Serhiy Storchaka | c9ea933 | 2017-01-19 18:13:09 +0200 | [diff] [blame] | 1 | /*[clinic input] |
| 2 | preserve |
| 3 | [clinic start generated code]*/ |
| 4 | |
| 5 | PyDoc_STRVAR(math_gcd__doc__, |
| 6 | "gcd($module, x, y, /)\n" |
| 7 | "--\n" |
| 8 | "\n" |
| 9 | "greatest common divisor of x and y"); |
| 10 | |
| 11 | #define MATH_GCD_METHODDEF \ |
| 12 | {"gcd", (PyCFunction)math_gcd, METH_FASTCALL, math_gcd__doc__}, |
| 13 | |
| 14 | static PyObject * |
| 15 | math_gcd_impl(PyObject *module, PyObject *a, PyObject *b); |
| 16 | |
| 17 | static PyObject * |
| 18 | math_gcd(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 19 | { |
| 20 | PyObject *return_value = NULL; |
| 21 | PyObject *a; |
| 22 | PyObject *b; |
| 23 | |
| 24 | if (!_PyArg_UnpackStack(args, nargs, "gcd", |
| 25 | 2, 2, |
| 26 | &a, &b)) { |
| 27 | goto exit; |
| 28 | } |
| 29 | |
| 30 | if (!_PyArg_NoStackKeywords("gcd", kwnames)) { |
| 31 | goto exit; |
| 32 | } |
| 33 | return_value = math_gcd_impl(module, a, b); |
| 34 | |
| 35 | exit: |
| 36 | return return_value; |
| 37 | } |
| 38 | |
| 39 | PyDoc_STRVAR(math_ceil__doc__, |
| 40 | "ceil($module, x, /)\n" |
| 41 | "--\n" |
| 42 | "\n" |
| 43 | "Return the ceiling of x as an Integral.\n" |
| 44 | "\n" |
| 45 | "This is the smallest integer >= x."); |
| 46 | |
| 47 | #define MATH_CEIL_METHODDEF \ |
| 48 | {"ceil", (PyCFunction)math_ceil, METH_O, math_ceil__doc__}, |
| 49 | |
| 50 | PyDoc_STRVAR(math_floor__doc__, |
| 51 | "floor($module, x, /)\n" |
| 52 | "--\n" |
| 53 | "\n" |
| 54 | "Return the floor of x as an Integral.\n" |
| 55 | "\n" |
| 56 | "This is the largest integer <= x."); |
| 57 | |
| 58 | #define MATH_FLOOR_METHODDEF \ |
| 59 | {"floor", (PyCFunction)math_floor, METH_O, math_floor__doc__}, |
| 60 | |
| 61 | PyDoc_STRVAR(math_fsum__doc__, |
| 62 | "fsum($module, seq, /)\n" |
| 63 | "--\n" |
| 64 | "\n" |
| 65 | "Return an accurate floating point sum of values in the iterable seq.\n" |
| 66 | "\n" |
| 67 | "Assumes IEEE-754 floating point arithmetic."); |
| 68 | |
| 69 | #define MATH_FSUM_METHODDEF \ |
| 70 | {"fsum", (PyCFunction)math_fsum, METH_O, math_fsum__doc__}, |
| 71 | |
| 72 | PyDoc_STRVAR(math_factorial__doc__, |
| 73 | "factorial($module, x, /)\n" |
| 74 | "--\n" |
| 75 | "\n" |
| 76 | "Find x!.\n" |
| 77 | "\n" |
| 78 | "Raise a ValueError if x is negative or non-integral."); |
| 79 | |
| 80 | #define MATH_FACTORIAL_METHODDEF \ |
| 81 | {"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__}, |
| 82 | |
Mark Dickinson | d1b230e | 2017-01-21 12:35:30 +0000 | [diff] [blame^] | 83 | PyDoc_STRVAR(math_fma__doc__, |
| 84 | "fma($module, x, y, z, /)\n" |
| 85 | "--\n" |
| 86 | "\n" |
| 87 | "Fused multiply-add operation. Compute (x * y) + z with a single round."); |
| 88 | |
| 89 | #define MATH_FMA_METHODDEF \ |
| 90 | {"fma", (PyCFunction)math_fma, METH_FASTCALL, math_fma__doc__}, |
| 91 | |
| 92 | static PyObject * |
| 93 | math_fma_impl(PyObject *module, double x, double y, double z); |
| 94 | |
| 95 | static PyObject * |
| 96 | math_fma(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 97 | { |
| 98 | PyObject *return_value = NULL; |
| 99 | double x; |
| 100 | double y; |
| 101 | double z; |
| 102 | |
| 103 | if (!_PyArg_ParseStack(args, nargs, "ddd:fma", |
| 104 | &x, &y, &z)) { |
| 105 | goto exit; |
| 106 | } |
| 107 | |
| 108 | if (!_PyArg_NoStackKeywords("fma", kwnames)) { |
| 109 | goto exit; |
| 110 | } |
| 111 | return_value = math_fma_impl(module, x, y, z); |
| 112 | |
| 113 | exit: |
| 114 | return return_value; |
| 115 | } |
| 116 | |
Serhiy Storchaka | c9ea933 | 2017-01-19 18:13:09 +0200 | [diff] [blame] | 117 | PyDoc_STRVAR(math_trunc__doc__, |
| 118 | "trunc($module, x, /)\n" |
| 119 | "--\n" |
| 120 | "\n" |
| 121 | "Truncates the Real x to the nearest Integral toward 0.\n" |
| 122 | "\n" |
| 123 | "Uses the __trunc__ magic method."); |
| 124 | |
| 125 | #define MATH_TRUNC_METHODDEF \ |
| 126 | {"trunc", (PyCFunction)math_trunc, METH_O, math_trunc__doc__}, |
| 127 | |
| 128 | PyDoc_STRVAR(math_frexp__doc__, |
| 129 | "frexp($module, x, /)\n" |
| 130 | "--\n" |
| 131 | "\n" |
| 132 | "Return the mantissa and exponent of x, as pair (m, e).\n" |
| 133 | "\n" |
| 134 | "m is a float and e is an int, such that x = m * 2.**e.\n" |
| 135 | "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); |
| 136 | |
| 137 | #define MATH_FREXP_METHODDEF \ |
| 138 | {"frexp", (PyCFunction)math_frexp, METH_O, math_frexp__doc__}, |
| 139 | |
| 140 | static PyObject * |
| 141 | math_frexp_impl(PyObject *module, double x); |
| 142 | |
| 143 | static PyObject * |
| 144 | math_frexp(PyObject *module, PyObject *arg) |
| 145 | { |
| 146 | PyObject *return_value = NULL; |
| 147 | double x; |
| 148 | |
| 149 | if (!PyArg_Parse(arg, "d:frexp", &x)) { |
| 150 | goto exit; |
| 151 | } |
| 152 | return_value = math_frexp_impl(module, x); |
| 153 | |
| 154 | exit: |
| 155 | return return_value; |
| 156 | } |
| 157 | |
| 158 | PyDoc_STRVAR(math_ldexp__doc__, |
| 159 | "ldexp($module, x, i, /)\n" |
| 160 | "--\n" |
| 161 | "\n" |
| 162 | "Return x * (2**i).\n" |
| 163 | "\n" |
| 164 | "This is essentially the inverse of frexp()."); |
| 165 | |
| 166 | #define MATH_LDEXP_METHODDEF \ |
| 167 | {"ldexp", (PyCFunction)math_ldexp, METH_FASTCALL, math_ldexp__doc__}, |
| 168 | |
| 169 | static PyObject * |
| 170 | math_ldexp_impl(PyObject *module, double x, PyObject *i); |
| 171 | |
| 172 | static PyObject * |
| 173 | math_ldexp(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 174 | { |
| 175 | PyObject *return_value = NULL; |
| 176 | double x; |
| 177 | PyObject *i; |
| 178 | |
| 179 | if (!_PyArg_ParseStack(args, nargs, "dO:ldexp", |
| 180 | &x, &i)) { |
| 181 | goto exit; |
| 182 | } |
| 183 | |
| 184 | if (!_PyArg_NoStackKeywords("ldexp", kwnames)) { |
| 185 | goto exit; |
| 186 | } |
| 187 | return_value = math_ldexp_impl(module, x, i); |
| 188 | |
| 189 | exit: |
| 190 | return return_value; |
| 191 | } |
| 192 | |
| 193 | PyDoc_STRVAR(math_modf__doc__, |
| 194 | "modf($module, x, /)\n" |
| 195 | "--\n" |
| 196 | "\n" |
| 197 | "Return the fractional and integer parts of x.\n" |
| 198 | "\n" |
| 199 | "Both results carry the sign of x and are floats."); |
| 200 | |
| 201 | #define MATH_MODF_METHODDEF \ |
| 202 | {"modf", (PyCFunction)math_modf, METH_O, math_modf__doc__}, |
| 203 | |
| 204 | static PyObject * |
| 205 | math_modf_impl(PyObject *module, double x); |
| 206 | |
| 207 | static PyObject * |
| 208 | math_modf(PyObject *module, PyObject *arg) |
| 209 | { |
| 210 | PyObject *return_value = NULL; |
| 211 | double x; |
| 212 | |
| 213 | if (!PyArg_Parse(arg, "d:modf", &x)) { |
| 214 | goto exit; |
| 215 | } |
| 216 | return_value = math_modf_impl(module, x); |
| 217 | |
| 218 | exit: |
| 219 | return return_value; |
| 220 | } |
| 221 | |
| 222 | PyDoc_STRVAR(math_log__doc__, |
| 223 | "log(x, [base=math.e])\n" |
| 224 | "Return the logarithm of x to the given base.\n" |
| 225 | "\n" |
| 226 | "If the base not specified, returns the natural logarithm (base e) of x."); |
| 227 | |
| 228 | #define MATH_LOG_METHODDEF \ |
| 229 | {"log", (PyCFunction)math_log, METH_VARARGS, math_log__doc__}, |
| 230 | |
| 231 | static PyObject * |
| 232 | math_log_impl(PyObject *module, PyObject *x, int group_right_1, |
| 233 | PyObject *base); |
| 234 | |
| 235 | static PyObject * |
| 236 | math_log(PyObject *module, PyObject *args) |
| 237 | { |
| 238 | PyObject *return_value = NULL; |
| 239 | PyObject *x; |
| 240 | int group_right_1 = 0; |
| 241 | PyObject *base = NULL; |
| 242 | |
| 243 | switch (PyTuple_GET_SIZE(args)) { |
| 244 | case 1: |
| 245 | if (!PyArg_ParseTuple(args, "O:log", &x)) { |
| 246 | goto exit; |
| 247 | } |
| 248 | break; |
| 249 | case 2: |
| 250 | if (!PyArg_ParseTuple(args, "OO:log", &x, &base)) { |
| 251 | goto exit; |
| 252 | } |
| 253 | group_right_1 = 1; |
| 254 | break; |
| 255 | default: |
| 256 | PyErr_SetString(PyExc_TypeError, "math.log requires 1 to 2 arguments"); |
| 257 | goto exit; |
| 258 | } |
| 259 | return_value = math_log_impl(module, x, group_right_1, base); |
| 260 | |
| 261 | exit: |
| 262 | return return_value; |
| 263 | } |
| 264 | |
| 265 | PyDoc_STRVAR(math_log2__doc__, |
| 266 | "log2($module, x, /)\n" |
| 267 | "--\n" |
| 268 | "\n" |
| 269 | "Return the base 2 logarithm of x."); |
| 270 | |
| 271 | #define MATH_LOG2_METHODDEF \ |
| 272 | {"log2", (PyCFunction)math_log2, METH_O, math_log2__doc__}, |
| 273 | |
| 274 | PyDoc_STRVAR(math_log10__doc__, |
| 275 | "log10($module, x, /)\n" |
| 276 | "--\n" |
| 277 | "\n" |
| 278 | "Return the base 10 logarithm of x."); |
| 279 | |
| 280 | #define MATH_LOG10_METHODDEF \ |
| 281 | {"log10", (PyCFunction)math_log10, METH_O, math_log10__doc__}, |
| 282 | |
| 283 | PyDoc_STRVAR(math_fmod__doc__, |
| 284 | "fmod($module, x, y, /)\n" |
| 285 | "--\n" |
| 286 | "\n" |
| 287 | "Return fmod(x, y), according to platform C.\n" |
| 288 | "\n" |
| 289 | "x % y may differ."); |
| 290 | |
| 291 | #define MATH_FMOD_METHODDEF \ |
| 292 | {"fmod", (PyCFunction)math_fmod, METH_FASTCALL, math_fmod__doc__}, |
| 293 | |
| 294 | static PyObject * |
| 295 | math_fmod_impl(PyObject *module, double x, double y); |
| 296 | |
| 297 | static PyObject * |
| 298 | math_fmod(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 299 | { |
| 300 | PyObject *return_value = NULL; |
| 301 | double x; |
| 302 | double y; |
| 303 | |
| 304 | if (!_PyArg_ParseStack(args, nargs, "dd:fmod", |
| 305 | &x, &y)) { |
| 306 | goto exit; |
| 307 | } |
| 308 | |
| 309 | if (!_PyArg_NoStackKeywords("fmod", kwnames)) { |
| 310 | goto exit; |
| 311 | } |
| 312 | return_value = math_fmod_impl(module, x, y); |
| 313 | |
| 314 | exit: |
| 315 | return return_value; |
| 316 | } |
| 317 | |
| 318 | PyDoc_STRVAR(math_hypot__doc__, |
| 319 | "hypot($module, x, y, /)\n" |
| 320 | "--\n" |
| 321 | "\n" |
| 322 | "Return the Euclidean distance, sqrt(x*x + y*y)."); |
| 323 | |
| 324 | #define MATH_HYPOT_METHODDEF \ |
| 325 | {"hypot", (PyCFunction)math_hypot, METH_FASTCALL, math_hypot__doc__}, |
| 326 | |
| 327 | static PyObject * |
| 328 | math_hypot_impl(PyObject *module, double x, double y); |
| 329 | |
| 330 | static PyObject * |
| 331 | math_hypot(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 332 | { |
| 333 | PyObject *return_value = NULL; |
| 334 | double x; |
| 335 | double y; |
| 336 | |
| 337 | if (!_PyArg_ParseStack(args, nargs, "dd:hypot", |
| 338 | &x, &y)) { |
| 339 | goto exit; |
| 340 | } |
| 341 | |
| 342 | if (!_PyArg_NoStackKeywords("hypot", kwnames)) { |
| 343 | goto exit; |
| 344 | } |
| 345 | return_value = math_hypot_impl(module, x, y); |
| 346 | |
| 347 | exit: |
| 348 | return return_value; |
| 349 | } |
| 350 | |
| 351 | PyDoc_STRVAR(math_pow__doc__, |
| 352 | "pow($module, x, y, /)\n" |
| 353 | "--\n" |
| 354 | "\n" |
| 355 | "Return x**y (x to the power of y)."); |
| 356 | |
| 357 | #define MATH_POW_METHODDEF \ |
| 358 | {"pow", (PyCFunction)math_pow, METH_FASTCALL, math_pow__doc__}, |
| 359 | |
| 360 | static PyObject * |
| 361 | math_pow_impl(PyObject *module, double x, double y); |
| 362 | |
| 363 | static PyObject * |
| 364 | math_pow(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 365 | { |
| 366 | PyObject *return_value = NULL; |
| 367 | double x; |
| 368 | double y; |
| 369 | |
| 370 | if (!_PyArg_ParseStack(args, nargs, "dd:pow", |
| 371 | &x, &y)) { |
| 372 | goto exit; |
| 373 | } |
| 374 | |
| 375 | if (!_PyArg_NoStackKeywords("pow", kwnames)) { |
| 376 | goto exit; |
| 377 | } |
| 378 | return_value = math_pow_impl(module, x, y); |
| 379 | |
| 380 | exit: |
| 381 | return return_value; |
| 382 | } |
| 383 | |
| 384 | PyDoc_STRVAR(math_degrees__doc__, |
| 385 | "degrees($module, x, /)\n" |
| 386 | "--\n" |
| 387 | "\n" |
| 388 | "Convert angle x from radians to degrees."); |
| 389 | |
| 390 | #define MATH_DEGREES_METHODDEF \ |
| 391 | {"degrees", (PyCFunction)math_degrees, METH_O, math_degrees__doc__}, |
| 392 | |
| 393 | static PyObject * |
| 394 | math_degrees_impl(PyObject *module, double x); |
| 395 | |
| 396 | static PyObject * |
| 397 | math_degrees(PyObject *module, PyObject *arg) |
| 398 | { |
| 399 | PyObject *return_value = NULL; |
| 400 | double x; |
| 401 | |
| 402 | if (!PyArg_Parse(arg, "d:degrees", &x)) { |
| 403 | goto exit; |
| 404 | } |
| 405 | return_value = math_degrees_impl(module, x); |
| 406 | |
| 407 | exit: |
| 408 | return return_value; |
| 409 | } |
| 410 | |
| 411 | PyDoc_STRVAR(math_radians__doc__, |
| 412 | "radians($module, x, /)\n" |
| 413 | "--\n" |
| 414 | "\n" |
| 415 | "Convert angle x from degrees to radians."); |
| 416 | |
| 417 | #define MATH_RADIANS_METHODDEF \ |
| 418 | {"radians", (PyCFunction)math_radians, METH_O, math_radians__doc__}, |
| 419 | |
| 420 | static PyObject * |
| 421 | math_radians_impl(PyObject *module, double x); |
| 422 | |
| 423 | static PyObject * |
| 424 | math_radians(PyObject *module, PyObject *arg) |
| 425 | { |
| 426 | PyObject *return_value = NULL; |
| 427 | double x; |
| 428 | |
| 429 | if (!PyArg_Parse(arg, "d:radians", &x)) { |
| 430 | goto exit; |
| 431 | } |
| 432 | return_value = math_radians_impl(module, x); |
| 433 | |
| 434 | exit: |
| 435 | return return_value; |
| 436 | } |
| 437 | |
| 438 | PyDoc_STRVAR(math_isfinite__doc__, |
| 439 | "isfinite($module, x, /)\n" |
| 440 | "--\n" |
| 441 | "\n" |
| 442 | "Return True if x is neither an infinity nor a NaN, and False otherwise."); |
| 443 | |
| 444 | #define MATH_ISFINITE_METHODDEF \ |
| 445 | {"isfinite", (PyCFunction)math_isfinite, METH_O, math_isfinite__doc__}, |
| 446 | |
| 447 | static PyObject * |
| 448 | math_isfinite_impl(PyObject *module, double x); |
| 449 | |
| 450 | static PyObject * |
| 451 | math_isfinite(PyObject *module, PyObject *arg) |
| 452 | { |
| 453 | PyObject *return_value = NULL; |
| 454 | double x; |
| 455 | |
| 456 | if (!PyArg_Parse(arg, "d:isfinite", &x)) { |
| 457 | goto exit; |
| 458 | } |
| 459 | return_value = math_isfinite_impl(module, x); |
| 460 | |
| 461 | exit: |
| 462 | return return_value; |
| 463 | } |
| 464 | |
| 465 | PyDoc_STRVAR(math_isnan__doc__, |
| 466 | "isnan($module, x, /)\n" |
| 467 | "--\n" |
| 468 | "\n" |
| 469 | "Return True if x is a NaN (not a number), and False otherwise."); |
| 470 | |
| 471 | #define MATH_ISNAN_METHODDEF \ |
| 472 | {"isnan", (PyCFunction)math_isnan, METH_O, math_isnan__doc__}, |
| 473 | |
| 474 | static PyObject * |
| 475 | math_isnan_impl(PyObject *module, double x); |
| 476 | |
| 477 | static PyObject * |
| 478 | math_isnan(PyObject *module, PyObject *arg) |
| 479 | { |
| 480 | PyObject *return_value = NULL; |
| 481 | double x; |
| 482 | |
| 483 | if (!PyArg_Parse(arg, "d:isnan", &x)) { |
| 484 | goto exit; |
| 485 | } |
| 486 | return_value = math_isnan_impl(module, x); |
| 487 | |
| 488 | exit: |
| 489 | return return_value; |
| 490 | } |
| 491 | |
| 492 | PyDoc_STRVAR(math_isinf__doc__, |
| 493 | "isinf($module, x, /)\n" |
| 494 | "--\n" |
| 495 | "\n" |
| 496 | "Return True if x is a positive or negative infinity, and False otherwise."); |
| 497 | |
| 498 | #define MATH_ISINF_METHODDEF \ |
| 499 | {"isinf", (PyCFunction)math_isinf, METH_O, math_isinf__doc__}, |
| 500 | |
| 501 | static PyObject * |
| 502 | math_isinf_impl(PyObject *module, double x); |
| 503 | |
| 504 | static PyObject * |
| 505 | math_isinf(PyObject *module, PyObject *arg) |
| 506 | { |
| 507 | PyObject *return_value = NULL; |
| 508 | double x; |
| 509 | |
| 510 | if (!PyArg_Parse(arg, "d:isinf", &x)) { |
| 511 | goto exit; |
| 512 | } |
| 513 | return_value = math_isinf_impl(module, x); |
| 514 | |
| 515 | exit: |
| 516 | return return_value; |
| 517 | } |
| 518 | |
| 519 | PyDoc_STRVAR(math_isclose__doc__, |
| 520 | "isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n" |
| 521 | "--\n" |
| 522 | "\n" |
| 523 | "Determine whether two floating point numbers are close in value.\n" |
| 524 | "\n" |
| 525 | " rel_tol\n" |
| 526 | " maximum difference for being considered \"close\", relative to the\n" |
| 527 | " magnitude of the input values\n" |
| 528 | " abs_tol\n" |
| 529 | " maximum difference for being considered \"close\", regardless of the\n" |
| 530 | " magnitude of the input values\n" |
| 531 | "\n" |
| 532 | "Return True if a is close in value to b, and False otherwise.\n" |
| 533 | "\n" |
| 534 | "For the values to be considered close, the difference between them\n" |
| 535 | "must be smaller than at least one of the tolerances.\n" |
| 536 | "\n" |
| 537 | "-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n" |
| 538 | "is, NaN is not close to anything, even itself. inf and -inf are\n" |
| 539 | "only close to themselves."); |
| 540 | |
| 541 | #define MATH_ISCLOSE_METHODDEF \ |
| 542 | {"isclose", (PyCFunction)math_isclose, METH_FASTCALL, math_isclose__doc__}, |
| 543 | |
| 544 | static int |
| 545 | math_isclose_impl(PyObject *module, double a, double b, double rel_tol, |
| 546 | double abs_tol); |
| 547 | |
| 548 | static PyObject * |
| 549 | math_isclose(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) |
| 550 | { |
| 551 | PyObject *return_value = NULL; |
| 552 | static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; |
| 553 | static _PyArg_Parser _parser = {"dd|$dd:isclose", _keywords, 0}; |
| 554 | double a; |
| 555 | double b; |
| 556 | double rel_tol = 1e-09; |
| 557 | double abs_tol = 0.0; |
| 558 | int _return_value; |
| 559 | |
| 560 | if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser, |
| 561 | &a, &b, &rel_tol, &abs_tol)) { |
| 562 | goto exit; |
| 563 | } |
| 564 | _return_value = math_isclose_impl(module, a, b, rel_tol, abs_tol); |
| 565 | if ((_return_value == -1) && PyErr_Occurred()) { |
| 566 | goto exit; |
| 567 | } |
| 568 | return_value = PyBool_FromLong((long)_return_value); |
| 569 | |
| 570 | exit: |
| 571 | return return_value; |
| 572 | } |
Mark Dickinson | d1b230e | 2017-01-21 12:35:30 +0000 | [diff] [blame^] | 573 | /*[clinic end generated code: output=f428e1075d00c334 input=a9049054013a1b77]*/ |