-04-03 04:26:58 +00002539\file{Sounds/Effects/__init__.py} could contain the following code:
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002540
2541\begin{verbatim}
2542__all__ = ["echo", "surround", "reverse"]
2543\end{verbatim}
2544
2545This would mean that \code{from Sound.Effects import *} would
2546import the three named submodules of the \module{Sound} package.
2547
2548If \code{__all__} is not defined, the statement \code{from Sound.Effects
2549import *} does \emph{not} import all submodules from the package
2550\module{Sound.Effects} into the current namespace; it only ensures that the
2551package \module{Sound.Effects} has been imported (possibly running its
2552initialization code, \file{__init__.py}) and then imports whatever names are
2553defined in the package. This includes any names defined (and
2554submodules explicitly loaded) by \file{__init__.py}. It also includes any
2555submodules of the package that were explicitly loaded by previous
Fred Drakeed514942001-07-06 17:28:39 +00002556import statements. Consider this code:
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002557
2558\begin{verbatim}
2559import Sound.Effects.echo
2560import Sound.Effects.surround
2561from Sound.Effects import *
2562\end{verbatim}
2563
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002564In this example, the echo and surround modules are imported in the
Fred Drake20082d92000-04-03 04:26:58 +00002565current namespace because they are defined in the
2566\module{Sound.Effects} package when the \code{from...import} statement
2567is executed. (This also works when \code{__all__} is defined.)
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002568
2569Note that in general the practicing of importing * from a module or
2570package is frowned upon, since it often causes poorly readable code.
2571However, it is okay to use it to save typing in interactive sessions,
2572and certain modules are designed to export only names that follow
2573certain patterns.
2574
2575Remember, there is nothing wrong with using \code{from Package
2576import specific_submodule}! In fact, this is the
2577recommended notation unless the importing module needs to use
2578submodules with the same name from different packages.
2579
2580
2581\subsection{Intra-package References}
2582
2583The submodules often need to refer to each other. For example, the
2584\module{surround} module might use the \module{echo} module. In fact, such references
2585are so common that the \code{import} statement first looks in the
2586containing package before looking in the standard module search path.
2587Thus, the surround module can simply use \code{import echo} or
2588\code{from echo import echofilter}. If the imported module is not
2589found in the current package (the package of which the current module
2590is a submodule), the \code{import} statement looks for a top-level module
2591with the given name.
2592
Fred Drake20082d92000-04-03 04:26:58 +00002593When packages are structured into subpackages (as with the
2594\module{Sound} package in the example), there's no shortcut to refer
2595to submodules of sibling packages - the full name of the subpackage
2596must be used. For example, if the module
2597\module{Sound.Filters.vocoder} needs to use the \module{echo} module
2598in the \module{Sound.Effects} package, it can use \code{from
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002599Sound.Effects import echo}.
2600
2601%(One could design a notation to refer to parent packages, similar to
Fred Drakec37b65e2001-11-28 07:26:15 +00002602%the use of ".." to refer to the parent directory in \UNIX{} and Windows
Andrew M. Kuchling108943c1998-07-01 13:58:55 +00002603%filesystems. In fact, the \module{ni} module, which was the
2604%ancestor of this package system, supported this using \code{__} for
2605%the package containing the current module,
2606%\code{__.__} for the parent package, and so on. This feature was dropped
2607%because of its awkwardness; since most packages will have a relative
2608%shallow substructure, this is no big loss.)
2609
2610
Guido van Rossum5e0759d1992-08-07 16:06:24 +00002611
Fred Drakeb7833d31998-09-11 16:21:55 +00002612\chapter{Input and Output \label{io}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002613
Guido van Rossum02455691997-07-17 16:21:52 +00002614There are several ways to present the output of a program; data can be
2615printed in a human-readable form, or written to a file for future use.
2616This chapter will discuss some of the possibilities.
2617
Fred Drakeb7833d31998-09-11 16:21:55 +00002618
2619\section{Fancier Output Formatting \label{formatting}}
2620
Fred Drakeeee08cd1997-12-04 15:43:15 +00002621So far we've encountered two ways of writing values: \emph{expression
Fred Drake8842e861998-02-13 07:16:30 +00002622statements} and the \keyword{print} statement. (A third way is using
2623the \method{write()} method of file objects; the standard output file
2624can be referenced as \code{sys.stdout}. See the Library Reference for
2625more information on this.)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002626
2627Often you'll want more control over the formatting of your output than
Guido van Rossum02455691997-07-17 16:21:52 +00002628simply printing space-separated values. There are two ways to format
2629your output; the first way is to do all the string handling yourself;
2630using string slicing and concatenation operations you can create any
Fred Drake391564f1998-04-01 23:11:56 +00002631lay-out you can imagine. The standard module
2632\module{string}\refstmodindex{string} contains some useful operations
Fred Drake20082d92000-04-03 04:26:58 +00002633for padding strings to a given column width; these will be discussed
2634shortly. The second way is to use the \code{\%} operator with a
2635string as the left argument. The \code{\%} operator interprets the
Fred Drakecc97f8c2001-01-01 20:33:06 +00002636left argument much like a \cfunction{sprintf()}-style format
Fred Drake20082d92000-04-03 04:26:58 +00002637string to be applied to the right argument, and returns the string
2638resulting from this formatting operation.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002639
2640One question remains, of course: how do you convert values to strings?
Guido van Rossum02455691997-07-17 16:21:52 +00002641Luckily, Python has a way to convert any value to a string: pass it to
Fred Drake8842e861998-02-13 07:16:30 +00002642the \function{repr()} function, or just write the value between
2643reverse quotes (\code{``}). Some examples:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002644
Fred Drake8842e861998-02-13 07:16:30 +00002645\begin{verbatim}
Tim Petersbd695a72001-05-22 06:54:14 +00002646>>> x = 10 * 3.25
Fred Drake8b0b8402001-05-21 16:55:39 +00002647>>> y = 200 * 200
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002648>>> s = 'The value of x is ' + `x` + ', and y is ' + `y` + '...'
2649>>> print s
Tim Petersbd695a72001-05-22 06:54:14 +00002650The value of x is 32.5, and y is 40000...
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002651>>> # Reverse quotes work on other types besides numbers:
Guido van Rossum6938f061994-08-01 12:22:53 +00002652... p = [x, y]
Guido van Rossum02455691997-07-17 16:21:52 +00002653>>> ps = repr(p)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002654>>> ps
Tim Petersbd695a72001-05-22 06:54:14 +00002655'[32.5, 40000]'
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002656>>> # Converting a string adds string quotes and backslashes:
Guido van Rossum6938f061994-08-01 12:22:53 +00002657... hello = 'hello, world\n'
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002658>>> hellos = `hello`
2659>>> print hellos
Fred Drake0c149612001-04-12 04:26:24 +00002660'hello, world\n'
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002661>>> # The argument of reverse quotes may be a tuple:
Guido van Rossume5f8b601995-01-04 19:12:49 +00002662... `x, y, ('spam', 'eggs')`
Tim Petersbd695a72001-05-22 06:54:14 +00002663"(32.5, 40000, ('spam', 'eggs'))"
Fred Drake8842e861998-02-13 07:16:30 +00002664\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002665
Guido van Rossum6938f061994-08-01 12:22:53 +00002666Here are two ways to write a table of squares and cubes:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002667
Fred Drake8842e861998-02-13 07:16:30 +00002668\begin{verbatim}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002669>>> import string
2670>>> for x in range(1, 11):
2671... print string.rjust(`x`, 2), string.rjust(`x*x`, 3),
2672... # Note trailing comma on previous line
2673... print string.rjust(`x*x*x`, 4)
2674...
2675 1 1 1
2676 2 4 8
2677 3 9 27
2678 4 16 64
2679 5 25 125
2680 6 36 216
2681 7 49 343
2682 8 64 512
2683 9 81 729
268410 100 1000
Guido van Rossum6938f061994-08-01 12:22:53 +00002685>>> for x in range(1,11):
2686... print '%2d %3d %4d' % (x, x*x, x*x*x)
2687...
2688 1 1 1
2689 2 4 8
2690 3 9 27
2691 4 16 64
2692 5 25 125
2693 6 36 216
2694 7 49 343
2695 8 64 512
2696 9 81 729
269710 100 1000
Fred Drake8842e861998-02-13 07:16:30 +00002698\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002699
Fred Drake8842e861998-02-13 07:16:30 +00002700(Note that one space between each column was added by the way
2701\keyword{print} works: it always adds spaces between its arguments.)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002702
Fred Drake8842e861998-02-13 07:16:30 +00002703This example demonstrates the function \function{string.rjust()},
2704which right-justifies a string in a field of a given width by padding
2705it with spaces on the left. There are similar functions
2706\function{string.ljust()} and \function{string.center()}. These
2707functions do not write anything, they just return a new string. If
2708the input string is too long, they don't truncate it, but return it
2709unchanged; this will mess up your column lay-out but that's usually
2710better than the alternative, which would be lying about a value. (If
2711you really want truncation you can always add a slice operation, as in
2712\samp{string.ljust(x,~n)[0:n]}.)
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002713
Fred Drake8842e861998-02-13 07:16:30 +00002714There is another function, \function{string.zfill()}, which pads a
2715numeric string on the left with zeros. It understands about plus and
2716minus signs:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002717
Fred Drake8842e861998-02-13 07:16:30 +00002718\begin{verbatim}
Fred Drake0ba58151999-09-14 18:00:49 +00002719>>> import string
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002720>>> string.zfill('12', 5)
2721'00012'
2722>>> string.zfill('-3.14', 7)
2723'-003.14'
2724>>> string.zfill('3.14159265359', 5)
2725'3.14159265359'
Fred Drake8842e861998-02-13 07:16:30 +00002726\end{verbatim}
Fred Drake31b761e2000-09-29 15:17:36 +00002727
Guido van Rossum02455691997-07-17 16:21:52 +00002728Using the \code{\%} operator looks like this:
2729
2730\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00002731>>> import math
2732>>> print 'The value of PI is approximately %5.3f.' % math.pi
2733The value of PI is approximately 3.142.
Guido van Rossum02455691997-07-17 16:21:52 +00002734\end{verbatim}
2735
Fred Drakeed514942001-07-06 17:28:39 +00002736If there is more than one format in the string, you need to pass a
2737tuple as right operand, as in this example:
Guido van Rossum02455691997-07-17 16:21:52 +00002738
2739\begin{verbatim}
Fred Drake20082d92000-04-03 04:26:58 +00002740>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
Fred Drake8842e861998-02-13 07:16:30 +00002741>>> for name, phone in table.items():
2742... print '%-10s ==> %10d' % (name, phone)
2743...
2744Jack ==> 4098
Fred Drake69fbf332000-04-04 19:53:06 +00002745Dcab ==> 7678
Fred Drake8842e861998-02-13 07:16:30 +00002746Sjoerd ==> 4127
Guido van Rossum02455691997-07-17 16:21:52 +00002747\end{verbatim}
2748
Fred Drakeee84d591999-03-10 17:25:30 +00002749Most formats work exactly as in C and require that you pass the proper
Guido van Rossum02455691997-07-17 16:21:52 +00002750type; however, if you don't you get an exception, not a core dump.
Fred Drakedb70d061998-11-17 21:59:04 +00002751The \code{\%s} format is more relaxed: if the corresponding argument is
Fred Drake8842e861998-02-13 07:16:30 +00002752not a string object, it is converted to string using the
2753\function{str()} built-in function. Using \code{*} to pass the width
2754or precision in as a separate (integer) argument is supported. The
Fred Drakeee84d591999-03-10 17:25:30 +00002755C formats \code{\%n} and \code{\%p} are not supported.
Guido van Rossum02455691997-07-17 16:21:52 +00002756
2757If you have a really long format string that you don't want to split
2758up, it would be nice if you could reference the variables to be
2759formatted by name instead of by position. This can be done by using
Fred Drakeed514942001-07-06 17:28:39 +00002760form \code{\%(name)format}, as shown here:
Guido van Rossum02455691997-07-17 16:21:52 +00002761
2762\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00002763>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
2764>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % table
2765Jack: 4098; Sjoerd: 4127; Dcab: 8637678
Guido van Rossum02455691997-07-17 16:21:52 +00002766\end{verbatim}
2767
2768This is particularly useful in combination with the new built-in
Fred Drake8842e861998-02-13 07:16:30 +00002769\function{vars()} function, which returns a dictionary containing all
Guido van Rossum02455691997-07-17 16:21:52 +00002770local variables.
2771
Fred Drakeb7833d31998-09-11 16:21:55 +00002772\section{Reading and Writing Files \label{files}}
Fred Drake6c2176e1998-02-26 21:47:54 +00002773
Guido van Rossum02455691997-07-17 16:21:52 +00002774% Opening files
Fred Drake391564f1998-04-01 23:11:56 +00002775\function{open()}\bifuncindex{open} returns a file
2776object\obindex{file}, and is most commonly used with two arguments:
2777\samp{open(\var{filename}, \var{mode})}.
Guido van Rossum02455691997-07-17 16:21:52 +00002778
Fred Drake8842e861998-02-13 07:16:30 +00002779\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002780>>> f=open('/tmp/workfile', 'w')
2781>>> print f
2782<open file '/tmp/workfile', mode 'w' at 80a0960>
Fred Drake8842e861998-02-13 07:16:30 +00002783\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002784
Guido van Rossum02455691997-07-17 16:21:52 +00002785The first argument is a string containing the filename. The second
2786argument is another string containing a few characters describing the
2787way in which the file will be used. \var{mode} can be \code{'r'} when
2788the file will only be read, \code{'w'} for only writing (an existing
2789file with the same name will be erased), and \code{'a'} opens the file
2790for appending; any data written to the file is automatically added to
2791the end. \code{'r+'} opens the file for both reading and writing.
2792The \var{mode} argument is optional; \code{'r'} will be assumed if
2793it's omitted.
2794
Fred Drake391564f1998-04-01 23:11:56 +00002795On Windows and the Macintosh, \code{'b'} appended to the
Guido van Rossum02455691997-07-17 16:21:52 +00002796mode opens the file in binary mode, so there are also modes like
2797\code{'rb'}, \code{'wb'}, and \code{'r+b'}. Windows makes a
2798distinction between text and binary files; the end-of-line characters
2799in text files are automatically altered slightly when data is read or
2800written. This behind-the-scenes modification to file data is fine for
Fred Drake8842e861998-02-13 07:16:30 +00002801\ASCII{} text files, but it'll corrupt binary data like that in JPEGs or
2802\file{.EXE} files. Be very careful to use binary mode when reading and
Fred Drake391564f1998-04-01 23:11:56 +00002803writing such files. (Note that the precise semantics of text mode on
Fred Drakeee84d591999-03-10 17:25:30 +00002804the Macintosh depends on the underlying C library being used.)
Guido van Rossum02455691997-07-17 16:21:52 +00002805
Fred Drakeb7833d31998-09-11 16:21:55 +00002806\subsection{Methods of File Objects \label{fileMethods}}
Guido van Rossum02455691997-07-17 16:21:52 +00002807
2808The rest of the examples in this section will assume that a file
2809object called \code{f} has already been created.
2810
2811To read a file's contents, call \code{f.read(\var{size})}, which reads
2812some quantity of data and returns it as a string. \var{size} is an
2813optional numeric argument. When \var{size} is omitted or negative,
2814the entire contents of the file will be read and returned; it's your
2815problem if the file is twice as large as your machine's memory.
2816Otherwise, at most \var{size} bytes are read and returned. If the end
2817of the file has been reached, \code{f.read()} will return an empty
2818string (\code {""}).
Fred Drake8842e861998-02-13 07:16:30 +00002819\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002820>>> f.read()
Fred Drake0c149612001-04-12 04:26:24 +00002821'This is the entire file.\n'
Guido van Rossum02455691997-07-17 16:21:52 +00002822>>> f.read()
2823''
Fred Drake8842e861998-02-13 07:16:30 +00002824\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002825
Guido van Rossum02455691997-07-17 16:21:52 +00002826\code{f.readline()} reads a single line from the file; a newline
Fred Drake8842e861998-02-13 07:16:30 +00002827character (\code{\e n}) is left at the end of the string, and is only
Guido van Rossum02455691997-07-17 16:21:52 +00002828omitted on the last line of the file if the file doesn't end in a
2829newline. This makes the return value unambiguous; if
2830\code{f.readline()} returns an empty string, the end of the file has
Fred Drake8842e861998-02-13 07:16:30 +00002831been reached, while a blank line is represented by \code{'\e n'}, a
Guido van Rossum02455691997-07-17 16:21:52 +00002832string containing only a single newline.
2833
Fred Drake8842e861998-02-13 07:16:30 +00002834\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002835>>> f.readline()
Fred Drake0c149612001-04-12 04:26:24 +00002836'This is the first line of the file.\n'
Guido van Rossum02455691997-07-17 16:21:52 +00002837>>> f.readline()
Fred Drake0c149612001-04-12 04:26:24 +00002838'Second line of the file\n'
Guido van Rossum02455691997-07-17 16:21:52 +00002839>>> f.readline()
2840''
Fred Drake8842e861998-02-13 07:16:30 +00002841\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002842
Fred Drake343ad7a2000-09-22 04:12:27 +00002843\code{f.readlines()} returns a list containing all the lines of data
2844in the file. If given an optional parameter \var{sizehint}, it reads
2845that many bytes from the file and enough more to complete a line, and
2846returns the lines from that. This is often used to allow efficient
2847reading of a large file by lines, but without having to load the
2848entire file in memory. Only complete lines will be returned.
Guido van Rossum02455691997-07-17 16:21:52 +00002849
Fred Drake8842e861998-02-13 07:16:30 +00002850\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002851>>> f.readlines()
Fred Drake0c149612001-04-12 04:26:24 +00002852['This is the first line of the file.\n', 'Second line of the file\n']
Fred Drake8842e861998-02-13 07:16:30 +00002853\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002854
Guido van Rossum02455691997-07-17 16:21:52 +00002855\code{f.write(\var{string})} writes the contents of \var{string} to
2856the file, returning \code{None}.
2857
Fred Drake8842e861998-02-13 07:16:30 +00002858\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002859>>> f.write('This is a test\n')
Fred Drake8842e861998-02-13 07:16:30 +00002860\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002861
Guido van Rossum02455691997-07-17 16:21:52 +00002862\code{f.tell()} returns an integer giving the file object's current
2863position in the file, measured in bytes from the beginning of the
2864file. To change the file object's position, use
Fred Drake8842e861998-02-13 07:16:30 +00002865\samp{f.seek(\var{offset}, \var{from_what})}. The position is
Guido van Rossum02455691997-07-17 16:21:52 +00002866computed from adding \var{offset} to a reference point; the reference
Fred Drake20082d92000-04-03 04:26:58 +00002867point is selected by the \var{from_what} argument. A
2868\var{from_what} value of 0 measures from the beginning of the file, 1
2869uses the current file position, and 2 uses the end of the file as the
2870reference point. \var{from_what} can be omitted and defaults to 0,
2871using the beginning of the file as the reference point.
Guido van Rossum02455691997-07-17 16:21:52 +00002872
Fred Drake8842e861998-02-13 07:16:30 +00002873\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002874>>> f=open('/tmp/workfile', 'r+')
2875>>> f.write('0123456789abcdef')
Fred Drakea8159162001-10-16 03:25:00 +00002876>>> f.seek(5) # Go to the 6th byte in the file
Guido van Rossum02455691997-07-17 16:21:52 +00002877>>> f.read(1)
2878'5'
2879>>> f.seek(-3, 2) # Go to the 3rd byte before the end
2880>>> f.read(1)
2881'd'
Fred Drake8842e861998-02-13 07:16:30 +00002882\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002883
Guido van Rossum02455691997-07-17 16:21:52 +00002884When you're done with a file, call \code{f.close()} to close it and
2885free up any system resources taken up by the open file. After calling
2886\code{f.close()}, attempts to use the file object will automatically fail.
2887
Fred Drake8842e861998-02-13 07:16:30 +00002888\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002889>>> f.close()
2890>>> f.read()
Fred Drake162c6a62001-02-14 03:20:18 +00002891Traceback (most recent call last):
Guido van Rossum02455691997-07-17 16:21:52 +00002892 File "<stdin>", line 1, in ?
2893ValueError: I/O operation on closed file
Fred Drake8842e861998-02-13 07:16:30 +00002894\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002895
Fred Drake20082d92000-04-03 04:26:58 +00002896File objects have some additional methods, such as
2897\method{isatty()} and \method{truncate()} which are less frequently
2898used; consult the Library Reference for a complete guide to file
2899objects.
Guido van Rossum02455691997-07-17 16:21:52 +00002900
Fred Drakeb7833d31998-09-11 16:21:55 +00002901\subsection{The \module{pickle} Module \label{pickle}}
Fred Drake391564f1998-04-01 23:11:56 +00002902\refstmodindex{pickle}
Guido van Rossum02455691997-07-17 16:21:52 +00002903
2904Strings can easily be written to and read from a file. Numbers take a
Fred Drake8842e861998-02-13 07:16:30 +00002905bit more effort, since the \method{read()} method only returns
2906strings, which will have to be passed to a function like
2907\function{string.atoi()}, which takes a string like \code{'123'} and
2908returns its numeric value 123. However, when you want to save more
2909complex data types like lists, dictionaries, or class instances,
2910things get a lot more complicated.
Guido van Rossum02455691997-07-17 16:21:52 +00002911
2912Rather than have users be constantly writing and debugging code to
2913save complicated data types, Python provides a standard module called
Fred Drake8842e861998-02-13 07:16:30 +00002914\module{pickle}. This is an amazing module that can take almost
Guido van Rossum02455691997-07-17 16:21:52 +00002915any Python object (even some forms of Python code!), and convert it to
2916a string representation; this process is called \dfn{pickling}.
2917Reconstructing the object from the string representation is called
2918\dfn{unpickling}. Between pickling and unpickling, the string
2919representing the object may have been stored in a file or data, or
2920sent over a network connection to some distant machine.
2921
2922If you have an object \code{x}, and a file object \code{f} that's been
2923opened for writing, the simplest way to pickle the object takes only
2924one line of code:
2925
Fred Drake8842e861998-02-13 07:16:30 +00002926\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002927pickle.dump(x, f)
Fred Drake8842e861998-02-13 07:16:30 +00002928\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002929
Fred Drake8842e861998-02-13 07:16:30 +00002930To unpickle the object again, if \code{f} is a file object which has
2931been opened for reading:
Guido van Rossum02455691997-07-17 16:21:52 +00002932
Fred Drake8842e861998-02-13 07:16:30 +00002933\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00002934x = pickle.load(f)
Fred Drake8842e861998-02-13 07:16:30 +00002935\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002936
Guido van Rossum02455691997-07-17 16:21:52 +00002937(There are other variants of this, used when pickling many objects or
2938when you don't want to write the pickled data to a file; consult the
Fred Drake8842e861998-02-13 07:16:30 +00002939complete documentation for \module{pickle} in the Library Reference.)
Guido van Rossum02455691997-07-17 16:21:52 +00002940
Fred Drake20082d92000-04-03 04:26:58 +00002941\module{pickle} is the standard way to make Python objects which can
2942be stored and reused by other programs or by a future invocation of
2943the same program; the technical term for this is a
2944\dfn{persistent} object. Because \module{pickle} is so widely used,
2945many authors who write Python extensions take care to ensure that new
2946data types such as matrices can be properly pickled and unpickled.
Guido van Rossum02455691997-07-17 16:21:52 +00002947
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002948
Guido van Rossum5e0759d1992-08-07 16:06:24 +00002949
Fred Drakeb7833d31998-09-11 16:21:55 +00002950\chapter{Errors and Exceptions \label{errors}}
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002951
2952Until now error messages haven't been more than mentioned, but if you
2953have tried out the examples you have probably seen some. There are
Fred Drake20082d92000-04-03 04:26:58 +00002954(at least) two distinguishable kinds of errors:
2955\emph{syntax errors} and \emph{exceptions}.
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002956
Fred Drakeb7833d31998-09-11 16:21:55 +00002957\section{Syntax Errors \label{syntaxErrors}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002958
2959Syntax errors, also known as parsing errors, are perhaps the most common
Guido van Rossum4410c751991-06-04 20:22:18 +00002960kind of complaint you get while you are still learning Python:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002961
Fred Drake8842e861998-02-13 07:16:30 +00002962\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002963>>> while 1 print 'Hello world'
Fred Drake13af4282001-09-21 21:10:05 +00002964 File "<stdin>", line 1, in ?
Guido van Rossum6938f061994-08-01 12:22:53 +00002965 while 1 print 'Hello world'
2966 ^
2967SyntaxError: invalid syntax
Fred Drake8842e861998-02-13 07:16:30 +00002968\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00002969
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002970The parser repeats the offending line and displays a little `arrow'
Fred Drake20082d92000-04-03 04:26:58 +00002971pointing at the earliest point in the line where the error was
2972detected. The error is caused by (or at least detected at) the token
2973\emph{preceding} the arrow: in the example, the error is detected at
2974the keyword \keyword{print}, since a colon (\character{:}) is missing
2975before it. File name and line number are printed so you know where to
2976look in case the input came from a script.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002977
Fred Drakeb7833d31998-09-11 16:21:55 +00002978\section{Exceptions \label{exceptions}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002979
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002980Even if a statement or expression is syntactically correct, it may
2981cause an error when an attempt is made to execute it.
Fred Drakeeee08cd1997-12-04 15:43:15 +00002982Errors detected during execution are called \emph{exceptions} and are
Guido van Rossum6fc178f1991-08-16 09:13:42 +00002983not unconditionally fatal: you will soon learn how to handle them in
2984Python programs. Most exceptions are not handled by programs,
2985however, and result in error messages as shown here:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00002986
Fred Drake8842e861998-02-13 07:16:30 +00002987\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002988>>> 10 * (1/0)
Fred Drake162c6a62001-02-14 03:20:18 +00002989Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +00002990 File "<stdin>", line 1, in ?
Guido van Rossumb2c65561993-05-12 08:53:36 +00002991ZeroDivisionError: integer division or modulo
Guido van Rossume5f8b601995-01-04 19:12:49 +00002992>>> 4 + spam*3
Fred Drake162c6a62001-02-14 03:20:18 +00002993Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +00002994 File "<stdin>", line 1, in ?
Guido van Rossume5f8b601995-01-04 19:12:49 +00002995NameError: spam
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00002996>>> '2' + 2
Fred Drake162c6a62001-02-14 03:20:18 +00002997Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +00002998 File "<stdin>", line 1, in ?
Guido van Rossumb2c65561993-05-12 08:53:36 +00002999TypeError: illegal argument type for built-in operation
Fred Drake8842e861998-02-13 07:16:30 +00003000\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003001
Guido van Rossumb2c65561993-05-12 08:53:36 +00003002The last line of the error message indicates what happened.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003003Exceptions come in different types, and the type is printed as part of
3004the message: the types in the example are
Fred Drake20082d92000-04-03 04:26:58 +00003005\exception{ZeroDivisionError}, \exception{NameError} and
Fred Drake8842e861998-02-13 07:16:30 +00003006\exception{TypeError}.
Guido van Rossumb2c65561993-05-12 08:53:36 +00003007The string printed as the exception type is the name of the built-in
3008name for the exception that occurred. This is true for all built-in
3009exceptions, but need not be true for user-defined exceptions (although
3010it is a useful convention).
3011Standard exception names are built-in identifiers (not reserved
3012keywords).
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003013
Guido van Rossumb2c65561993-05-12 08:53:36 +00003014The rest of the line is a detail whose interpretation depends on the
3015exception type; its meaning is dependent on the exception type.
3016
3017The preceding part of the error message shows the context where the
3018exception happened, in the form of a stack backtrace.
Guido van Rossum2292b8e1991-01-23 16:31:24 +00003019In general it contains a stack backtrace listing source lines; however,
3020it will not display lines read from standard input.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003021
Fred Drake860106a2000-10-20 03:03:18 +00003022The \citetitle[../lib/module-exceptions.html]{Python Library
3023Reference} lists the built-in exceptions and their meanings.
Fred Drake20082d92000-04-03 04:26:58 +00003024
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003025
Fred Drakeb7833d31998-09-11 16:21:55 +00003026\section{Handling Exceptions \label{handling}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003027
3028It is possible to write programs that handle selected exceptions.
Fred Drake20082d92000-04-03 04:26:58 +00003029Look at the following example, which asks the user for input until a
3030valid integer has been entered, but allows the user to interrupt the
3031program (using \kbd{Control-C} or whatever the operating system
3032supports); note that a user-generated interruption is signalled by
3033raising the \exception{KeyboardInterrupt} exception.
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003034
Fred Drake8842e861998-02-13 07:16:30 +00003035\begin{verbatim}
Fred Drake20082d92000-04-03 04:26:58 +00003036>>> while 1:
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003037... try:
Fred Drake20082d92000-04-03 04:26:58 +00003038... x = int(raw_input("Please enter a number: "))
3039... break
3040... except ValueError:
3041... print "Oops! That was no valid number. Try again..."
Guido van Rossum02455691997-07-17 16:21:52 +00003042...
Fred Drake8842e861998-02-13 07:16:30 +00003043\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003044
Fred Drake8842e861998-02-13 07:16:30 +00003045The \keyword{try} statement works as follows.
Fred Drake20082d92000-04-03 04:26:58 +00003046
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003047\begin{itemize}
3048\item
Fred Drake20082d92000-04-03 04:26:58 +00003049First, the \emph{try clause} (the statement(s) between the
3050\keyword{try} and \keyword{except} keywords) is executed.
3051
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003052\item
Fred Drake20082d92000-04-03 04:26:58 +00003053If no exception occurs, the \emph{except\ clause} is skipped and
3054execution of the \keyword{try} statement is finished.
3055
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003056\item
Fred Drake20082d92000-04-03 04:26:58 +00003057If an exception occurs during execution of the try clause, the rest of
3058the clause is skipped. Then if its type matches the exception named
3059after the \keyword{except} keyword, the rest of the try clause is
3060skipped, the except clause is executed, and then execution continues
3061after the \keyword{try} statement.
3062
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003063\item
3064If an exception occurs which does not match the exception named in the
Fred Drake8842e861998-02-13 07:16:30 +00003065except clause, it is passed on to outer \keyword{try} statements; if
Fred Drake20082d92000-04-03 04:26:58 +00003066no handler is found, it is an \emph{unhandled exception} and execution
3067stops with a message as shown above.
3068
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003069\end{itemize}
Fred Drake20082d92000-04-03 04:26:58 +00003070
Fred Drake8842e861998-02-13 07:16:30 +00003071A \keyword{try} statement may have more than one except clause, to
Fred Drake20082d92000-04-03 04:26:58 +00003072specify handlers for different exceptions. At most one handler will
3073be executed. Handlers only handle exceptions that occur in the
3074corresponding try clause, not in other handlers of the same
Fred Drakeed514942001-07-06 17:28:39 +00003075\keyword{try} statement. An except clause may name multiple exceptions
3076as a parenthesized list, for example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003077
Fred Drake8842e861998-02-13 07:16:30 +00003078\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003079... except (RuntimeError, TypeError, NameError):
3080... pass
Fred Drake8842e861998-02-13 07:16:30 +00003081\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003082
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003083The last except clause may omit the exception name(s), to serve as a
Fred Drake20082d92000-04-03 04:26:58 +00003084wildcard. Use this with extreme caution, since it is easy to mask a
3085real programming error in this way! It can also be used to print an
3086error message and then re-raise the exception (allowing a caller to
3087handle the exception as well):
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003088
Fred Drake20082d92000-04-03 04:26:58 +00003089\begin{verbatim}
3090import string, sys
3091
3092try:
3093 f = open('myfile.txt')
3094 s = f.readline()
3095 i = int(string.strip(s))
3096except IOError, (errno, strerror):
3097 print "I/O error(%s): %s" % (errno, strerror)
3098except ValueError:
3099 print "Could not convert data to an integer."
3100except:
3101 print "Unexpected error:", sys.exc_info()[0]
3102 raise
3103\end{verbatim}
Fred Drake2900ff91999-08-24 22:14:57 +00003104
Fred Drake8842e861998-02-13 07:16:30 +00003105The \keyword{try} \ldots\ \keyword{except} statement has an optional
Fred Drakee99d1db2000-04-17 14:56:31 +00003106\emph{else clause}, which, when present, must follow all except
3107clauses. It is useful for code that must be executed if the try
3108clause does not raise an exception. For example:
Guido van Rossum02455691997-07-17 16:21:52 +00003109
3110\begin{verbatim}
Guido van Rossuma4289a71998-07-07 20:18:06 +00003111for arg in sys.argv[1:]:
Fred Drake8842e861998-02-13 07:16:30 +00003112 try:
3113 f = open(arg, 'r')
3114 except IOError:
3115 print 'cannot open', arg
3116 else:
3117 print arg, 'has', len(f.readlines()), 'lines'
3118 f.close()
Guido van Rossum02455691997-07-17 16:21:52 +00003119\end{verbatim}
3120
Fred Drakee99d1db2000-04-17 14:56:31 +00003121The use of the \keyword{else} clause is better than adding additional
3122code to the \keyword{try} clause because it avoids accidentally
3123catching an exception that wasn't raised by the code being protected
3124by the \keyword{try} \ldots\ \keyword{except} statement.
3125
Guido van Rossum02455691997-07-17 16:21:52 +00003126
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003127When an exception occurs, it may have an associated value, also known as
Thomas Woutersf9b526d2000-07-16 19:05:38 +00003128the exception's \emph{argument}.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003129The presence and type of the argument depend on the exception type.
3130For exception types which have an argument, the except clause may
3131specify a variable after the exception name (or list) to receive the
3132argument's value, as follows:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003133
Fred Drake8842e861998-02-13 07:16:30 +00003134\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003135>>> try:
Guido van Rossume5f8b601995-01-04 19:12:49 +00003136... spam()
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003137... except NameError, x:
Guido van Rossum2292b8e1991-01-23 16:31:24 +00003138... print 'name', x, 'undefined'
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003139...
Guido van Rossume5f8b601995-01-04 19:12:49 +00003140name spam undefined
Fred Drake8842e861998-02-13 07:16:30 +00003141\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003142
Guido van Rossumb2c65561993-05-12 08:53:36 +00003143If an exception has an argument, it is printed as the last part
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003144(`detail') of the message for unhandled exceptions.
3145
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003146Exception handlers don't just handle exceptions if they occur
3147immediately in the try clause, but also if they occur inside functions
3148that are called (even indirectly) in the try clause.
3149For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003150
Fred Drake8842e861998-02-13 07:16:30 +00003151\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003152>>> def this_fails():
3153... x = 1/0
3154...
3155>>> try:
3156... this_fails()
Guido van Rossumb2c65561993-05-12 08:53:36 +00003157... except ZeroDivisionError, detail:
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003158... print 'Handling run-time error:', detail
3159...
Guido van Rossumb2c65561993-05-12 08:53:36 +00003160Handling run-time error: integer division or modulo
Fred Drake8842e861998-02-13 07:16:30 +00003161\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003162
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003163
Fred Drakeb7833d31998-09-11 16:21:55 +00003164\section{Raising Exceptions \label{raising}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003165
Fred Drake8842e861998-02-13 07:16:30 +00003166The \keyword{raise} statement allows the programmer to force a
3167specified exception to occur.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003168For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003169
Fred Drake8842e861998-02-13 07:16:30 +00003170\begin{verbatim}
Guido van Rossumb2c65561993-05-12 08:53:36 +00003171>>> raise NameError, 'HiThere'
Fred Drake162c6a62001-02-14 03:20:18 +00003172Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +00003173 File "<stdin>", line 1, in ?
Guido van Rossumb2c65561993-05-12 08:53:36 +00003174NameError: HiThere
Fred Drake8842e861998-02-13 07:16:30 +00003175\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003176
Fred Drake8842e861998-02-13 07:16:30 +00003177The first argument to \keyword{raise} names the exception to be
3178raised. The optional second argument specifies the exception's
3179argument.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003180
Fred Drake13af4282001-09-21 21:10:05 +00003181If you need to determine whether an exception was raised but don't
3182intend to handle it, a simpler form of the \keyword{raise} statement
3183allows you to re-raise the exception:
3184
3185\begin{verbatim}
3186>>> try:
3187... raise NameError, 'HiThere'
3188... except NameError:
3189... print 'An exception flew by!'
3190... raise
3191...
3192An exception flew by!
3193Traceback (most recent call last):
3194 File "<stdin>", line 2, in ?
3195NameError: HiThere
3196\end{verbatim}
3197
Guido van Rossum02455691997-07-17 16:21:52 +00003198
Fred Drakeb7833d31998-09-11 16:21:55 +00003199\section{User-defined Exceptions \label{userExceptions}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003200
Fred Drake13af4282001-09-21 21:10:05 +00003201Programs may name their own exceptions by creating a new exception
3202class. Exceptions should typically be derived from the
3203\exception{Exception} class, either directly or indirectly. For
3204example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003205
Fred Drake8842e861998-02-13 07:16:30 +00003206\begin{verbatim}
Fred Drake13af4282001-09-21 21:10:05 +00003207>>> class MyError(Exception):
Fred Drake20082d92000-04-03 04:26:58 +00003208... def __init__(self, value):
3209... self.value = value
3210... def __str__(self):
3211... return `self.value`
3212...
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003213>>> try:
Fred Drake20082d92000-04-03 04:26:58 +00003214... raise MyError(2*2)
3215... except MyError, e:
3216... print 'My exception occurred, value:', e.value
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003217...
Guido van Rossum6938f061994-08-01 12:22:53 +00003218My exception occurred, value: 4
Fred Drake13af4282001-09-21 21:10:05 +00003219>>> raise MyError, 'oops!'
Fred Drake162c6a62001-02-14 03:20:18 +00003220Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +00003221 File "<stdin>", line 1, in ?
3222__main__.MyError: 'oops!'
Fred Drake8842e861998-02-13 07:16:30 +00003223\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003224
Fred Drake13af4282001-09-21 21:10:05 +00003225Exception classes can be defined which do anything any other class can
3226do, but are usually kept simple, often only offering a number of
3227attributes that allow information about the error to be extracted by
3228handlers for the exception. When creating a module which can raise
3229several distinct errors, a common practice is to create a base class
3230for exceptions defined by that module, and subclass that to create
3231specific exception classes for different error conditions:
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003232
Fred Drake13af4282001-09-21 21:10:05 +00003233\begin{verbatim}
3234class Error(Exception):
3235 """Base class for exceptions in this module."""
3236 pass
3237
3238class InputError(Error):
3239 """Exception raised for errors in the input.
3240
3241 Attributes:
3242 expression -- input expression in which the error occurred
3243 message -- explanation of the error
3244 """
3245
3246 def __init__(self, expression, message):
3247 self.expression = expression
3248 self.message = message
3249
3250class TransitionError(Error):
3251 """Raised when an operation attempts a state transition that's not
3252 allowed.
3253
3254 Attributes:
3255 previous -- state at beginning of transition
3256 next -- attempted new state
3257 message -- explanation of why the specific transition is not allowed
3258 """
3259
3260 def __init__(self, previous, next, message):
3261 self.previous = previous
3262 self.next = next
3263 self.message = message
3264\end{verbatim}
3265
3266Most exceptions are defined with names that end in ``Error,'' similar
3267to the naming of the standard exceptions.
3268
3269Many standard modules define their own exceptions to report errors
3270that may occur in functions they define. More information on classes
3271is presented in chapter \ref{classes}, ``Classes.''
Fred Drake20082d92000-04-03 04:26:58 +00003272
Guido van Rossum02455691997-07-17 16:21:52 +00003273
Fred Drakeb7833d31998-09-11 16:21:55 +00003274\section{Defining Clean-up Actions \label{cleanup}}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003275
Fred Drake8842e861998-02-13 07:16:30 +00003276The \keyword{try} statement has another optional clause which is
3277intended to define clean-up actions that must be executed under all
3278circumstances. For example:
Guido van Rossuma8d754e1992-01-07 16:44:35 +00003279
Fred Drake8842e861998-02-13 07:16:30 +00003280\begin{verbatim}
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003281>>> try:
3282... raise KeyboardInterrupt
3283... finally:
3284... print 'Goodbye, world!'
3285...
3286Goodbye, world!
Fred Drake162c6a62001-02-14 03:20:18 +00003287Traceback (most recent call last):
Fred Drake13af4282001-09-21 21:10:05 +00003288 File "<stdin>", line 2, in ?
Guido van Rossumb2c65561993-05-12 08:53:36 +00003289KeyboardInterrupt
Fred Drake8842e861998-02-13 07:16:30 +00003290\end{verbatim}
Fred Drake6c2176e1998-02-26 21:47:54 +00003291
Fred Drake8842e861998-02-13 07:16:30 +00003292A \emph{finally clause} is executed whether or not an exception has
3293occurred in the try clause. When an exception has occurred, it is
3294re-raised after the finally clause is executed. The finally clause is
3295also executed ``on the way out'' when the \keyword{try} statement is
3296left via a \keyword{break} or \keyword{return} statement.
Guido van Rossumda8c3fd1992-08-09 13:55:25 +00003297
Fred Drake13af4282001-09-21 21:10:05 +00003298The code in the finally clause is useful for releasing external
3299resources (such as files or network connections), regardless of
3300whether or not the use of the resource was successful.
3301
Fred Drake8842e861998-02-13 07:16:30 +00003302A \keyword{try} statement must either have one or more except clauses
3303or one finally clause, but not both.
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00003304
Fred Drake13af4282001-09-21 21:10:05 +00003305
Fred Drakeb7833d31998-09-11 16:21:55 +00003306\chapter{Classes \label{classes}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003307
3308Python's class mechanism adds classes to the language with a minimum
3309of new syntax and semantics. It is a mixture of the class mechanisms
Guido van Rossum16d6e711994-08-08 12:30:22 +00003310found in \Cpp{} and Modula-3. As is true for modules, classes in Python
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003311do not put an absolute barrier between definition and user, but rather
3312rely on the politeness of the user not to ``break into the
3313definition.'' The most important features of classes are retained
3314with full power, however: the class inheritance mechanism allows
3315multiple base classes, a derived class can override any methods of its
Fred Drake391564f1998-04-01 23:11:56 +00003316base class or classes, a method can call the method of a base class with the
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003317same name. Objects can contain an arbitrary amount of private data.
3318
Guido van Rossum16d6e711994-08-08 12:30:22 +00003319In \Cpp{} terminology, all class members (including the data members) are
Fred Drakeeee08cd1997-12-04 15:43:15 +00003320\emph{public}, and all member functions are \emph{virtual}. There are
Guido van Rossum6938f061994-08-01 12:22:53 +00003321no special constructors or destructors. As in Modula-3, there are no
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003322shorthands for referencing the object's members from its methods: the
3323method function is declared with an explicit first argument
3324representing the object, which is provided implicitly by the call. As
3325in Smalltalk, classes themselves are objects, albeit in the wider
3326sense of the word: in Python, all data types are objects. This
Fred Drake20082d92000-04-03 04:26:58 +00003327provides semantics for importing and renaming. But, just like in
3328\Cpp{} or Modula-3, built-in types cannot be used as base classes for
Guido van Rossum16d6e711994-08-08 12:30:22 +00003329extension by the user. Also, like in \Cpp{} but unlike in Modula-3, most
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003330built-in operators with special syntax (arithmetic operators,
Fred Drake391564f1998-04-01 23:11:56 +00003331subscripting etc.) can be redefined for class instances.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003332
Fred Drakeb7833d31998-09-11 16:21:55 +00003333\section{A Word About Terminology \label{terminology}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003334
Fred Drake391564f1998-04-01 23:11:56 +00003335Lacking universally accepted terminology to talk about classes, I will
3336make occasional use of Smalltalk and \Cpp{} terms. (I would use Modula-3
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003337terms, since its object-oriented semantics are closer to those of
Fred Drakec37b65e2001-11-28 07:26:15 +00003338Python than \Cpp, but I expect that few readers have heard of it.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003339
3340I also have to warn you that there's a terminological pitfall for
3341object-oriented readers: the word ``object'' in Python does not
Fred Drake8842e861998-02-13 07:16:30 +00003342necessarily mean a class instance. Like \Cpp{} and Modula-3, and
3343unlike Smalltalk, not all types in Python are classes: the basic
Fred Drake391564f1998-04-01 23:11:56 +00003344built-in types like integers and lists are not, and even somewhat more
Fred Drake8842e861998-02-13 07:16:30 +00003345exotic types like files aren't. However, \emph{all} Python types
3346share a little bit of common semantics that is best described by using
3347the word object.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003348
3349Objects have individuality, and multiple names (in multiple scopes)
3350can be bound to the same object. This is known as aliasing in other
3351languages. This is usually not appreciated on a first glance at
3352Python, and can be safely ignored when dealing with immutable basic
3353types (numbers, strings, tuples). However, aliasing has an
Guido van Rossum6938f061994-08-01 12:22:53 +00003354(intended!) effect on the semantics of Python code involving mutable
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003355objects such as lists, dictionaries, and most types representing
3356entities outside the program (files, windows, etc.). This is usually
3357used to the benefit of the program, since aliases behave like pointers
3358in some respects. For example, passing an object is cheap since only
3359a pointer is passed by the implementation; and if a function modifies
3360an object passed as an argument, the caller will see the change --- this
3361obviates the need for two different argument passing mechanisms as in
3362Pascal.
3363
3364
Fred Drakeb7833d31998-09-11 16:21:55 +00003365\section{Python Scopes and Name Spaces \label{scopes}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003366
3367Before introducing classes, I first have to tell you something about
3368Python's scope rules. Class definitions play some neat tricks with
Fred Drake13494372000-09-12 16:23:48 +00003369namespaces, and you need to know how scopes and namespaces work to
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003370fully understand what's going on. Incidentally, knowledge about this
3371subject is useful for any advanced Python programmer.
3372
3373Let's begin with some definitions.
3374
Fred Drake13494372000-09-12 16:23:48 +00003375A \emph{namespace} is a mapping from names to objects. Most
3376namespaces are currently implemented as Python dictionaries, but
3377that's normally not noticeable in any way (except for performance),
3378and it may change in the future. Examples of namespaces are: the set
3379of built-in names (functions such as \function{abs()}, and built-in
3380exception names); the global names in a module; and the local names in
3381a function invocation. In a sense the set of attributes of an object
3382also form a namespace. The important thing to know about namespaces
3383is that there is absolutely no relation between names in different
3384namespaces; for instance, two different modules may both define a
3385function ``maximize'' without confusion --- users of the modules must
3386prefix it with the module name.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003387
Fred Drakeeee08cd1997-12-04 15:43:15 +00003388By the way, I use the word \emph{attribute} for any name following a
Fred Drake8842e861998-02-13 07:16:30 +00003389dot --- for example, in the expression \code{z.real}, \code{real} is
3390an attribute of the object \code{z}. Strictly speaking, references to
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003391names in modules are attribute references: in the expression
Fred Drake8842e861998-02-13 07:16:30 +00003392\code{modname.funcname}, \code{modname} is a module object and
3393\code{funcname} is an attribute of it. In this case there happens to
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003394be a straightforward mapping between the module's attributes and the
Fred Drake13494372000-09-12 16:23:48 +00003395global names defined in the module: they share the same namespace!
3396\footnote{
Guido van Rossum6938f061994-08-01 12:22:53 +00003397 Except for one thing. Module objects have a secret read-only
Fred Drake13494372000-09-12 16:23:48 +00003398 attribute called \member{__dict__} which returns the dictionary
3399 used to implement the module's namespace; the name
3400 \member{__dict__} is an attribute but not a global name.
3401 Obviously, using this violates the abstraction of namespace
Guido van Rossum6938f061994-08-01 12:22:53 +00003402 implementation, and should be restricted to things like
Fred Drake8842e861998-02-13 07:16:30 +00003403 post-mortem debuggers.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003404}
3405
3406Attributes may be read-only or writable. In the latter case,
3407assignment to attributes is possible. Module attributes are writable:
Fred Drake8842e861998-02-13 07:16:30 +00003408you can write \samp{modname.the_answer = 42}. Writable attributes may
Fred Drakeed514942001-07-06 17:28:39 +00003409also be deleted with the \keyword{del} statement. For example,
3410\samp{del modname.the_answer} will remove the attribute
3411\member{the_answer} from the object named by \code{modname}.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003412
3413Name spaces are created at different moments and have different
Fred Drake13494372000-09-12 16:23:48 +00003414lifetimes. The namespace containing the built-in names is created
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003415when the Python interpreter starts up, and is never deleted. The
Fred Drake13494372000-09-12 16:23:48 +00003416global namespace for a module is created when the module definition
3417is read in; normally, module namespaces also last until the
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003418interpreter quits. The statements executed by the top-level
3419invocation of the interpreter, either read from a script file or
Fred Drake8842e861998-02-13 07:16:30 +00003420interactively, are considered part of a module called
Fred Drake13494372000-09-12 16:23:48 +00003421\module{__main__}, so they have their own global namespace. (The
Fred Drake8842e861998-02-13 07:16:30 +00003422built-in names actually also live in a module; this is called
3423\module{__builtin__}.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003424
Fred Drake13494372000-09-12 16:23:48 +00003425The local namespace for a function is created when the function is
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003426called, and deleted when the function returns or raises an exception
3427that is not handled within the function. (Actually, forgetting would
3428be a better way to describe what actually happens.) Of course,
Fred Drake13494372000-09-12 16:23:48 +00003429recursive invocations each have their own local namespace.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003430
Fred Drake13494372000-09-12 16:23:48 +00003431A \emph{scope} is a textual region of a Python program where a
3432namespace is directly accessible. ``Directly accessible'' here means
3433that an unqualified reference to a name attempts to find the name in
3434the namespace.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003435
3436Although scopes are determined statically, they are used dynamically.
3437At any time during execution, exactly three nested scopes are in use
Fred Drakeed514942001-07-06 17:28:39 +00003438(exactly three namespaces are directly accessible): the
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003439innermost scope, which is searched first, contains the local names,
3440the middle scope, searched next, contains the current module's global
Fred Drake13494372000-09-12 16:23:48 +00003441names, and the outermost scope (searched last) is the namespace
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003442containing built-in names.
3443
3444Usually, the local scope references the local names of the (textually)
Guido van Rossum96628a91995-04-10 11:34:00 +00003445current function. Outside of functions, the local scope references
Fred Drake13494372000-09-12 16:23:48 +00003446the same namespace as the global scope: the module's namespace.
3447Class definitions place yet another namespace in the local scope.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003448
3449It is important to realize that scopes are determined textually: the
Fred Drake13494372000-09-12 16:23:48 +00003450global scope of a function defined in a module is that module's
3451namespace, no matter from where or by what alias the function is
3452called. On the other hand, the actual search for names is done
3453dynamically, at run time --- however, the language definition is
3454evolving towards static name resolution, at ``compile'' time, so don't
3455rely on dynamic name resolution! (In fact, local variables are
3456already determined statically.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003457
3458A special quirk of Python is that assignments always go into the
3459innermost scope. Assignments do not copy data --- they just
3460bind names to objects. The same is true for deletions: the statement
Fred Drake13494372000-09-12 16:23:48 +00003461\samp{del x} removes the binding of \code{x} from the namespace
Fred Drake391564f1998-04-01 23:11:56 +00003462referenced by the local scope. In fact, all operations that introduce
3463new names use the local scope: in particular, import statements and
3464function definitions bind the module or function name in the local
3465scope. (The \keyword{global} statement can be used to indicate that
3466particular variables live in the global scope.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003467
3468
Fred Drakeb7833d31998-09-11 16:21:55 +00003469\section{A First Look at Classes \label{firstClasses}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003470
3471Classes introduce a little bit of new syntax, three new object types,
3472and some new semantics.
3473
3474
Fred Drakeb7833d31998-09-11 16:21:55 +00003475\subsection{Class Definition Syntax \label{classDefinition}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003476
3477The simplest form of class definition looks like this:
3478
3479\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003480class ClassName:
3481 <statement-1>
3482 .
3483 .
3484 .
3485 <statement-N>
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003486\end{verbatim}
3487
Fred Drake20082d92000-04-03 04:26:58 +00003488Class definitions, like function definitions
3489(\keyword{def} statements) must be executed before they have any
3490effect. (You could conceivably place a class definition in a branch
3491of an \keyword{if} statement, or inside a function.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003492
3493In practice, the statements inside a class definition will usually be
3494function definitions, but other statements are allowed, and sometimes
3495useful --- we'll come back to this later. The function definitions
3496inside a class normally have a peculiar form of argument list,
3497dictated by the calling conventions for methods --- again, this is
3498explained later.
3499
Fred Drake13494372000-09-12 16:23:48 +00003500When a class definition is entered, a new namespace is created, and
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003501used as the local scope --- thus, all assignments to local variables
Fred Drake13494372000-09-12 16:23:48 +00003502go into this new namespace. In particular, function definitions bind
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003503the name of the new function here.
3504
Fred Drakeeee08cd1997-12-04 15:43:15 +00003505When a class definition is left normally (via the end), a \emph{class
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003506object} is created. This is basically a wrapper around the contents
Fred Drake13494372000-09-12 16:23:48 +00003507of the namespace created by the class definition; we'll learn more
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003508about class objects in the next section. The original local scope
3509(the one in effect just before the class definitions was entered) is
Fred Drakea594baf1998-04-03 05:16:31 +00003510reinstated, and the class object is bound here to the class name given
3511in the class definition header (\class{ClassName} in the example).
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003512
3513
Fred Drakeb7833d31998-09-11 16:21:55 +00003514\subsection{Class Objects \label{classObjects}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003515
3516Class objects support two kinds of operations: attribute references
3517and instantiation.
3518
Fred Drakeeee08cd1997-12-04 15:43:15 +00003519\emph{Attribute references} use the standard syntax used for all
Fred Drake8842e861998-02-13 07:16:30 +00003520attribute references in Python: \code{obj.name}. Valid attribute
Fred Drake13494372000-09-12 16:23:48 +00003521names are all the names that were in the class's namespace when the
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003522class object was created. So, if the class definition looked like
3523this:
3524
3525\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003526class MyClass:
3527 "A simple example class"
3528 i = 12345
Fred Drake88e66252001-06-29 17:50:57 +00003529 def f(self):
Fred Drake8842e861998-02-13 07:16:30 +00003530 return 'hello world'
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003531\end{verbatim}
3532
Fred Drake8842e861998-02-13 07:16:30 +00003533then \code{MyClass.i} and \code{MyClass.f} are valid attribute
Fred Drake20082d92000-04-03 04:26:58 +00003534references, returning an integer and a method object, respectively.
Guido van Rossum02455691997-07-17 16:21:52 +00003535Class attributes can also be assigned to, so you can change the value
Fred Drake20082d92000-04-03 04:26:58 +00003536of \code{MyClass.i} by assignment. \member{__doc__} is also a valid
3537attribute, returning the docstring belonging to the class: \code{"A
3538simple example class"}).
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003539
Fred Drakeeee08cd1997-12-04 15:43:15 +00003540Class \emph{instantiation} uses function notation. Just pretend that
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003541the class object is a parameterless function that returns a new
Fred Drake20082d92000-04-03 04:26:58 +00003542instance of the class. For example (assuming the above class):
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003543
3544\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003545x = MyClass()
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003546\end{verbatim}
3547
Fred Drakeeee08cd1997-12-04 15:43:15 +00003548creates a new \emph{instance} of the class and assigns this object to
3549the local variable \code{x}.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003550
Fred Drake20082d92000-04-03 04:26:58 +00003551The instantiation operation (``calling'' a class object) creates an
3552empty object. Many classes like to create objects in a known initial
3553state. Therefore a class may define a special method named
3554\method{__init__()}, like this:
3555
3556\begin{verbatim}
3557 def __init__(self):
3558 self.data = []
3559\end{verbatim}
3560
3561When a class defines an \method{__init__()} method, class
3562instantiation automatically invokes \method{__init__()} for the
3563newly-created class instance. So in this example, a new, initialized
3564instance can be obtained by:
3565
3566\begin{verbatim}
3567x = MyClass()
3568\end{verbatim}
3569
3570Of course, the \method{__init__()} method may have arguments for
3571greater flexibility. In that case, arguments given to the class
3572instantiation operator are passed on to \method{__init__()}. For
3573example,
3574
3575\begin{verbatim}
3576>>> class Complex:
3577... def __init__(self, realpart, imagpart):
3578... self.r = realpart
3579... self.i = imagpart
3580...
Tim Petersbd695a72001-05-22 06:54:14 +00003581>>> x = Complex(3.0, -4.5)
Fred Drake20082d92000-04-03 04:26:58 +00003582>>> x.r, x.i
3583(3.0, -4.5)
3584\end{verbatim}
3585
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003586
Fred Drakeb7833d31998-09-11 16:21:55 +00003587\subsection{Instance Objects \label{instanceObjects}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003588
3589Now what can we do with instance objects? The only operations
3590understood by instance objects are attribute references. There are
3591two kinds of valid attribute names.
3592
Fred Drakeeee08cd1997-12-04 15:43:15 +00003593The first I'll call \emph{data attributes}. These correspond to
Fred Drake8842e861998-02-13 07:16:30 +00003594``instance variables'' in Smalltalk, and to ``data members'' in
Fred Drakec37b65e2001-11-28 07:26:15 +00003595\Cpp. Data attributes need not be declared; like local variables,
Fred Drake8842e861998-02-13 07:16:30 +00003596they spring into existence when they are first assigned to. For
3597example, if \code{x} is the instance of \class{MyClass} created above,
3598the following piece of code will print the value \code{16}, without
3599leaving a trace:
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003600
3601\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003602x.counter = 1
3603while x.counter < 10:
3604 x.counter = x.counter * 2
3605print x.counter
3606del x.counter
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003607\end{verbatim}
3608
3609The second kind of attribute references understood by instance objects
Fred Drakeeee08cd1997-12-04 15:43:15 +00003610are \emph{methods}. A method is a function that ``belongs to'' an
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003611object. (In Python, the term method is not unique to class instances:
Fred Drakeed514942001-07-06 17:28:39 +00003612other object types can have methods as well. For example, list objects have
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003613methods called append, insert, remove, sort, and so on. However,
3614below, we'll use the term method exclusively to mean methods of class
3615instance objects, unless explicitly stated otherwise.)
3616
3617Valid method names of an instance object depend on its class. By
Fred Drake8842e861998-02-13 07:16:30 +00003618definition, all attributes of a class that are (user-defined) function
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003619objects define corresponding methods of its instances. So in our
Fred Drakeeee08cd1997-12-04 15:43:15 +00003620example, \code{x.f} is a valid method reference, since
3621\code{MyClass.f} is a function, but \code{x.i} is not, since
Fred Drake8842e861998-02-13 07:16:30 +00003622\code{MyClass.i} is not. But \code{x.f} is not the same thing as
Fred Drake20082d92000-04-03 04:26:58 +00003623\code{MyClass.f} --- it is a \obindex{method}\emph{method object}, not
3624a function object.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003625
3626
Fred Drakeb7833d31998-09-11 16:21:55 +00003627\subsection{Method Objects \label{methodObjects}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003628
Fred Drakeed514942001-07-06 17:28:39 +00003629Usually, a method is called immediately:
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003630
3631\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003632x.f()
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003633\end{verbatim}
3634
Fred Drake8842e861998-02-13 07:16:30 +00003635In our example, this will return the string \code{'hello world'}.
Fred Drakeee84d591999-03-10 17:25:30 +00003636However, it is not necessary to call a method right away:
3637\code{x.f} is a method object, and can be stored away and called at a
3638later time. For example:
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003639
3640\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003641xf = x.f
3642while 1:
3643 print xf()
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003644\end{verbatim}
3645
Fred Drake8842e861998-02-13 07:16:30 +00003646will continue to print \samp{hello world} until the end of time.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003647
3648What exactly happens when a method is called? You may have noticed
Fred Drake8842e861998-02-13 07:16:30 +00003649that \code{x.f()} was called without an argument above, even though
3650the function definition for \method{f} specified an argument. What
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003651happened to the argument? Surely Python raises an exception when a
3652function that requires an argument is called without any --- even if
3653the argument isn't actually used...
3654
3655Actually, you may have guessed the answer: the special thing about
3656methods is that the object is passed as the first argument of the
Fred Drake8842e861998-02-13 07:16:30 +00003657function. In our example, the call \code{x.f()} is exactly equivalent
3658to \code{MyClass.f(x)}. In general, calling a method with a list of
Fred Drakeeee08cd1997-12-04 15:43:15 +00003659\var{n} arguments is equivalent to calling the corresponding function
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003660with an argument list that is created by inserting the method's object
3661before the first argument.
3662
3663If you still don't understand how methods work, a look at the
3664implementation can perhaps clarify matters. When an instance
3665attribute is referenced that isn't a data attribute, its class is
3666searched. If the name denotes a valid class attribute that is a
3667function object, a method object is created by packing (pointers to)
3668the instance object and the function object just found together in an
3669abstract object: this is the method object. When the method object is
3670called with an argument list, it is unpacked again, a new argument
3671list is constructed from the instance object and the original argument
3672list, and the function object is called with this new argument list.
3673
3674
Fred Drakeb7833d31998-09-11 16:21:55 +00003675\section{Random Remarks \label{remarks}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003676
3677[These should perhaps be placed more carefully...]
3678
3679
3680Data attributes override method attributes with the same name; to
3681avoid accidental name conflicts, which may cause hard-to-find bugs in
3682large programs, it is wise to use some kind of convention that
Fred Drakeed514942001-07-06 17:28:39 +00003683minimizes the chance of conflicts. Possible conventions include
3684capitalizing method names, prefixing data attribute names with a small
3685unique string (perhaps just an underscore), or using verbs for methods
3686and nouns for data attributes.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003687
3688
3689Data attributes may be referenced by methods as well as by ordinary
3690users (``clients'') of an object. In other words, classes are not
3691usable to implement pure abstract data types. In fact, nothing in
3692Python makes it possible to enforce data hiding --- it is all based
3693upon convention. (On the other hand, the Python implementation,
Fred Drakeee84d591999-03-10 17:25:30 +00003694written in C, can completely hide implementation details and control
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003695access to an object if necessary; this can be used by extensions to
Fred Drakeee84d591999-03-10 17:25:30 +00003696Python written in C.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003697
3698
3699Clients should use data attributes with care --- clients may mess up
3700invariants maintained by the methods by stamping on their data
3701attributes. Note that clients may add data attributes of their own to
3702an instance object without affecting the validity of the methods, as
3703long as name conflicts are avoided --- again, a naming convention can
3704save a lot of headaches here.
3705
3706
3707There is no shorthand for referencing data attributes (or other
3708methods!) from within methods. I find that this actually increases
3709the readability of methods: there is no chance of confusing local
3710variables and instance variables when glancing through a method.
3711
3712
3713Conventionally, the first argument of methods is often called
Fred Drake8842e861998-02-13 07:16:30 +00003714\code{self}. This is nothing more than a convention: the name
3715\code{self} has absolutely no special meaning to Python. (Note,
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003716however, that by not following the convention your code may be less
3717readable by other Python programmers, and it is also conceivable that
Fred Drakeeee08cd1997-12-04 15:43:15 +00003718a \emph{class browser} program be written which relies upon such a
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003719convention.)
3720
3721
3722Any function object that is a class attribute defines a method for
3723instances of that class. It is not necessary that the function
3724definition is textually enclosed in the class definition: assigning a
3725function object to a local variable in the class is also ok. For
3726example:
3727
3728\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003729# Function defined outside the class
3730def f1(self, x, y):
3731 return min(x, x+y)
3732
3733class C:
3734 f = f1
3735 def g(self):
3736 return 'hello world'
3737 h = g
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003738\end{verbatim}
3739
Fred Drake8842e861998-02-13 07:16:30 +00003740Now \code{f}, \code{g} and \code{h} are all attributes of class
3741\class{C} that refer to function objects, and consequently they are all
3742methods of instances of \class{C} --- \code{h} being exactly equivalent
3743to \code{g}. Note that this practice usually only serves to confuse
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003744the reader of a program.
3745
3746
3747Methods may call other methods by using method attributes of the
Fred Drakeed514942001-07-06 17:28:39 +00003748\code{self} argument:
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003749
3750\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003751class Bag:
Fred Drake20082d92000-04-03 04:26:58 +00003752 def __init__(self):
Fred Drake8842e861998-02-13 07:16:30 +00003753 self.data = []
3754 def add(self, x):
3755 self.data.append(x)
3756 def addtwice(self, x):
3757 self.add(x)
3758 self.add(x)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003759\end{verbatim}
3760
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003761Methods may reference global names in the same way as ordinary
3762functions. The global scope associated with a method is the module
3763containing the class definition. (The class itself is never used as a
3764global scope!) While one rarely encounters a good reason for using
3765global data in a method, there are many legitimate uses of the global
3766scope: for one thing, functions and modules imported into the global
3767scope can be used by methods, as well as functions and classes defined
3768in it. Usually, the class containing the method is itself defined in
3769this global scope, and in the next section we'll find some good
3770reasons why a method would want to reference its own class!
3771
3772
Fred Drakeb7833d31998-09-11 16:21:55 +00003773\section{Inheritance \label{inheritance}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003774
3775Of course, a language feature would not be worthy of the name ``class''
3776without supporting inheritance. The syntax for a derived class
3777definition looks as follows:
3778
3779\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003780class DerivedClassName(BaseClassName):
3781 <statement-1>
3782 .
3783 .
3784 .
3785 <statement-N>
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003786\end{verbatim}
3787
Fred Drake8842e861998-02-13 07:16:30 +00003788The name \class{BaseClassName} must be defined in a scope containing
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003789the derived class definition. Instead of a base class name, an
3790expression is also allowed. This is useful when the base class is
Fred Drakeed514942001-07-06 17:28:39 +00003791defined in another module,
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003792
3793\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003794class DerivedClassName(modname.BaseClassName):
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003795\end{verbatim}
3796
3797Execution of a derived class definition proceeds the same as for a
3798base class. When the class object is constructed, the base class is
3799remembered. This is used for resolving attribute references: if a
3800requested attribute is not found in the class, it is searched in the
3801base class. This rule is applied recursively if the base class itself
3802is derived from some other class.
3803
3804There's nothing special about instantiation of derived classes:
Fred Drake8842e861998-02-13 07:16:30 +00003805\code{DerivedClassName()} creates a new instance of the class. Method
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003806references are resolved as follows: the corresponding class attribute
3807is searched, descending down the chain of base classes if necessary,
3808and the method reference is valid if this yields a function object.
3809
3810Derived classes may override methods of their base classes. Because
3811methods have no special privileges when calling other methods of the
3812same object, a method of a base class that calls another method
3813defined in the same base class, may in fact end up calling a method of
Guido van Rossum16d6e711994-08-08 12:30:22 +00003814a derived class that overrides it. (For \Cpp{} programmers: all methods
Fred Drake20082d92000-04-03 04:26:58 +00003815in Python are effectively \keyword{virtual}.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003816
3817An overriding method in a derived class may in fact want to extend
3818rather than simply replace the base class method of the same name.
3819There is a simple way to call the base class method directly: just
Fred Drake8842e861998-02-13 07:16:30 +00003820call \samp{BaseClassName.methodname(self, arguments)}. This is
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003821occasionally useful to clients as well. (Note that this only works if
3822the base class is defined or imported directly in the global scope.)
3823
3824
Fred Drakeb7833d31998-09-11 16:21:55 +00003825\subsection{Multiple Inheritance \label{multiple}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003826
Guido van Rossum6938f061994-08-01 12:22:53 +00003827Python supports a limited form of multiple inheritance as well. A
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003828class definition with multiple base classes looks as follows:
3829
3830\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003831class DerivedClassName(Base1, Base2, Base3):
3832 <statement-1>
3833 .
3834 .
3835 .
3836 <statement-N>
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003837\end{verbatim}
3838
3839The only rule necessary to explain the semantics is the resolution
3840rule used for class attribute references. This is depth-first,
3841left-to-right. Thus, if an attribute is not found in
Fred Drake8842e861998-02-13 07:16:30 +00003842\class{DerivedClassName}, it is searched in \class{Base1}, then
3843(recursively) in the base classes of \class{Base1}, and only if it is
3844not found there, it is searched in \class{Base2}, and so on.
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003845
Fred Drake8842e861998-02-13 07:16:30 +00003846(To some people breadth first --- searching \class{Base2} and
3847\class{Base3} before the base classes of \class{Base1} --- looks more
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003848natural. However, this would require you to know whether a particular
Fred Drake8842e861998-02-13 07:16:30 +00003849attribute of \class{Base1} is actually defined in \class{Base1} or in
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003850one of its base classes before you can figure out the consequences of
Fred Drake8842e861998-02-13 07:16:30 +00003851a name conflict with an attribute of \class{Base2}. The depth-first
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003852rule makes no differences between direct and inherited attributes of
Fred Drake8842e861998-02-13 07:16:30 +00003853\class{Base1}.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003854
3855It is clear that indiscriminate use of multiple inheritance is a
3856maintenance nightmare, given the reliance in Python on conventions to
3857avoid accidental name conflicts. A well-known problem with multiple
3858inheritance is a class derived from two classes that happen to have a
3859common base class. While it is easy enough to figure out what happens
3860in this case (the instance will have a single copy of ``instance
3861variables'' or data attributes used by the common base class), it is
3862not clear that these semantics are in any way useful.
3863
3864
Fred Drakeb7833d31998-09-11 16:21:55 +00003865\section{Private Variables \label{private}}
Guido van Rossum02455691997-07-17 16:21:52 +00003866
Fred Drakea594baf1998-04-03 05:16:31 +00003867There is limited support for class-private
Guido van Rossum02455691997-07-17 16:21:52 +00003868identifiers. Any identifier of the form \code{__spam} (at least two
3869leading underscores, at most one trailing underscore) is now textually
3870replaced with \code{_classname__spam}, where \code{classname} is the
3871current class name with leading underscore(s) stripped. This mangling
3872is done without regard of the syntactic position of the identifier, so
3873it can be used to define class-private instance and class variables,
3874methods, as well as globals, and even to store instance variables
Fred Drakeeee08cd1997-12-04 15:43:15 +00003875private to this class on instances of \emph{other} classes. Truncation
Guido van Rossum02455691997-07-17 16:21:52 +00003876may occur when the mangled name would be longer than 255 characters.
3877Outside classes, or when the class name consists of only underscores,
3878no mangling occurs.
3879
3880Name mangling is intended to give classes an easy way to define
3881``private'' instance variables and methods, without having to worry
3882about instance variables defined by derived classes, or mucking with
3883instance variables by code outside the class. Note that the mangling
3884rules are designed mostly to avoid accidents; it still is possible for
3885a determined soul to access or modify a variable that is considered
Fred Drakeed514942001-07-06 17:28:39 +00003886private. This can even be useful in special circumstances, such as in
3887the debugger, and that's one reason why this loophole is not closed.
3888(Buglet: derivation of a class with the same name as the base class
3889makes use of private variables of the base class possible.)
Guido van Rossum02455691997-07-17 16:21:52 +00003890
3891Notice that code passed to \code{exec}, \code{eval()} or
3892\code{evalfile()} does not consider the classname of the invoking
3893class to be the current class; this is similar to the effect of the
3894\code{global} statement, the effect of which is likewise restricted to
3895code that is byte-compiled together. The same restriction applies to
3896\code{getattr()}, \code{setattr()} and \code{delattr()}, as well as
3897when referencing \code{__dict__} directly.
3898
3899Here's an example of a class that implements its own
Fred Drake13494372000-09-12 16:23:48 +00003900\method{__getattr__()} and \method{__setattr__()} methods and stores
3901all attributes in a private variable, in a way that works in all
3902versions of Python, including those available before this feature was
3903added:
Guido van Rossum02455691997-07-17 16:21:52 +00003904
3905\begin{verbatim}
3906class VirtualAttributes:
3907 __vdict = None
3908 __vdict_name = locals().keys()[0]
3909
3910 def __init__(self):
3911 self.__dict__[self.__vdict_name] = {}
3912
3913 def __getattr__(self, name):
3914 return self.__vdict[name]
3915
3916 def __setattr__(self, name, value):
3917 self.__vdict[name] = value
3918\end{verbatim}
3919
Guido van Rossum02455691997-07-17 16:21:52 +00003920
Fred Drakeb7833d31998-09-11 16:21:55 +00003921\section{Odds and Ends \label{odds}}
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003922
3923Sometimes it is useful to have a data type similar to the Pascal
Fred Drakeee84d591999-03-10 17:25:30 +00003924``record'' or C ``struct'', bundling together a couple of named data
Fred Drakeed514942001-07-06 17:28:39 +00003925items. An empty class definition will do nicely:
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003926
3927\begin{verbatim}
Fred Drake8842e861998-02-13 07:16:30 +00003928class Employee:
3929 pass
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003930
Fred Drake8842e861998-02-13 07:16:30 +00003931john = Employee() # Create an empty employee record
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003932
Fred Drake8842e861998-02-13 07:16:30 +00003933# Fill the fields of the record
3934john.name = 'John Doe'
3935john.dept = 'computer lab'
3936john.salary = 1000
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003937\end{verbatim}
3938
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003939A piece of Python code that expects a particular abstract data type
3940can often be passed a class that emulates the methods of that data
3941type instead. For instance, if you have a function that formats some
3942data from a file object, you can define a class with methods
Fred Drake8842e861998-02-13 07:16:30 +00003943\method{read()} and \method{readline()} that gets the data from a string
Fred Drake391564f1998-04-01 23:11:56 +00003944buffer instead, and pass it as an argument.% (Unfortunately, this
3945%technique has its limitations: a class can't define operations that
3946%are accessed by special syntax such as sequence subscripting or
3947%arithmetic operators, and assigning such a ``pseudo-file'' to
3948%\code{sys.stdin} will not cause the interpreter to read further input
3949%from it.)
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003950
3951
Fred Drake8842e861998-02-13 07:16:30 +00003952Instance method objects have attributes, too: \code{m.im_self} is the
3953object of which the method is an instance, and \code{m.im_func} is the
Guido van Rossum5e0759d1992-08-07 16:06:24 +00003954function object corresponding to the method.
3955
Fred Drakeb7833d31998-09-11 16:21:55 +00003956\subsection{Exceptions Can Be Classes \label{exceptionClasses}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00003957
3958User-defined exceptions are no longer limited to being string objects
3959--- they can be identified by classes as well. Using this mechanism it
3960is possible to create extensible hierarchies of exceptions.
3961
3962There are two new valid (semantic) forms for the raise statement:
3963
3964\begin{verbatim}
3965raise Class, instance
3966
3967raise instance
3968\end{verbatim}
3969
Fred Drake20082d92000-04-03 04:26:58 +00003970In the first form, \code{instance} must be an instance of
3971\class{Class} or of a class derived from it. The second form is a
3972shorthand for:
Guido van Rossum194e57c1995-02-15 15:51:38 +00003973
3974\begin{verbatim}
3975raise instance.__class__, instance
3976\end{verbatim}
3977
3978An except clause may list classes as well as string objects. A class
3979in an except clause is compatible with an exception if it is the same
3980class or a base class thereof (but not the other way around --- an
3981except clause listing a derived class is not compatible with a base
3982class). For example, the following code will print B, C, D in that
3983order:
3984
3985\begin{verbatim}
3986class B:
3987 pass
3988class C(B):
3989 pass
3990class D(C):
3991 pass
3992
3993for c in [B, C, D]:
3994 try:
3995 raise c()
3996 except D:
3997 print "D"
3998 except C:
3999 print "C"
4000 except B:
4001 print "B"
4002\end{verbatim}
4003
Fred Drakeee84d591999-03-10 17:25:30 +00004004Note that if the except clauses were reversed (with
4005\samp{except B} first), it would have printed B, B, B --- the first
4006matching except clause is triggered.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004007
4008When an error message is printed for an unhandled exception which is a
4009class, the class name is printed, then a colon and a space, and
4010finally the instance converted to a string using the built-in function
Fred Drake8842e861998-02-13 07:16:30 +00004011\function{str()}.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004012
Guido van Rossum194e57c1995-02-15 15:51:38 +00004013
Fred Drakeb7833d31998-09-11 16:21:55 +00004014\chapter{What Now? \label{whatNow}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00004015
Fred Drake979d0412001-04-03 17:41:56 +00004016Reading this tutorial has probably reinforced your interest in using
4017Python --- you should be eager to apply Python to solve your
4018real-world problems. Now what should you do?
Guido van Rossum194e57c1995-02-15 15:51:38 +00004019
Fred Drake979d0412001-04-03 17:41:56 +00004020You should read, or at least page through, the
4021\citetitle[../lib/lib.html]{Python Library Reference},
Guido van Rossum02455691997-07-17 16:21:52 +00004022which gives complete (though terse) reference material about types,
4023functions, and modules that can save you a lot of time when writing
4024Python programs. The standard Python distribution includes a
Fred Drakeee84d591999-03-10 17:25:30 +00004025\emph{lot} of code in both C and Python; there are modules to read
Fred Drake8842e861998-02-13 07:16:30 +00004026\UNIX{} mailboxes, retrieve documents via HTTP, generate random
4027numbers, parse command-line options, write CGI programs, compress
4028data, and a lot more; skimming through the Library Reference will give
4029you an idea of what's available.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004030
Fred Drake518e55c2000-07-27 20:55:12 +00004031The major Python Web site is \url{http://www.python.org/}; it contains
Guido van Rossum02455691997-07-17 16:21:52 +00004032code, documentation, and pointers to Python-related pages around the
Fred Drake17f690f2001-07-14 02:14:42 +00004033Web. This Web site is mirrored in various places around the
Guido van Rossum02455691997-07-17 16:21:52 +00004034world, such as Europe, Japan, and Australia; a mirror may be faster
4035than the main site, depending on your geographical location. A more
Fred Drakec0fcbc11999-04-29 02:30:04 +00004036informal site is \url{http://starship.python.net/}, which contains a
Guido van Rossum02455691997-07-17 16:21:52 +00004037bunch of Python-related personal home pages; many people have
Fred Drakec0fcbc11999-04-29 02:30:04 +00004038downloadable software there.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004039
Guido van Rossum02455691997-07-17 16:21:52 +00004040For Python-related questions and problem reports, you can post to the
Fred Drake391564f1998-04-01 23:11:56 +00004041newsgroup \newsgroup{comp.lang.python}, or send them to the mailing
Fred Drake518e55c2000-07-27 20:55:12 +00004042list at \email{python-list@python.org}. The newsgroup and mailing list
Fred Drake391564f1998-04-01 23:11:56 +00004043are gatewayed, so messages posted to one will automatically be
Fred Drake518e55c2000-07-27 20:55:12 +00004044forwarded to the other. There are around 120 postings a day,
Fred Drake391564f1998-04-01 23:11:56 +00004045% Postings figure based on average of last six months activity as
Fred Drake518e55c2000-07-27 20:55:12 +00004046% reported by www.egroups.com; Jan. 2000 - June 2000: 21272 msgs / 182
4047% days = 116.9 msgs / day and steadily increasing.
Fred Drake391564f1998-04-01 23:11:56 +00004048asking (and answering) questions, suggesting new features, and
4049announcing new modules. Before posting, be sure to check the list of
4050Frequently Asked Questions (also called the FAQ), at
Fred Drakeca6567f1998-01-22 20:44:18 +00004051\url{http://www.python.org/doc/FAQ.html}, or look for it in the
Fred Drake518e55c2000-07-27 20:55:12 +00004052\file{Misc/} directory of the Python source distribution. Mailing
4053list archives are available at \url{http://www.python.org/pipermail/}.
4054The FAQ answers many of the questions that come up again and again,
4055and may already contain the solution for your problem.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004056
Guido van Rossum194e57c1995-02-15 15:51:38 +00004057
Fred Drakea594baf1998-04-03 05:16:31 +00004058\appendix
Guido van Rossum194e57c1995-02-15 15:51:38 +00004059
Fred Drakeb7833d31998-09-11 16:21:55 +00004060\chapter{Interactive Input Editing and History Substitution
4061 \label{interacting}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00004062
Guido van Rossum02455691997-07-17 16:21:52 +00004063Some versions of the Python interpreter support editing of the current
4064input line and history substitution, similar to facilities found in
4065the Korn shell and the GNU Bash shell. This is implemented using the
Fred Drakeeee08cd1997-12-04 15:43:15 +00004066\emph{GNU Readline} library, which supports Emacs-style and vi-style
Guido van Rossum02455691997-07-17 16:21:52 +00004067editing. This library has its own documentation which I won't
Fred Drakecc09e8d1998-12-28 21:21:36 +00004068duplicate here; however, the basics are easily explained. The
4069interactive editing and history described here are optionally
4070available in the \UNIX{} and CygWin versions of the interpreter.
4071
4072This chapter does \emph{not} document the editing facilities of Mark
4073Hammond's PythonWin package or the Tk-based environment, IDLE,
4074distributed with Python. The command line history recall which
4075operates within DOS boxes on NT and some other DOS and Windows flavors
4076is yet another beast.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004077
Fred Drakeb7833d31998-09-11 16:21:55 +00004078\section{Line Editing \label{lineEditing}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00004079
Guido van Rossum02455691997-07-17 16:21:52 +00004080If supported, input line editing is active whenever the interpreter
4081prints a primary or secondary prompt. The current line can be edited
4082using the conventional Emacs control characters. The most important
Fred Drake5443c492000-07-08 05:18:54 +00004083of these are: \kbd{C-A} (Control-A) moves the cursor to the beginning
4084of the line, \kbd{C-E} to the end, \kbd{C-B} moves it one position to
4085the left, \kbd{C-F} to the right. Backspace erases the character to
4086the left of the cursor, \kbd{C-D} the character to its right.
4087\kbd{C-K} kills (erases) the rest of the line to the right of the
4088cursor, \kbd{C-Y} yanks back the last killed string.
4089\kbd{C-underscore} undoes the last change you made; it can be repeated
4090for cumulative effect.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004091
Fred Drakeb7833d31998-09-11 16:21:55 +00004092\section{History Substitution \label{history}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00004093
Guido van Rossum02455691997-07-17 16:21:52 +00004094History substitution works as follows. All non-empty input lines
4095issued are saved in a history buffer, and when a new prompt is given
Fred Drake5443c492000-07-08 05:18:54 +00004096you are positioned on a new line at the bottom of this buffer.
4097\kbd{C-P} moves one line up (back) in the history buffer,
4098\kbd{C-N} moves one down. Any line in the history buffer can be
4099edited; an asterisk appears in front of the prompt to mark a line as
4100modified. Pressing the \kbd{Return} key passes the current line to
4101the interpreter. \kbd{C-R} starts an incremental reverse search;
4102\kbd{C-S} starts a forward search.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004103
Fred Drakeb7833d31998-09-11 16:21:55 +00004104\section{Key Bindings \label{keyBindings}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00004105
Guido van Rossum02455691997-07-17 16:21:52 +00004106The key bindings and some other parameters of the Readline library can
4107be customized by placing commands in an initialization file called
Fred Drake5443c492000-07-08 05:18:54 +00004108\file{\~{}/.inputrc}. Key bindings have the form
Guido van Rossum194e57c1995-02-15 15:51:38 +00004109
Fred Drake8842e861998-02-13 07:16:30 +00004110\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00004111key-name: function-name
Fred Drake8842e861998-02-13 07:16:30 +00004112\end{verbatim}
4113
Guido van Rossum02455691997-07-17 16:21:52 +00004114or
Guido van Rossum194e57c1995-02-15 15:51:38 +00004115
Fred Drake8842e861998-02-13 07:16:30 +00004116\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00004117"string": function-name
Fred Drake8842e861998-02-13 07:16:30 +00004118\end{verbatim}
4119
Guido van Rossum02455691997-07-17 16:21:52 +00004120and options can be set with
Guido van Rossum194e57c1995-02-15 15:51:38 +00004121
Fred Drake8842e861998-02-13 07:16:30 +00004122\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00004123set option-name value
Fred Drake8842e861998-02-13 07:16:30 +00004124\end{verbatim}
4125
Guido van Rossum02455691997-07-17 16:21:52 +00004126For example:
Guido van Rossum194e57c1995-02-15 15:51:38 +00004127
Fred Drake8842e861998-02-13 07:16:30 +00004128\begin{verbatim}
Guido van Rossum02455691997-07-17 16:21:52 +00004129# I prefer vi-style editing:
4130set editing-mode vi
Fred Drake5443c492000-07-08 05:18:54 +00004131
Guido van Rossum02455691997-07-17 16:21:52 +00004132# Edit using a single line:
4133set horizontal-scroll-mode On
Fred Drake5443c492000-07-08 05:18:54 +00004134
Guido van Rossum02455691997-07-17 16:21:52 +00004135# Rebind some keys:
4136Meta-h: backward-kill-word
4137"\C-u": universal-argument
4138"\C-x\C-r": re-read-init-file
Fred Drake8842e861998-02-13 07:16:30 +00004139\end{verbatim}
4140
Fred Drake5443c492000-07-08 05:18:54 +00004141Note that the default binding for \kbd{Tab} in Python is to insert a
4142\kbd{Tab} character instead of Readline's default filename completion
4143function. If you insist, you can override this by putting
Guido van Rossum194e57c1995-02-15 15:51:38 +00004144
Fred Drake8842e861998-02-13 07:16:30 +00004145\begin{verbatim}
Fred Drake5443c492000-07-08 05:18:54 +00004146Tab: complete
Fred Drake8842e861998-02-13 07:16:30 +00004147\end{verbatim}
4148
Fred Drake5443c492000-07-08 05:18:54 +00004149in your \file{\~{}/.inputrc}. (Of course, this makes it harder to
4150type indented continuation lines.)
Guido van Rossum194e57c1995-02-15 15:51:38 +00004151
Fred Drake72389881998-04-13 01:31:10 +00004152Automatic completion of variable and module names is optionally
4153available. To enable it in the interpreter's interactive mode, add
Fred Drake5443c492000-07-08 05:18:54 +00004154the following to your startup file:\footnote{
4155 Python will execute the contents of a file identified by the
4156 \envvar{PYTHONSTARTUP} environment variable when you start an
4157 interactive interpreter.}
Fred Drake20082d92000-04-03 04:26:58 +00004158\refstmodindex{rlcompleter}\refbimodindex{readline}
Fred Drake72389881998-04-13 01:31:10 +00004159
4160\begin{verbatim}
4161import rlcompleter, readline
4162readline.parse_and_bind('tab: complete')
4163\end{verbatim}
4164
Fred Drake01815522001-07-18 19:21:12 +00004165This binds the \kbd{Tab} key to the completion function, so hitting
4166the \kbd{Tab} key twice suggests completions; it looks at Python
4167statement names, the current local variables, and the available module
4168names. For dotted expressions such as \code{string.a}, it will
4169evaluate the the expression up to the final \character{.} and then
4170suggest completions from the attributes of the resulting object. Note
4171that this may execute application-defined code if an object with a
Fred Drake72389881998-04-13 01:31:10 +00004172\method{__getattr__()} method is part of the expression.
4173
Fred Drake01815522001-07-18 19:21:12 +00004174A more capable startup file might look like this example. Note that
4175this deletes the names it creates once they are no longer needed; this
4176is done since the startup file is executed in the same namespace as
4177the interactive commands, and removing the names avoids creating side
4178effects in the interactive environments. You may find it convenient
4179to keep some of the imported modules, such as \module{os}, which turn
4180out to be needed in most sessions with the interpreter.
4181
4182\begin{verbatim}
4183# Add auto-completion and a stored history file of commands to your Python
4184# interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
4185# bound to the Esc key by default (you can change it - see readline docs).
4186#
4187# Store the file in ~/.pystartup, and set an environment variable to point
4188# to it, e.g. "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash.
4189#
4190# Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
4191# full path to your home directory.
4192
4193import atexit
4194import os
4195import readline
4196import rlcompleter
4197
4198historyPath = os.path.expanduser("~/.pyhistory")
4199
4200def save_history(historyPath=historyPath):
4201 import readline
4202 readline.write_history_file(historyPath)
4203
4204if os.path.exists(historyPath):
4205 readline.read_history_file(historyPath)
4206
4207atexit.register(save_history)
4208del os, atexit, readline, rlcompleter, save_history, historyPath
4209\end{verbatim}
4210
Fred Drake72389881998-04-13 01:31:10 +00004211
Fred Drakeb7833d31998-09-11 16:21:55 +00004212\section{Commentary \label{commentary}}
Guido van Rossum194e57c1995-02-15 15:51:38 +00004213
Fred Drake5443c492000-07-08 05:18:54 +00004214This facility is an enormous step forward compared to earlier versions
4215of the interpreter; however, some wishes are left: It would be nice if
4216the proper indentation were suggested on continuation lines (the
4217parser knows if an indent token is required next). The completion
4218mechanism might use the interpreter's symbol table. A command to
4219check (or even suggest) matching parentheses, quotes, etc., would also
4220be useful.
Guido van Rossum194e57c1995-02-15 15:51:38 +00004221
Guido van Rossum97662c81996-08-23 15:35:47 +00004222
Fred Drake417d6672001-06-08 16:24:58 +00004223\chapter{Floating Point Arithmetic: Issues and Limitations
4224 \label{fp-issues}}
Fred Drake7bc50712001-06-08 17:09:01 +00004225\sectionauthor{Tim Peters}{tim.one@home.com}
Fred Drake417d6672001-06-08 16:24:58 +00004226
4227Floating-point numbers are represented in computer hardware as
4228base 2 (binary) fractions. For example, the decimal fraction
4229
4230\begin{verbatim}
42310.125
4232\end{verbatim}
4233
4234has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction
4235
4236\begin{verbatim}
42370.001
4238\end{verbatim}
4239
4240has value 0/2 + 0/4 + 1/8. These two fractions have identical values,
4241the only real difference being that the first is written in base 10
4242fractional notation, and the second in base 2.
4243
4244Unfortunately, most decimal fractions cannot be represented exactly as
4245binary fractions. A consequence is that, in general, the decimal
4246floating-point numbers you enter are only approximated by the binary
4247floating-point numbers actually stored in the machine.
4248
4249The problem is easier to understand at first in base 10. Consider the
4250fraction 1/3. You can approximate that as a base 10 fraction:
4251
4252\begin{verbatim}
42530.3
4254\end{verbatim}
4255
4256or, better,
4257
4258\begin{verbatim}
42590.33
4260\end{verbatim}
4261
4262or, better,
4263
4264\begin{verbatim}
42650.333
4266\end{verbatim}
4267
4268and so on. No matter how many digits you're willing to write down, the
4269result will never be exactly 1/3, but will be an increasingly better
4270approximation to 1/3.
4271
4272In the same way, no matter how many base 2 digits you're willing to
4273use, the decimal value 0.1 cannot be represented exactly as a base 2
4274fraction. In base 2, 1/10 is the infinitely repeating fraction
4275
4276\begin{verbatim}
42770.0001100110011001100110011001100110011001100110011...
4278\end{verbatim}
4279
4280Stop at any finite number of bits, and you get an approximation. This
4281is why you see things like:
4282
4283\begin{verbatim}
4284>>> 0.1
42850.10000000000000001
4286\end{verbatim}
4287
4288On most machines today, that is what you'll see if you enter 0.1 at
4289a Python prompt. You may not, though, because the number of bits
4290used by the hardware to store floating-point values can vary across
4291machines, and Python only prints a decimal approximation to the true
4292decimal value of the binary approximation stored by the machine. On
4293most machines, if Python were to print the true decimal value of
4294the binary approximation stored for 0.1, it would have to display
4295
4296\begin{verbatim}
4297>>> 0.1
42980.1000000000000000055511151231257827021181583404541015625
4299\end{verbatim}
4300
4301instead! The Python prompt (implicitly) uses the builtin
4302\function{repr()} function to obtain a string version of everything it
4303displays. For floats, \code{repr(\var{float})} rounds the true
4304decimal value to 17 significant digits, giving
4305
4306\begin{verbatim}
43070.10000000000000001
4308\end{verbatim}
4309
4310\code{repr(\var{float})} produces 17 significant digits because it
4311turns out that's enough (on most machines) so that
4312\code{eval(repr(\var{x})) == \var{x}} exactly for all finite floats
4313\var{x}, but rounding to 16 digits is not enough to make that true.
4314
4315Note that this is in the very nature of binary floating-point: this is
4316not a bug in Python, it is not a bug in your code either, and you'll
4317see the same kind of thing in all languages that support your
Tim Petersfa9e2732001-06-17 21:57:17 +00004318hardware's floating-point arithmetic (although some languages may
4319not \emph{display} the difference by default, or in all output modes).
Fred Drake417d6672001-06-08 16:24:58 +00004320
4321Python's builtin \function{str()} function produces only 12
4322significant digits, and you may wish to use that instead. It's
4323unusual for \code{eval(str(\var{x}))} to reproduce \var{x}, but the
4324output may be more pleasant to look at:
4325
4326\begin{verbatim}
4327>>> print str(0.1)
43280.1
4329\end{verbatim}
4330
4331It's important to realize that this is, in a real sense, an illusion:
4332the value in the machine is not exactly 1/10, you're simply rounding
4333the \emph{display} of the true machine value.
4334
4335Other surprises follow from this one. For example, after seeing
4336
4337\begin{verbatim}
4338>>> 0.1
43390.10000000000000001
4340\end{verbatim}
4341
4342you may be tempted to use the \function{round()} function to chop it
4343back to the single digit you expect. But that makes no difference:
4344
4345\begin{verbatim}
4346>>> round(0.1, 1)
43470.10000000000000001
4348\end{verbatim}
4349
4350The problem is that the binary floating-point value stored for "0.1"
4351was already the best possible binary approximation to 1/10, so trying
4352to round it again can't make it better: it was already as good as it
4353gets.
4354
4355Another consequence is that since 0.1 is not exactly 1/10, adding 0.1
4356to itself 10 times may not yield exactly 1.0, either:
4357
4358\begin{verbatim}
4359>>> sum = 0.0
4360>>> for i in range(10):
4361... sum += 0.1
4362...
4363>>> sum
43640.99999999999999989
4365\end{verbatim}
4366
4367Binary floating-point arithmetic holds many surprises like this. The
4368problem with "0.1" is explained in precise detail below, in the
4369"Representation Error" section. See
4370\citetitle[http://www.lahey.com/float.htm]{The Perils of Floating
4371Point} for a more complete account of other common surprises.
4372
4373As that says near the end, ``there are no easy answers.'' Still,
4374don't be unduly wary of floating-point! The errors in Python float
4375operations are inherited from the floating-point hardware, and on most
4376machines are on the order of no more than 1 part in 2**53 per
4377operation. That's more than adequate for most tasks, but you do need
4378to keep in mind that it's not decimal arithmetic, and that every float
4379operation can suffer a new rounding error.
4380
4381While pathological cases do exist, for most casual use of
4382floating-point arithmetic you'll see the result you expect in the end
4383if you simply round the display of your final results to the number of
4384decimal digits you expect. \function{str()} usually suffices, and for
4385finer control see the discussion of Pythons's \code{\%} format
4386operator: the \code{\%g}, \code{\%f} and \code{\%e} format codes
4387supply flexible and easy ways to round float results for display.
4388
4389
4390\section{Representation Error
4391 \label{fp-error}}
4392
4393This section explains the ``0.1'' example in detail, and shows how
4394you can perform an exact analysis of cases like this yourself. Basic
4395familiarity with binary floating-point representation is assumed.
4396
4397\dfn{Representation error} refers to that some (most, actually)
4398decimal fractions cannot be represented exactly as binary (base 2)
4399fractions. This is the chief reason why Python (or Perl, C, \Cpp,
4400Java, Fortran, and many others) often won't display the exact decimal
4401number you expect:
4402
4403\begin{verbatim}
4404>>> 0.1
44050.10000000000000001
4406\end{verbatim}
4407
4408Why is that? 1/10 is not exactly representable as a binary fraction.
4409Almost all machines today (November 2000) use IEEE-754 floating point
4410arithmetic, and almost all platforms map Python floats to IEEE-754
4411"double precision". 754 doubles contain 53 bits of precision, so on
4412input the computer strives to convert 0.1 to the closest fraction it can
4413of the form \var{J}/2**\var{N} where \var{J} is an integer containing
4414exactly 53 bits. Rewriting
4415
4416\begin{verbatim}
4417 1 / 10 ~= J / (2**N)
4418\end{verbatim}
4419
4420as
4421
4422\begin{verbatim}
4423J ~= 2**N / 10
4424\end{verbatim}
4425
4426and recalling that \var{J} has exactly 53 bits (is \code{>= 2**52} but
4427\code{< 2**53}), the best value for \var{N} is 56:
4428
4429\begin{verbatim}
4430>>> 2L**52
44314503599627370496L
4432>>> 2L**53
44339007199254740992L
4434>>> 2L**56/10
44357205759403792793L
4436\end{verbatim}
4437
4438That is, 56 is the only value for \var{N} that leaves \var{J} with
4439exactly 53 bits. The best possible value for \var{J} is then that
4440quotient rounded:
4441
4442\begin{verbatim}
4443>>> q, r = divmod(2L**56, 10)
4444>>> r
44456L
4446\end{verbatim}
4447
4448Since the remainder is more than half of 10, the best approximation is
4449obtained by rounding up:
4450
4451\begin{verbatim}
4452>>> q+1
44537205759403792794L
4454\end{verbatim}
4455
4456Therefore the best possible approximation to 1/10 in 754 double
4457precision is that over 2**56, or
4458
4459\begin{verbatim}
44607205759403792794 / 72057594037927936
4461\end{verbatim}
4462
4463Note that since we rounded up, this is actually a little bit larger than
44641/10; if we had not rounded up, the quotient would have been a little
Tim Petersfa9e2732001-06-17 21:57:17 +00004465bit smaller than 1/10. But in no case can it be \emph{exactly} 1/10!
Fred Drake417d6672001-06-08 16:24:58 +00004466
4467So the computer never ``sees'' 1/10: what it sees is the exact
4468fraction given above, the best 754 double approximation it can get:
4469
4470\begin{verbatim}
4471>>> .1 * 2L**56
44727205759403792794.0
4473\end{verbatim}
4474
4475If we multiply that fraction by 10**30, we can see the (truncated)
4476value of its 30 most significant decimal digits:
4477
4478\begin{verbatim}
4479>>> 7205759403792794L * 10L**30 / 2L**56
4480100000000000000005551115123125L
4481\end{verbatim}
4482
4483meaning that the exact number stored in the computer is approximately
4484equal to the decimal value 0.100000000000000005551115123125. Rounding
4485that to 17 significant digits gives the 0.10000000000000001 that Python
4486displays (well, will display on any 754-conforming platform that does
4487best-possible input and output conversions in its C library --- yours may
4488not!).
4489
Fred Draked5df09c2001-06-20 21:37:34 +00004490\chapter{History and License}
4491\input{license}
4492
Guido van Rossumd9bf55d1991-01-11 16:35:08 +00004493\end{document}