blob: d68cf1157c0458d078c4b45cfd018720a0031b0f [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000100.. function:: isfinite(x)
101
102 Return ``True`` if *x* is neither an infinity nor a NaN, and
103 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
104
Mark Dickinsonc7622422010-07-11 19:47:37 +0000105 .. versionadded:: 3.2
106
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000107
Christian Heimes072c0f12008-01-03 23:01:04 +0000108.. function:: isinf(x)
109
Mark Dickinsonc7622422010-07-11 19:47:37 +0000110 Return ``True`` if *x* is a positive or negative infinity, and
111 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000112
Christian Heimes072c0f12008-01-03 23:01:04 +0000113
114.. function:: isnan(x)
115
Mark Dickinsonc7622422010-07-11 19:47:37 +0000116 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000117
Christian Heimes072c0f12008-01-03 23:01:04 +0000118
Georg Brandl116aa622007-08-15 14:28:22 +0000119.. function:: ldexp(x, i)
120
121 Return ``x * (2**i)``. This is essentially the inverse of function
122 :func:`frexp`.
123
124
125.. function:: modf(x)
126
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000127 Return the fractional and integer parts of *x*. Both results carry the sign
128 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000129
Christian Heimes400adb02008-02-01 08:12:03 +0000130
131.. function:: trunc(x)
132
133 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000134 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000135
Christian Heimes400adb02008-02-01 08:12:03 +0000136
Georg Brandl116aa622007-08-15 14:28:22 +0000137Note that :func:`frexp` and :func:`modf` have a different call/return pattern
138than their C equivalents: they take a single argument and return a pair of
139values, rather than returning their second return value through an 'output
140parameter' (there is no such thing in Python).
141
142For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
143floating-point numbers of sufficiently large magnitude are exact integers.
144Python floats typically carry no more than 53 bits of precision (the same as the
145platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
146necessarily has no fractional bits.
147
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000148
149Power and logarithmic functions
150-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000151
Georg Brandl116aa622007-08-15 14:28:22 +0000152.. function:: exp(x)
153
154 Return ``e**x``.
155
156
Mark Dickinson664b5112009-12-16 20:23:42 +0000157.. function:: expm1(x)
158
Raymond Hettinger1081d482011-03-31 12:04:53 -0700159 Return ``e**x - 1``. For small floats *x*, the subtraction in ``exp(x) - 1``
160 can result in a `significant loss of precision
161 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
162 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000163
164 >>> from math import exp, expm1
165 >>> exp(1e-5) - 1 # gives result accurate to 11 places
166 1.0000050000069649e-05
167 >>> expm1(1e-5) # result accurate to full precision
168 1.0000050000166668e-05
169
Mark Dickinson45f992a2009-12-19 11:20:49 +0000170 .. versionadded:: 3.2
171
Mark Dickinson664b5112009-12-16 20:23:42 +0000172
Georg Brandl116aa622007-08-15 14:28:22 +0000173.. function:: log(x[, base])
174
Georg Brandla6053b42009-09-01 08:11:14 +0000175 With one argument, return the natural logarithm of *x* (to base *e*).
176
177 With two arguments, return the logarithm of *x* to the given *base*,
178 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000179
Georg Brandl116aa622007-08-15 14:28:22 +0000180
Christian Heimes53876d92008-04-19 00:31:39 +0000181.. function:: log1p(x)
182
183 Return the natural logarithm of *1+x* (base *e*). The
184 result is calculated in a way which is accurate for *x* near zero.
185
Christian Heimes53876d92008-04-19 00:31:39 +0000186
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200187.. function:: log2(x)
188
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500189 Return the base-2 logarithm of *x*. This is usually more accurate than
190 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200191
192 .. versionadded:: 3.3
193
194
Georg Brandl116aa622007-08-15 14:28:22 +0000195.. function:: log10(x)
196
Georg Brandla6053b42009-09-01 08:11:14 +0000197 Return the base-10 logarithm of *x*. This is usually more accurate
198 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000199
200
201.. function:: pow(x, y)
202
Christian Heimesa342c012008-04-20 21:01:16 +0000203 Return ``x`` raised to the power ``y``. Exceptional cases follow
204 Annex 'F' of the C99 standard as far as possible. In particular,
205 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
206 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
207 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
208 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000209
Georg Brandl116aa622007-08-15 14:28:22 +0000210
211.. function:: sqrt(x)
212
213 Return the square root of *x*.
214
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000215Trigonometric functions
216-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000217
218
219.. function:: acos(x)
220
221 Return the arc cosine of *x*, in radians.
222
223
224.. function:: asin(x)
225
226 Return the arc sine of *x*, in radians.
227
228
229.. function:: atan(x)
230
231 Return the arc tangent of *x*, in radians.
232
233
234.. function:: atan2(y, x)
235
236 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
237 The vector in the plane from the origin to point ``(x, y)`` makes this angle
238 with the positive X axis. The point of :func:`atan2` is that the signs of both
239 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000240 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000241 -1)`` is ``-3*pi/4``.
242
243
244.. function:: cos(x)
245
246 Return the cosine of *x* radians.
247
248
249.. function:: hypot(x, y)
250
251 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
252 from the origin to point ``(x, y)``.
253
254
255.. function:: sin(x)
256
257 Return the sine of *x* radians.
258
259
260.. function:: tan(x)
261
262 Return the tangent of *x* radians.
263
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000264Angular conversion
265------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000266
267
268.. function:: degrees(x)
269
270 Converts angle *x* from radians to degrees.
271
272
273.. function:: radians(x)
274
275 Converts angle *x* from degrees to radians.
276
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000277Hyperbolic functions
278--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000279
Raymond Hettinger1081d482011-03-31 12:04:53 -0700280`Hyperbolic functions <http://en.wikipedia.org/wiki/Hyperbolic_function>`_
281are analogs of trigonometric functions that are based on hyperbolas
282instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000283
Christian Heimesa342c012008-04-20 21:01:16 +0000284.. function:: acosh(x)
285
286 Return the inverse hyperbolic cosine of *x*.
287
Christian Heimesa342c012008-04-20 21:01:16 +0000288
289.. function:: asinh(x)
290
291 Return the inverse hyperbolic sine of *x*.
292
Christian Heimesa342c012008-04-20 21:01:16 +0000293
294.. function:: atanh(x)
295
296 Return the inverse hyperbolic tangent of *x*.
297
Christian Heimesa342c012008-04-20 21:01:16 +0000298
Georg Brandl116aa622007-08-15 14:28:22 +0000299.. function:: cosh(x)
300
301 Return the hyperbolic cosine of *x*.
302
303
304.. function:: sinh(x)
305
306 Return the hyperbolic sine of *x*.
307
308
309.. function:: tanh(x)
310
311 Return the hyperbolic tangent of *x*.
312
Christian Heimes53876d92008-04-19 00:31:39 +0000313
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000314Special functions
315-----------------
316
Mark Dickinson45f992a2009-12-19 11:20:49 +0000317.. function:: erf(x)
318
Raymond Hettinger1081d482011-03-31 12:04:53 -0700319 Return the `error function <http://en.wikipedia.org/wiki/Error_function>`_ at
320 *x*.
321
322 The :func:`erf` function can be used to compute traditional statistical
323 functions such as the `cumulative standard normal distribution
324 <http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
325
326 def phi(x):
327 'Cumulative distribution function for the standard normal distribution'
328 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000329
330 .. versionadded:: 3.2
331
332
333.. function:: erfc(x)
334
Raymond Hettinger1081d482011-03-31 12:04:53 -0700335 Return the complementary error function at *x*. The `complementary error
336 function <http://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700337 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
338 from one would cause a `loss of significance
Raymond Hettinger1081d482011-03-31 12:04:53 -0700339 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000340
341 .. versionadded:: 3.2
342
343
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000344.. function:: gamma(x)
345
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700346 Return the `Gamma function <http://en.wikipedia.org/wiki/Gamma_function>`_ at
347 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000348
Mark Dickinson56e09662009-10-01 16:13:29 +0000349 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000350
351
Mark Dickinson05d2e082009-12-11 20:17:17 +0000352.. function:: lgamma(x)
353
354 Return the natural logarithm of the absolute value of the Gamma
355 function at *x*.
356
Mark Dickinson45f992a2009-12-19 11:20:49 +0000357 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000358
359
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000360Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000361---------
Georg Brandl116aa622007-08-15 14:28:22 +0000362
363.. data:: pi
364
Mark Dickinson603b7532010-04-06 19:55:03 +0000365 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000366
367
368.. data:: e
369
Mark Dickinson603b7532010-04-06 19:55:03 +0000370 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000371
Christian Heimes53876d92008-04-19 00:31:39 +0000372
Georg Brandl495f7b52009-10-27 15:28:25 +0000373.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000374
375 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000376 math library functions. Behavior in exceptional cases follows Annex F of
377 the C99 standard where appropriate. The current implementation will raise
378 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
379 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
380 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000381 ``exp(1000.0)``). A NaN will not be returned from any of the functions
382 above unless one or more of the input arguments was a NaN; in that case,
383 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000384 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
385 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000386
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000387 Note that Python makes no effort to distinguish signaling NaNs from
388 quiet NaNs, and behavior for signaling NaNs remains unspecified.
389 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000390
Georg Brandl116aa622007-08-15 14:28:22 +0000391
392.. seealso::
393
394 Module :mod:`cmath`
395 Complex number versions of many of these functions.