blob: 82345fab92131adfa369d774df14d58a42759399 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Raymond Hettingere8f1e002016-09-06 17:15:29 -070011 pick weighted random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000012 generate random permutation
13
Guido van Rossume7b146f2000-02-04 15:28:42 +000014 distributions on the real line:
15 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000016 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000017 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000018 normal (Gaussian)
19 lognormal
20 negative exponential
21 gamma
22 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000023 pareto
24 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000025
Guido van Rossume7b146f2000-02-04 15:28:42 +000026 distributions on the circle (angles 0 to 2pi)
27 ---------------------------------------------
28 circular uniform
29 von Mises
30
Raymond Hettinger40f62172002-12-29 23:03:38 +000031General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000032
Raymond Hettinger40f62172002-12-29 23:03:38 +000033* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000034* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000035* The random() method is implemented in C, executes in a single Python step,
36 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000037
Guido van Rossume7b146f2000-02-04 15:28:42 +000038"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000039
Raymond Hettinger2f726e92003-10-05 09:09:15 +000040from warnings import warn as _warn
Raymond Hettinger91e27c22005-08-19 01:36:35 +000041from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Tim Petersd7b5e882001-01-25 03:36:26 +000042from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000043from os import urandom as _urandom
Christian Heimesf1dc3ee2013-10-13 02:04:20 +020044from _collections_abc import Set as _Set, Sequence as _Sequence
Raymond Hettinger53822032019-02-16 13:30:51 -080045from itertools import accumulate as _accumulate, repeat as _repeat
Raymond Hettingercfd31f02019-02-13 02:04:17 -080046from bisect import bisect as _bisect
Antoine Pitrou346cbd32017-05-27 17:50:54 +020047import os as _os
Guido van Rossumff03b1a1994-03-09 12:55:02 +000048
Christian Heimesd9145962019-04-10 22:18:02 +020049try:
50 # hashlib is pretty heavy to load, try lean internal module first
51 from _sha512 import sha512 as _sha512
52except ImportError:
53 # fallback to official implementation
54 from hashlib import sha512 as _sha512
55
56
Raymond Hettingerf24eb352002-11-12 17:41:57 +000057__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000058 "randrange","shuffle","normalvariate","lognormvariate",
Christian Heimesfe337bf2008-03-23 21:54:12 +000059 "expovariate","vonmisesvariate","gammavariate","triangular",
Raymond Hettingerf8a52d32003-08-05 12:23:19 +000060 "gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger28aa4a02016-09-07 00:08:44 -070061 "getstate","setstate", "getrandbits", "choices",
Raymond Hettinger23f12412004-09-13 22:23:21 +000062 "SystemRandom"]
Tim Petersd7b5e882001-01-25 03:36:26 +000063
64NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000065TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000066LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000067SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000068BPF = 53 # Number of bits in a float
Tim Peters7c2a85b2004-08-31 02:19:55 +000069RECIP_BPF = 2**-BPF
Tim Petersd7b5e882001-01-25 03:36:26 +000070
Raymond Hettinger356a4592004-08-30 06:14:31 +000071
Tim Petersd7b5e882001-01-25 03:36:26 +000072# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000073# Adrian Baddeley. Adapted by Raymond Hettinger for use with
Raymond Hettinger3fa19d72004-08-31 01:05:15 +000074# the Mersenne Twister and os.urandom() core generators.
Tim Petersd7b5e882001-01-25 03:36:26 +000075
Raymond Hettinger145a4a02003-01-07 10:25:55 +000076import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000077
Raymond Hettinger145a4a02003-01-07 10:25:55 +000078class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000079 """Random number generator base class used by bound module functions.
80
81 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +000082 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +000083
84 Class Random can also be subclassed if you want to use a different basic
85 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +000086 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +000087 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +000088 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000089
Raymond Hettingerc32f0332002-05-23 19:44:49 +000090 """
Tim Petersd7b5e882001-01-25 03:36:26 +000091
Christian Heimescbf3b5c2007-12-03 21:02:03 +000092 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000093
94 def __init__(self, x=None):
95 """Initialize an instance.
96
97 Optional argument x controls seeding, as for Random.seed().
98 """
99
100 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000101 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +0000102
Serhiy Storchaka2085bd02019-06-01 11:00:15 +0300103 def __init_subclass__(cls, /, **kwargs):
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200104 """Control how subclasses generate random integers.
105
106 The algorithm a subclass can use depends on the random() and/or
107 getrandbits() implementation available to it and determines
108 whether it can generate random integers from arbitrarily large
109 ranges.
110 """
111
Serhiy Storchakaec1622d2018-05-08 15:45:15 +0300112 for c in cls.__mro__:
113 if '_randbelow' in c.__dict__:
114 # just inherit it
115 break
116 if 'getrandbits' in c.__dict__:
117 cls._randbelow = cls._randbelow_with_getrandbits
118 break
119 if 'random' in c.__dict__:
120 cls._randbelow = cls._randbelow_without_getrandbits
121 break
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200122
Raymond Hettingerf763a722010-09-07 00:38:15 +0000123 def seed(self, a=None, version=2):
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700124 """Initialize internal state from a seed.
125
126 The only supported seed types are None, int, float,
127 str, bytes, and bytearray.
Tim Petersd7b5e882001-01-25 03:36:26 +0000128
Raymond Hettinger23f12412004-09-13 22:23:21 +0000129 None or no argument seeds from current time or from an operating
130 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +0000131
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000132 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000133
Raymond Hettinger16eb8272016-09-04 11:17:28 -0700134 For version 2 (the default), all of the bits are used if *a* is a str,
135 bytes, or bytearray. For version 1 (provided for reproducing random
136 sequences from older versions of Python), the algorithm for str and
137 bytes generates a narrower range of seeds.
138
Tim Petersd7b5e882001-01-25 03:36:26 +0000139 """
140
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700141 if version == 1 and isinstance(a, (str, bytes)):
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700142 a = a.decode('latin-1') if isinstance(a, bytes) else a
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700143 x = ord(a[0]) << 7 if a else 0
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700144 for c in map(ord, a):
145 x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700146 x ^= len(a)
147 a = -2 if x == -1 else x
148
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700149 elif version == 2 and isinstance(a, (str, bytes, bytearray)):
Raymond Hettinger2f9cc7a2016-08-31 23:00:32 -0700150 if isinstance(a, str):
151 a = a.encode()
152 a += _sha512(a).digest()
153 a = int.from_bytes(a, 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000154
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700155 elif not isinstance(a, (type(None), int, float, str, bytes, bytearray)):
156 _warn('Seeding based on hashing is deprecated\n'
157 'since Python 3.9 and will be removed in a subsequent '
158 'version. The only \n'
159 'supported seed types are: None, '
160 'int, float, str, bytes, and bytearray.',
161 DeprecationWarning, 2)
162
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000163 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000164 self.gauss_next = None
165
Tim Peterscd804102001-01-25 20:25:57 +0000166 def getstate(self):
167 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000168 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000169
170 def setstate(self, state):
171 """Restore internal state from object returned by getstate()."""
172 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000173 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000174 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000175 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000176 elif version == 2:
177 version, internalstate, self.gauss_next = state
178 # In version 2, the state was saved as signed ints, which causes
179 # inconsistencies between 32/64-bit systems. The state is
180 # really unsigned 32-bit ints, so we convert negative ints from
181 # version 2 to positive longs for version 3.
182 try:
Raymond Hettingerc585eec2010-09-07 15:00:15 +0000183 internalstate = tuple(x % (2**32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000184 except ValueError as e:
185 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000186 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000187 else:
188 raise ValueError("state with version %s passed to "
189 "Random.setstate() of version %s" %
190 (version, self.VERSION))
191
Tim Peterscd804102001-01-25 20:25:57 +0000192## ---- Methods below this point do not need to be overridden when
193## ---- subclassing for the purpose of using a different core generator.
194
195## -------------------- pickle support -------------------
196
R David Murrayd9ebf4d2013-04-02 13:10:52 -0400197 # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
198 # longer called; we leave it here because it has been here since random was
199 # rewritten back in 2001 and why risk breaking something.
Tim Peterscd804102001-01-25 20:25:57 +0000200 def __getstate__(self): # for pickle
201 return self.getstate()
202
203 def __setstate__(self, state): # for pickle
204 self.setstate(state)
205
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000206 def __reduce__(self):
207 return self.__class__, (), self.getstate()
208
Tim Peterscd804102001-01-25 20:25:57 +0000209## -------------------- integer methods -------------------
210
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700211 def randrange(self, start, stop=None, step=1, _int=int):
Tim Petersd7b5e882001-01-25 03:36:26 +0000212 """Choose a random item from range(start, stop[, step]).
213
214 This fixes the problem with randint() which includes the
215 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000216
Tim Petersd7b5e882001-01-25 03:36:26 +0000217 """
218
219 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000220 # common case while still doing adequate error checking.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700221 istart = _int(start)
Tim Petersd7b5e882001-01-25 03:36:26 +0000222 if istart != start:
Collin Winterce36ad82007-08-30 01:19:48 +0000223 raise ValueError("non-integer arg 1 for randrange()")
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000224 if stop is None:
Tim Petersd7b5e882001-01-25 03:36:26 +0000225 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000226 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000227 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000228
229 # stop argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700230 istop = _int(stop)
Tim Petersd7b5e882001-01-25 03:36:26 +0000231 if istop != stop:
Collin Winterce36ad82007-08-30 01:19:48 +0000232 raise ValueError("non-integer stop for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000233 width = istop - istart
234 if step == 1 and width > 0:
Raymond Hettingerc3246972010-09-07 09:32:57 +0000235 return istart + self._randbelow(width)
Tim Petersd7b5e882001-01-25 03:36:26 +0000236 if step == 1:
Kumar Akshay2433a2a2019-01-22 00:49:59 +0530237 raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000238
239 # Non-unit step argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700240 istep = _int(step)
Tim Petersd7b5e882001-01-25 03:36:26 +0000241 if istep != step:
Collin Winterce36ad82007-08-30 01:19:48 +0000242 raise ValueError("non-integer step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000243 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000244 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000245 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000246 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000247 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000248 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000249
250 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000251 raise ValueError("empty range for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000252
Raymond Hettinger05156612010-09-07 04:44:52 +0000253 return istart + istep*self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000254
255 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000256 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000257 """
258
259 return self.randrange(a, b+1)
260
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200261 def _randbelow_with_getrandbits(self, n):
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000262 "Return a random int in the range [0,n). Raises ValueError if n==0."
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000263
Raymond Hettingerc3246972010-09-07 09:32:57 +0000264 getrandbits = self.getrandbits
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200265 k = n.bit_length() # don't use (n-1) here because n can be 1
266 r = getrandbits(k) # 0 <= r < 2**k
267 while r >= n:
268 r = getrandbits(k)
269 return r
270
271 def _randbelow_without_getrandbits(self, n, int=int, maxsize=1<<BPF):
272 """Return a random int in the range [0,n). Raises ValueError if n==0.
273
274 The implementation does not use getrandbits, but only random.
275 """
276
277 random = self.random
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000278 if n >= maxsize:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000279 _warn("Underlying random() generator does not supply \n"
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000280 "enough bits to choose from a population range this large.\n"
281 "To remove the range limitation, add a getrandbits() method.")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000282 return int(random() * n)
Wolfgang Maier091e95e2018-04-05 17:19:44 +0200283 if n == 0:
284 raise ValueError("Boundary cannot be zero")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000285 rem = maxsize % n
286 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
287 r = random()
288 while r >= limit:
289 r = random()
290 return int(r*maxsize) % n
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000291
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200292 _randbelow = _randbelow_with_getrandbits
293
Tim Peterscd804102001-01-25 20:25:57 +0000294## -------------------- sequence methods -------------------
295
Tim Petersd7b5e882001-01-25 03:36:26 +0000296 def choice(self, seq):
297 """Choose a random element from a non-empty sequence."""
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000298 try:
299 i = self._randbelow(len(seq))
300 except ValueError:
Raymond Hettingerbb2839b2016-12-27 01:06:52 -0800301 raise IndexError('Cannot choose from an empty sequence') from None
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000302 return seq[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000303
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700304 def shuffle(self, x, random=None):
Antoine Pitrou5e394332012-11-04 02:10:33 +0100305 """Shuffle list x in place, and return None.
Tim Petersd7b5e882001-01-25 03:36:26 +0000306
Antoine Pitrou5e394332012-11-04 02:10:33 +0100307 Optional argument random is a 0-argument function returning a
308 random float in [0.0, 1.0); if it is the default None, the
309 standard random.random will be used.
Senthil Kumaranf8ce51a2013-09-11 22:54:31 -0700310
Tim Petersd7b5e882001-01-25 03:36:26 +0000311 """
312
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700313 if random is None:
314 randbelow = self._randbelow
315 for i in reversed(range(1, len(x))):
316 # pick an element in x[:i+1] with which to exchange x[i]
317 j = randbelow(i+1)
318 x[i], x[j] = x[j], x[i]
319 else:
320 _int = int
321 for i in reversed(range(1, len(x))):
322 # pick an element in x[:i+1] with which to exchange x[i]
323 j = _int(random() * (i+1))
324 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000325
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000326 def sample(self, population, k):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000327 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000328
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000329 Returns a new list containing elements from the population while
330 leaving the original population unchanged. The resulting list is
331 in selection order so that all sub-slices will also be valid random
332 samples. This allows raffle winners (the sample) to be partitioned
333 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000334
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000335 Members of the population need not be hashable or unique. If the
336 population contains repeats, then each occurrence is a possible
337 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000338
Guido van Rossum805365e2007-05-07 22:24:25 +0000339 To choose a sample in a range of integers, use range as an argument.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000340 This is especially fast and space efficient for sampling from a
Guido van Rossum805365e2007-05-07 22:24:25 +0000341 large population: sample(range(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000342 """
343
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000344 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000345 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000346
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000347 # When the number of selections is small compared to the
348 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000349 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000350 # a larger number of selections, the pool tracking method is
351 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000352 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000353
Raymond Hettinger7fc633f2018-12-04 00:13:38 -0800354 # The number of calls to _randbelow() is kept at or near k, the
355 # theoretical minimum. This is important because running time
356 # is dominated by _randbelow() and because it extracts the
357 # least entropy from the underlying random number generators.
358
359 # Memory requirements are kept to the smaller of a k-length
360 # set or an n-length list.
361
362 # There are other sampling algorithms that do not require
363 # auxiliary memory, but they were rejected because they made
364 # too many calls to _randbelow(), making them slower and
365 # causing them to eat more entropy than necessary.
366
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000367 if isinstance(population, _Set):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000368 population = tuple(population)
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000369 if not isinstance(population, _Sequence):
370 raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000371 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000372 n = len(population)
373 if not 0 <= k <= n:
Raymond Hettingerbf871262016-11-21 14:34:33 -0800374 raise ValueError("Sample larger than population or is negative")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000375 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000376 setsize = 21 # size of a small set minus size of an empty list
377 if k > 5:
Tim Peters9e34c042005-08-26 15:20:46 +0000378 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000379 if n <= setsize:
380 # An n-length list is smaller than a k-length set
Raymond Hettinger311f4192002-11-18 09:01:24 +0000381 pool = list(population)
Guido van Rossum805365e2007-05-07 22:24:25 +0000382 for i in range(k): # invariant: non-selected at [0,n-i)
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000383 j = randbelow(n-i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000384 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000385 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000386 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000387 selected = set()
388 selected_add = selected.add
389 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000390 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000391 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000392 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000393 selected_add(j)
394 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000395 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000396
Raymond Hettinger9016f282016-09-26 21:45:57 -0700397 def choices(self, population, weights=None, *, cum_weights=None, k=1):
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700398 """Return a k sized list of population elements chosen with replacement.
399
400 If the relative weights or cumulative weights are not specified,
401 the selections are made with equal probability.
402
403 """
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700404 random = self.random
Raymond Hettingere69cd162018-07-04 15:28:20 -0700405 n = len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700406 if cum_weights is None:
407 if weights is None:
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700408 _int = int
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800409 n += 0.0 # convert to float for a small speed improvement
Raymond Hettinger53822032019-02-16 13:30:51 -0800410 return [population[_int(random() * n)] for i in _repeat(None, k)]
Raymond Hettingercfd31f02019-02-13 02:04:17 -0800411 cum_weights = list(_accumulate(weights))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700412 elif weights is not None:
Raymond Hettinger24e42392016-11-13 00:42:56 -0500413 raise TypeError('Cannot specify both weights and cumulative weights')
Raymond Hettingere69cd162018-07-04 15:28:20 -0700414 if len(cum_weights) != n:
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700415 raise ValueError('The number of weights does not match the population')
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800416 total = cum_weights[-1] + 0.0 # convert to float
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800417 if total <= 0.0:
418 raise ValueError('Total of weights must be greater than zero')
419 bisect = _bisect
Raymond Hettingere69cd162018-07-04 15:28:20 -0700420 hi = n - 1
Raymond Hettingerddf71712018-06-27 01:08:31 -0700421 return [population[bisect(cum_weights, random() * total, 0, hi)]
Raymond Hettinger53822032019-02-16 13:30:51 -0800422 for i in _repeat(None, k)]
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700423
Tim Peterscd804102001-01-25 20:25:57 +0000424## -------------------- real-valued distributions -------------------
425
426## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000427
428 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000429 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Tim Petersd7b5e882001-01-25 03:36:26 +0000430 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000431
Christian Heimesfe337bf2008-03-23 21:54:12 +0000432## -------------------- triangular --------------------
433
434 def triangular(self, low=0.0, high=1.0, mode=None):
435 """Triangular distribution.
436
437 Continuous distribution bounded by given lower and upper limits,
438 and having a given mode value in-between.
439
440 http://en.wikipedia.org/wiki/Triangular_distribution
441
442 """
443 u = self.random()
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700444 try:
445 c = 0.5 if mode is None else (mode - low) / (high - low)
446 except ZeroDivisionError:
447 return low
Christian Heimesfe337bf2008-03-23 21:54:12 +0000448 if u > c:
449 u = 1.0 - u
450 c = 1.0 - c
451 low, high = high, low
Raymond Hettingerf5ea83f2017-09-04 16:51:06 -0700452 return low + (high - low) * _sqrt(u * c)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000453
Tim Peterscd804102001-01-25 20:25:57 +0000454## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000455
Tim Petersd7b5e882001-01-25 03:36:26 +0000456 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000457 """Normal distribution.
458
459 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000460
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000461 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000462 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000463
Tim Petersd7b5e882001-01-25 03:36:26 +0000464 # Uses Kinderman and Monahan method. Reference: Kinderman,
465 # A.J. and Monahan, J.F., "Computer generation of random
466 # variables using the ratio of uniform deviates", ACM Trans
467 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000468
Tim Petersd7b5e882001-01-25 03:36:26 +0000469 random = self.random
Raymond Hettinger42406e62005-04-30 09:02:51 +0000470 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000471 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000472 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000473 z = NV_MAGICCONST*(u1-0.5)/u2
474 zz = z*z/4.0
475 if zz <= -_log(u2):
476 break
477 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000478
Tim Peterscd804102001-01-25 20:25:57 +0000479## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000480
481 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000482 """Log normal distribution.
483
484 If you take the natural logarithm of this distribution, you'll get a
485 normal distribution with mean mu and standard deviation sigma.
486 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000487
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000488 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000489 return _exp(self.normalvariate(mu, sigma))
490
Tim Peterscd804102001-01-25 20:25:57 +0000491## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000492
493 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000494 """Exponential distribution.
495
Mark Dickinson2f947362009-01-07 17:54:07 +0000496 lambd is 1.0 divided by the desired mean. It should be
497 nonzero. (The parameter would be called "lambda", but that is
498 a reserved word in Python.) Returned values range from 0 to
499 positive infinity if lambd is positive, and from negative
500 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000501
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000502 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000503 # lambd: rate lambd = 1/mean
504 # ('lambda' is a Python reserved word)
505
Raymond Hettinger5279fb92011-06-25 11:30:53 +0200506 # we use 1-random() instead of random() to preclude the
507 # possibility of taking the log of zero.
508 return -_log(1.0 - self.random())/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000509
Tim Peterscd804102001-01-25 20:25:57 +0000510## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000511
Tim Petersd7b5e882001-01-25 03:36:26 +0000512 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000513 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000514
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000515 mu is the mean angle, expressed in radians between 0 and 2*pi, and
516 kappa is the concentration parameter, which must be greater than or
517 equal to zero. If kappa is equal to zero, this distribution reduces
518 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000519
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000520 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000521 # mu: mean angle (in radians between 0 and 2*pi)
522 # kappa: concentration parameter kappa (>= 0)
523 # if kappa = 0 generate uniform random angle
524
525 # Based upon an algorithm published in: Fisher, N.I.,
526 # "Statistical Analysis of Circular Data", Cambridge
527 # University Press, 1993.
528
529 # Thanks to Magnus Kessler for a correction to the
530 # implementation of step 4.
531
532 random = self.random
533 if kappa <= 1e-6:
534 return TWOPI * random()
535
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200536 s = 0.5 / kappa
537 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000538
Raymond Hettinger42406e62005-04-30 09:02:51 +0000539 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000540 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000541 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000542
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200543 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000544 u2 = random()
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200545 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000546 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000547
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200548 q = 1.0 / r
549 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000550 u3 = random()
551 if u3 > 0.5:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000552 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000553 else:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000554 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000555
556 return theta
557
Tim Peterscd804102001-01-25 20:25:57 +0000558## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000559
560 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000561 """Gamma distribution. Not the gamma function!
562
563 Conditions on the parameters are alpha > 0 and beta > 0.
564
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700565 The probability distribution function is:
566
567 x ** (alpha - 1) * math.exp(-x / beta)
568 pdf(x) = --------------------------------------
569 math.gamma(alpha) * beta ** alpha
570
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000571 """
Tim Peters8ac14952002-05-23 15:15:30 +0000572
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000573 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000574
Guido van Rossum570764d2002-05-14 14:08:12 +0000575 # Warning: a few older sources define the gamma distribution in terms
576 # of alpha > -1.0
577 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000578 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000579
Tim Petersd7b5e882001-01-25 03:36:26 +0000580 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000581 if alpha > 1.0:
582
583 # Uses R.C.H. Cheng, "The generation of Gamma
584 # variables with non-integral shape parameters",
585 # Applied Statistics, (1977), 26, No. 1, p71-74
586
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000587 ainv = _sqrt(2.0 * alpha - 1.0)
588 bbb = alpha - LOG4
589 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000590
Raymond Hettinger42406e62005-04-30 09:02:51 +0000591 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000592 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000593 if not 1e-7 < u1 < .9999999:
594 continue
595 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000596 v = _log(u1/(1.0-u1))/ainv
597 x = alpha*_exp(v)
598 z = u1*u1*u2
599 r = bbb+ccc*v-x
600 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000601 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000602
603 elif alpha == 1.0:
leodema9f396b62017-06-04 07:41:41 +0100604 # expovariate(1/beta)
leodema63d15222018-12-24 07:54:25 +0100605 return -_log(1.0 - random()) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000606
607 else: # alpha is between 0 and 1 (exclusive)
608
609 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
610
Raymond Hettinger42406e62005-04-30 09:02:51 +0000611 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000612 u = random()
613 b = (_e + alpha)/_e
614 p = b*u
615 if p <= 1.0:
Raymond Hettinger42406e62005-04-30 09:02:51 +0000616 x = p ** (1.0/alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000617 else:
Tim Petersd7b5e882001-01-25 03:36:26 +0000618 x = -_log((b-p)/alpha)
619 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000620 if p > 1.0:
621 if u1 <= x ** (alpha - 1.0):
622 break
623 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000624 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000625 return x * beta
626
Tim Peterscd804102001-01-25 20:25:57 +0000627## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000628
Tim Petersd7b5e882001-01-25 03:36:26 +0000629 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000630 """Gaussian distribution.
631
632 mu is the mean, and sigma is the standard deviation. This is
633 slightly faster than the normalvariate() function.
634
635 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000636
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000637 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000638
Tim Petersd7b5e882001-01-25 03:36:26 +0000639 # When x and y are two variables from [0, 1), uniformly
640 # distributed, then
641 #
642 # cos(2*pi*x)*sqrt(-2*log(1-y))
643 # sin(2*pi*x)*sqrt(-2*log(1-y))
644 #
645 # are two *independent* variables with normal distribution
646 # (mu = 0, sigma = 1).
647 # (Lambert Meertens)
648 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000649
Tim Petersd7b5e882001-01-25 03:36:26 +0000650 # Multithreading note: When two threads call this function
651 # simultaneously, it is possible that they will receive the
652 # same return value. The window is very small though. To
653 # avoid this, you have to use a lock around all calls. (I
654 # didn't want to slow this down in the serial case by using a
655 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000656
Tim Petersd7b5e882001-01-25 03:36:26 +0000657 random = self.random
658 z = self.gauss_next
659 self.gauss_next = None
660 if z is None:
661 x2pi = random() * TWOPI
662 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
663 z = _cos(x2pi) * g2rad
664 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000665
Tim Petersd7b5e882001-01-25 03:36:26 +0000666 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000667
Tim Peterscd804102001-01-25 20:25:57 +0000668## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000669## See
Ezio Melotti20f53f12011-04-15 08:25:16 +0300670## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
Tim Peters85e2e472001-01-26 06:49:56 +0000671## for Ivan Frohne's insightful analysis of why the original implementation:
672##
673## def betavariate(self, alpha, beta):
674## # Discrete Event Simulation in C, pp 87-88.
675##
676## y = self.expovariate(alpha)
677## z = self.expovariate(1.0/beta)
678## return z/(y+z)
679##
680## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000681
Tim Petersd7b5e882001-01-25 03:36:26 +0000682 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000683 """Beta distribution.
684
Thomas Woutersb2137042007-02-01 18:02:27 +0000685 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000686 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000687
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000688 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000689
Tim Peters85e2e472001-01-26 06:49:56 +0000690 # This version due to Janne Sinkkonen, and matches all the std
691 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300692 y = self.gammavariate(alpha, 1.0)
Tim Peters85e2e472001-01-26 06:49:56 +0000693 if y == 0:
694 return 0.0
695 else:
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300696 return y / (y + self.gammavariate(beta, 1.0))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000697
Tim Peterscd804102001-01-25 20:25:57 +0000698## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000699
Tim Petersd7b5e882001-01-25 03:36:26 +0000700 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000701 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000702 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000703
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000704 u = 1.0 - self.random()
Raymond Hettinger8ff10992010-09-08 18:58:33 +0000705 return 1.0 / u ** (1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000706
Tim Peterscd804102001-01-25 20:25:57 +0000707## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000708
Tim Petersd7b5e882001-01-25 03:36:26 +0000709 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000710 """Weibull distribution.
711
712 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000713
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000714 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000715 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000716
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000717 u = 1.0 - self.random()
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000718 return alpha * (-_log(u)) ** (1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000719
Raymond Hettinger23f12412004-09-13 22:23:21 +0000720## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000721
Raymond Hettinger23f12412004-09-13 22:23:21 +0000722class SystemRandom(Random):
723 """Alternate random number generator using sources provided
724 by the operating system (such as /dev/urandom on Unix or
725 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000726
727 Not available on all systems (see os.urandom() for details).
728 """
729
730 def random(self):
731 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000732 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000733
734 def getrandbits(self, k):
Serhiy Storchaka95949422013-08-27 19:40:23 +0300735 """getrandbits(k) -> x. Generates an int with k random bits."""
Raymond Hettinger356a4592004-08-30 06:14:31 +0000736 if k <= 0:
737 raise ValueError('number of bits must be greater than zero')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000738 numbytes = (k + 7) // 8 # bits / 8 and rounded up
739 x = int.from_bytes(_urandom(numbytes), 'big')
740 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000741
Victor Stinner9f5fe792020-04-17 19:05:35 +0200742 def randbytes(self, n):
743 """Generate n random bytes."""
744 # os.urandom(n) fails with ValueError for n < 0
745 # and returns an empty bytes string for n == 0.
746 return _urandom(n)
747
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000748 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000749 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000750 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000751
752 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000753 "Method should not be called for a system random number generator."
754 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000755 getstate = setstate = _notimplemented
756
Tim Peterscd804102001-01-25 20:25:57 +0000757## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000758
Raymond Hettinger62297132003-08-30 01:24:19 +0000759def _test_generator(n, func, args):
Tim Peters0c9886d2001-01-15 01:18:21 +0000760 import time
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000761 print(n, 'times', func.__name__)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000762 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000763 sqsum = 0.0
764 smallest = 1e10
765 largest = -1e10
Victor Stinner8db5b542018-12-17 11:30:34 +0100766 t0 = time.perf_counter()
Tim Peters0c9886d2001-01-15 01:18:21 +0000767 for i in range(n):
Raymond Hettinger62297132003-08-30 01:24:19 +0000768 x = func(*args)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000769 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000770 sqsum = sqsum + x*x
771 smallest = min(x, smallest)
772 largest = max(x, largest)
Victor Stinner8db5b542018-12-17 11:30:34 +0100773 t1 = time.perf_counter()
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000774 print(round(t1-t0, 3), 'sec,', end=' ')
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000775 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000776 stddev = _sqrt(sqsum/n - avg*avg)
Raymond Hettinger1f548142014-05-19 20:21:43 +0100777 print('avg %g, stddev %g, min %g, max %g\n' % \
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000778 (avg, stddev, smallest, largest))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000779
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000780
781def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000782 _test_generator(N, random, ())
783 _test_generator(N, normalvariate, (0.0, 1.0))
784 _test_generator(N, lognormvariate, (0.0, 1.0))
785 _test_generator(N, vonmisesvariate, (0.0, 1.0))
786 _test_generator(N, gammavariate, (0.01, 1.0))
787 _test_generator(N, gammavariate, (0.1, 1.0))
788 _test_generator(N, gammavariate, (0.1, 2.0))
789 _test_generator(N, gammavariate, (0.5, 1.0))
790 _test_generator(N, gammavariate, (0.9, 1.0))
791 _test_generator(N, gammavariate, (1.0, 1.0))
792 _test_generator(N, gammavariate, (2.0, 1.0))
793 _test_generator(N, gammavariate, (20.0, 1.0))
794 _test_generator(N, gammavariate, (200.0, 1.0))
795 _test_generator(N, gauss, (0.0, 1.0))
796 _test_generator(N, betavariate, (3.0, 3.0))
Christian Heimesfe337bf2008-03-23 21:54:12 +0000797 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000798
Tim Peters715c4c42001-01-26 22:56:56 +0000799# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000800# as module-level functions. The functions share state across all uses
801#(both in the user's code and in the Python libraries), but that's fine
802# for most programs and is easier for the casual user than making them
803# instantiate their own Random() instance.
804
Tim Petersd7b5e882001-01-25 03:36:26 +0000805_inst = Random()
806seed = _inst.seed
807random = _inst.random
808uniform = _inst.uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +0000809triangular = _inst.triangular
Tim Petersd7b5e882001-01-25 03:36:26 +0000810randint = _inst.randint
811choice = _inst.choice
812randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000813sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000814shuffle = _inst.shuffle
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700815choices = _inst.choices
Tim Petersd7b5e882001-01-25 03:36:26 +0000816normalvariate = _inst.normalvariate
817lognormvariate = _inst.lognormvariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000818expovariate = _inst.expovariate
819vonmisesvariate = _inst.vonmisesvariate
820gammavariate = _inst.gammavariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000821gauss = _inst.gauss
822betavariate = _inst.betavariate
823paretovariate = _inst.paretovariate
824weibullvariate = _inst.weibullvariate
825getstate = _inst.getstate
826setstate = _inst.setstate
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000827getrandbits = _inst.getrandbits
Victor Stinner9f5fe792020-04-17 19:05:35 +0200828randbytes = _inst.randbytes
Tim Petersd7b5e882001-01-25 03:36:26 +0000829
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200830if hasattr(_os, "fork"):
Gregory P. Smith163468a2017-05-29 10:03:41 -0700831 _os.register_at_fork(after_in_child=_inst.seed)
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200832
833
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000834if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000835 _test()