blob: 488230ad122a1d4c2aa44df4c886faacf6e0cf77 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinsond1cc39d2009-06-28 21:00:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Christian Heimes072c0f12008-01-03 23:01:04 +0000100.. function:: isinf(x)
101
102 Checks if the float *x* is positive or negative infinite.
103
Christian Heimes072c0f12008-01-03 23:01:04 +0000104
105.. function:: isnan(x)
106
107 Checks if the float *x* is a NaN (not a number). NaNs are part of the
Georg Brandl48310cd2009-01-03 21:18:54 +0000108 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
Christian Heimes072c0f12008-01-03 23:01:04 +0000109 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
110 a NaN.
111
Christian Heimes072c0f12008-01-03 23:01:04 +0000112
Georg Brandl116aa622007-08-15 14:28:22 +0000113.. function:: ldexp(x, i)
114
115 Return ``x * (2**i)``. This is essentially the inverse of function
116 :func:`frexp`.
117
118
119.. function:: modf(x)
120
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000121 Return the fractional and integer parts of *x*. Both results carry the sign
122 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000123
Christian Heimes400adb02008-02-01 08:12:03 +0000124
125.. function:: trunc(x)
126
127 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000128 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000129
Christian Heimes400adb02008-02-01 08:12:03 +0000130
Georg Brandl116aa622007-08-15 14:28:22 +0000131Note that :func:`frexp` and :func:`modf` have a different call/return pattern
132than their C equivalents: they take a single argument and return a pair of
133values, rather than returning their second return value through an 'output
134parameter' (there is no such thing in Python).
135
136For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
137floating-point numbers of sufficiently large magnitude are exact integers.
138Python floats typically carry no more than 53 bits of precision (the same as the
139platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
140necessarily has no fractional bits.
141
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000142
143Power and logarithmic functions
144-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000145
Georg Brandl116aa622007-08-15 14:28:22 +0000146.. function:: exp(x)
147
148 Return ``e**x``.
149
150
151.. function:: log(x[, base])
152
153 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
154 return the natural logarithm of *x* (that is, the logarithm to base *e*).
155
Georg Brandl116aa622007-08-15 14:28:22 +0000156
Christian Heimes53876d92008-04-19 00:31:39 +0000157.. function:: log1p(x)
158
159 Return the natural logarithm of *1+x* (base *e*). The
160 result is calculated in a way which is accurate for *x* near zero.
161
Christian Heimes53876d92008-04-19 00:31:39 +0000162
Georg Brandl116aa622007-08-15 14:28:22 +0000163.. function:: log10(x)
164
165 Return the base-10 logarithm of *x*.
166
167
168.. function:: pow(x, y)
169
Christian Heimesa342c012008-04-20 21:01:16 +0000170 Return ``x`` raised to the power ``y``. Exceptional cases follow
171 Annex 'F' of the C99 standard as far as possible. In particular,
172 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
173 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
174 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
175 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000176
Georg Brandl116aa622007-08-15 14:28:22 +0000177
178.. function:: sqrt(x)
179
180 Return the square root of *x*.
181
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000182Trigonometric functions
183-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000184
185
186.. function:: acos(x)
187
188 Return the arc cosine of *x*, in radians.
189
190
191.. function:: asin(x)
192
193 Return the arc sine of *x*, in radians.
194
195
196.. function:: atan(x)
197
198 Return the arc tangent of *x*, in radians.
199
200
201.. function:: atan2(y, x)
202
203 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
204 The vector in the plane from the origin to point ``(x, y)`` makes this angle
205 with the positive X axis. The point of :func:`atan2` is that the signs of both
206 inputs are known to it, so it can compute the correct quadrant for the angle.
207 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
208 -1)`` is ``-3*pi/4``.
209
210
211.. function:: cos(x)
212
213 Return the cosine of *x* radians.
214
215
216.. function:: hypot(x, y)
217
218 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
219 from the origin to point ``(x, y)``.
220
221
222.. function:: sin(x)
223
224 Return the sine of *x* radians.
225
226
227.. function:: tan(x)
228
229 Return the tangent of *x* radians.
230
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000231Angular conversion
232------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000233
234
235.. function:: degrees(x)
236
237 Converts angle *x* from radians to degrees.
238
239
240.. function:: radians(x)
241
242 Converts angle *x* from degrees to radians.
243
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000244Hyperbolic functions
245--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000246
247
Christian Heimesa342c012008-04-20 21:01:16 +0000248.. function:: acosh(x)
249
250 Return the inverse hyperbolic cosine of *x*.
251
Christian Heimesa342c012008-04-20 21:01:16 +0000252
253.. function:: asinh(x)
254
255 Return the inverse hyperbolic sine of *x*.
256
Christian Heimesa342c012008-04-20 21:01:16 +0000257
258.. function:: atanh(x)
259
260 Return the inverse hyperbolic tangent of *x*.
261
Christian Heimesa342c012008-04-20 21:01:16 +0000262
Georg Brandl116aa622007-08-15 14:28:22 +0000263.. function:: cosh(x)
264
265 Return the hyperbolic cosine of *x*.
266
267
268.. function:: sinh(x)
269
270 Return the hyperbolic sine of *x*.
271
272
273.. function:: tanh(x)
274
275 Return the hyperbolic tangent of *x*.
276
Christian Heimes53876d92008-04-19 00:31:39 +0000277
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000278Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000279---------
Georg Brandl116aa622007-08-15 14:28:22 +0000280
281.. data:: pi
282
283 The mathematical constant *pi*.
284
285
286.. data:: e
287
288 The mathematical constant *e*.
289
Christian Heimes53876d92008-04-19 00:31:39 +0000290
Georg Brandl116aa622007-08-15 14:28:22 +0000291.. note::
292
293 The :mod:`math` module consists mostly of thin wrappers around the platform C
294 math library functions. Behavior in exceptional cases is loosely specified
295 by the C standards, and Python inherits much of its math-function
296 error-reporting behavior from the platform C implementation. As a result,
297 the specific exceptions raised in error cases (and even whether some
298 arguments are considered to be exceptional at all) are not defined in any
299 useful cross-platform or cross-release way. For example, whether
300 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
301 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
302 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
303
Christian Heimesa342c012008-04-20 21:01:16 +0000304 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Benjamin Peterson3e4f0552008-09-02 00:31:15 +0000305 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes53876d92008-04-19 00:31:39 +0000306 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
307 and :exc:`OverflowError` for errno *ERANGE*.
308
Georg Brandl116aa622007-08-15 14:28:22 +0000309
310.. seealso::
311
312 Module :mod:`cmath`
313 Complex number versions of many of these functions.