blob: 5abcdbcf22b85d0b21b34d5828eac614b6cd5209 [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000011 generate random permutation
12
Guido van Rossume7b146f2000-02-04 15:28:42 +000013 distributions on the real line:
14 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000015 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000016 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000017 normal (Gaussian)
18 lognormal
19 negative exponential
20 gamma
21 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000022 pareto
23 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000024
Guido van Rossume7b146f2000-02-04 15:28:42 +000025 distributions on the circle (angles 0 to 2pi)
26 ---------------------------------------------
27 circular uniform
28 von Mises
29
Raymond Hettinger40f62172002-12-29 23:03:38 +000030General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000031
Raymond Hettinger40f62172002-12-29 23:03:38 +000032* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000033* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000034* The random() method is implemented in C, executes in a single Python step,
35 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000036
Guido van Rossume7b146f2000-02-04 15:28:42 +000037"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000038
Raymond Hettinger2f726e92003-10-05 09:09:15 +000039from warnings import warn as _warn
40from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
Raymond Hettinger91e27c22005-08-19 01:36:35 +000041from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Tim Petersd7b5e882001-01-25 03:36:26 +000042from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000043from os import urandom as _urandom
Christian Heimesf1dc3ee2013-10-13 02:04:20 +020044from _collections_abc import Set as _Set, Sequence as _Sequence
Raymond Hettinger3fcf0022010-12-08 01:13:53 +000045from hashlib import sha512 as _sha512
Guido van Rossumff03b1a1994-03-09 12:55:02 +000046
Raymond Hettingerf24eb352002-11-12 17:41:57 +000047__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000048 "randrange","shuffle","normalvariate","lognormvariate",
Christian Heimesfe337bf2008-03-23 21:54:12 +000049 "expovariate","vonmisesvariate","gammavariate","triangular",
Raymond Hettingerf8a52d32003-08-05 12:23:19 +000050 "gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger28de64f2008-01-13 23:40:30 +000051 "getstate","setstate", "getrandbits",
Raymond Hettinger23f12412004-09-13 22:23:21 +000052 "SystemRandom"]
Tim Petersd7b5e882001-01-25 03:36:26 +000053
54NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000055TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000056LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000057SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000058BPF = 53 # Number of bits in a float
Tim Peters7c2a85b2004-08-31 02:19:55 +000059RECIP_BPF = 2**-BPF
Tim Petersd7b5e882001-01-25 03:36:26 +000060
Raymond Hettinger356a4592004-08-30 06:14:31 +000061
Tim Petersd7b5e882001-01-25 03:36:26 +000062# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000063# Adrian Baddeley. Adapted by Raymond Hettinger for use with
Raymond Hettinger3fa19d72004-08-31 01:05:15 +000064# the Mersenne Twister and os.urandom() core generators.
Tim Petersd7b5e882001-01-25 03:36:26 +000065
Raymond Hettinger145a4a02003-01-07 10:25:55 +000066import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000067
Raymond Hettinger145a4a02003-01-07 10:25:55 +000068class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000069 """Random number generator base class used by bound module functions.
70
71 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +000072 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +000073
74 Class Random can also be subclassed if you want to use a different basic
75 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +000076 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +000077 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +000078 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000079
Raymond Hettingerc32f0332002-05-23 19:44:49 +000080 """
Tim Petersd7b5e882001-01-25 03:36:26 +000081
Christian Heimescbf3b5c2007-12-03 21:02:03 +000082 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000083
84 def __init__(self, x=None):
85 """Initialize an instance.
86
87 Optional argument x controls seeding, as for Random.seed().
88 """
89
90 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +000091 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +000092
Raymond Hettingerf763a722010-09-07 00:38:15 +000093 def seed(self, a=None, version=2):
Tim Peters0de88fc2001-02-01 04:59:18 +000094 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +000095
Raymond Hettinger23f12412004-09-13 22:23:21 +000096 None or no argument seeds from current time or from an operating
97 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +000098
Raymond Hettinger183cd1f2010-09-08 18:48:21 +000099 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000100
Raymond Hettinger16eb8272016-09-04 11:17:28 -0700101 For version 2 (the default), all of the bits are used if *a* is a str,
102 bytes, or bytearray. For version 1 (provided for reproducing random
103 sequences from older versions of Python), the algorithm for str and
104 bytes generates a narrower range of seeds.
105
Tim Petersd7b5e882001-01-25 03:36:26 +0000106 """
107
Raymond Hettinger3081d592003-08-09 18:30:57 +0000108 if a is None:
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000109 try:
Raymond Hettinger23042cd2014-05-13 22:13:40 -0700110 # Seed with enough bytes to span the 19937 bit
111 # state space for the Mersenne Twister
112 a = int.from_bytes(_urandom(2500), 'big')
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +0000113 except NotImplementedError:
Raymond Hettinger356a4592004-08-30 06:14:31 +0000114 import time
Guido van Rossume2a383d2007-01-15 16:59:06 +0000115 a = int(time.time() * 256) # use fractional seconds
Raymond Hettinger356a4592004-08-30 06:14:31 +0000116
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700117 if version == 1 and isinstance(a, (str, bytes)):
118 x = ord(a[0]) << 7 if a else 0
119 for c in a:
120 x = ((1000003 * x) ^ ord(c)) & 0xFFFFFFFFFFFFFFFF
121 x ^= len(a)
122 a = -2 if x == -1 else x
123
Raymond Hettinger2f9cc7a2016-08-31 23:00:32 -0700124 if version == 2 and isinstance(a, (str, bytes, bytearray)):
125 if isinstance(a, str):
126 a = a.encode()
127 a += _sha512(a).digest()
128 a = int.from_bytes(a, 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000129
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000130 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000131 self.gauss_next = None
132
Tim Peterscd804102001-01-25 20:25:57 +0000133 def getstate(self):
134 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000135 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000136
137 def setstate(self, state):
138 """Restore internal state from object returned by getstate()."""
139 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000140 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000141 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000142 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000143 elif version == 2:
144 version, internalstate, self.gauss_next = state
145 # In version 2, the state was saved as signed ints, which causes
146 # inconsistencies between 32/64-bit systems. The state is
147 # really unsigned 32-bit ints, so we convert negative ints from
148 # version 2 to positive longs for version 3.
149 try:
Raymond Hettingerc585eec2010-09-07 15:00:15 +0000150 internalstate = tuple(x % (2**32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000151 except ValueError as e:
152 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000153 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000154 else:
155 raise ValueError("state with version %s passed to "
156 "Random.setstate() of version %s" %
157 (version, self.VERSION))
158
Tim Peterscd804102001-01-25 20:25:57 +0000159## ---- Methods below this point do not need to be overridden when
160## ---- subclassing for the purpose of using a different core generator.
161
162## -------------------- pickle support -------------------
163
R David Murrayd9ebf4d2013-04-02 13:10:52 -0400164 # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
165 # longer called; we leave it here because it has been here since random was
166 # rewritten back in 2001 and why risk breaking something.
Tim Peterscd804102001-01-25 20:25:57 +0000167 def __getstate__(self): # for pickle
168 return self.getstate()
169
170 def __setstate__(self, state): # for pickle
171 self.setstate(state)
172
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000173 def __reduce__(self):
174 return self.__class__, (), self.getstate()
175
Tim Peterscd804102001-01-25 20:25:57 +0000176## -------------------- integer methods -------------------
177
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700178 def randrange(self, start, stop=None, step=1, _int=int):
Tim Petersd7b5e882001-01-25 03:36:26 +0000179 """Choose a random item from range(start, stop[, step]).
180
181 This fixes the problem with randint() which includes the
182 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000183
Tim Petersd7b5e882001-01-25 03:36:26 +0000184 """
185
186 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000187 # common case while still doing adequate error checking.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700188 istart = _int(start)
Tim Petersd7b5e882001-01-25 03:36:26 +0000189 if istart != start:
Collin Winterce36ad82007-08-30 01:19:48 +0000190 raise ValueError("non-integer arg 1 for randrange()")
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000191 if stop is None:
Tim Petersd7b5e882001-01-25 03:36:26 +0000192 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000193 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000194 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000195
196 # stop argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700197 istop = _int(stop)
Tim Petersd7b5e882001-01-25 03:36:26 +0000198 if istop != stop:
Collin Winterce36ad82007-08-30 01:19:48 +0000199 raise ValueError("non-integer stop for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000200 width = istop - istart
201 if step == 1 and width > 0:
Raymond Hettingerc3246972010-09-07 09:32:57 +0000202 return istart + self._randbelow(width)
Tim Petersd7b5e882001-01-25 03:36:26 +0000203 if step == 1:
Collin Winterce36ad82007-08-30 01:19:48 +0000204 raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000205
206 # Non-unit step argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700207 istep = _int(step)
Tim Petersd7b5e882001-01-25 03:36:26 +0000208 if istep != step:
Collin Winterce36ad82007-08-30 01:19:48 +0000209 raise ValueError("non-integer step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000210 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000211 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000212 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000213 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000214 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000215 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000216
217 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000218 raise ValueError("empty range for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000219
Raymond Hettinger05156612010-09-07 04:44:52 +0000220 return istart + istep*self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000221
222 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000223 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000224 """
225
226 return self.randrange(a, b+1)
227
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000228 def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000229 Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000230 "Return a random int in the range [0,n). Raises ValueError if n==0."
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000231
Raymond Hettingerf77cdbe2013-10-05 17:18:36 -0700232 random = self.random
Raymond Hettingerc3246972010-09-07 09:32:57 +0000233 getrandbits = self.getrandbits
234 # Only call self.getrandbits if the original random() builtin method
235 # has not been overridden or if a new getrandbits() was supplied.
Raymond Hettingerf77cdbe2013-10-05 17:18:36 -0700236 if type(random) is BuiltinMethod or type(getrandbits) is Method:
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000237 k = n.bit_length() # don't use (n-1) here because n can be 1
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000238 r = getrandbits(k) # 0 <= r < 2**k
Raymond Hettingerc3246972010-09-07 09:32:57 +0000239 while r >= n:
240 r = getrandbits(k)
241 return r
Martin Pantere26da7c2016-06-02 10:07:09 +0000242 # There's an overridden random() method but no new getrandbits() method,
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000243 # so we can only use random() from here.
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000244 if n >= maxsize:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000245 _warn("Underlying random() generator does not supply \n"
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000246 "enough bits to choose from a population range this large.\n"
247 "To remove the range limitation, add a getrandbits() method.")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000248 return int(random() * n)
249 rem = maxsize % n
250 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
251 r = random()
252 while r >= limit:
253 r = random()
254 return int(r*maxsize) % n
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000255
Tim Peterscd804102001-01-25 20:25:57 +0000256## -------------------- sequence methods -------------------
257
Tim Petersd7b5e882001-01-25 03:36:26 +0000258 def choice(self, seq):
259 """Choose a random element from a non-empty sequence."""
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000260 try:
261 i = self._randbelow(len(seq))
262 except ValueError:
263 raise IndexError('Cannot choose from an empty sequence')
264 return seq[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000265
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700266 def shuffle(self, x, random=None):
Antoine Pitrou5e394332012-11-04 02:10:33 +0100267 """Shuffle list x in place, and return None.
Tim Petersd7b5e882001-01-25 03:36:26 +0000268
Antoine Pitrou5e394332012-11-04 02:10:33 +0100269 Optional argument random is a 0-argument function returning a
270 random float in [0.0, 1.0); if it is the default None, the
271 standard random.random will be used.
Senthil Kumaranf8ce51a2013-09-11 22:54:31 -0700272
Tim Petersd7b5e882001-01-25 03:36:26 +0000273 """
274
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700275 if random is None:
276 randbelow = self._randbelow
277 for i in reversed(range(1, len(x))):
278 # pick an element in x[:i+1] with which to exchange x[i]
279 j = randbelow(i+1)
280 x[i], x[j] = x[j], x[i]
281 else:
282 _int = int
283 for i in reversed(range(1, len(x))):
284 # pick an element in x[:i+1] with which to exchange x[i]
285 j = _int(random() * (i+1))
286 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000287
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000288 def sample(self, population, k):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000289 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000290
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000291 Returns a new list containing elements from the population while
292 leaving the original population unchanged. The resulting list is
293 in selection order so that all sub-slices will also be valid random
294 samples. This allows raffle winners (the sample) to be partitioned
295 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000296
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000297 Members of the population need not be hashable or unique. If the
298 population contains repeats, then each occurrence is a possible
299 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000300
Guido van Rossum805365e2007-05-07 22:24:25 +0000301 To choose a sample in a range of integers, use range as an argument.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000302 This is especially fast and space efficient for sampling from a
Guido van Rossum805365e2007-05-07 22:24:25 +0000303 large population: sample(range(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000304 """
305
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000306 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000307 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000308
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000309 # When the number of selections is small compared to the
310 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000311 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000312 # a larger number of selections, the pool tracking method is
313 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000314 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000315
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000316 if isinstance(population, _Set):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000317 population = tuple(population)
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000318 if not isinstance(population, _Sequence):
319 raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000320 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000321 n = len(population)
322 if not 0 <= k <= n:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000323 raise ValueError("Sample larger than population")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000324 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000325 setsize = 21 # size of a small set minus size of an empty list
326 if k > 5:
Tim Peters9e34c042005-08-26 15:20:46 +0000327 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000328 if n <= setsize:
329 # An n-length list is smaller than a k-length set
Raymond Hettinger311f4192002-11-18 09:01:24 +0000330 pool = list(population)
Guido van Rossum805365e2007-05-07 22:24:25 +0000331 for i in range(k): # invariant: non-selected at [0,n-i)
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000332 j = randbelow(n-i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000333 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000334 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000335 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000336 selected = set()
337 selected_add = selected.add
338 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000339 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000340 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000341 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000342 selected_add(j)
343 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000344 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000345
Tim Peterscd804102001-01-25 20:25:57 +0000346## -------------------- real-valued distributions -------------------
347
348## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000349
350 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000351 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Tim Petersd7b5e882001-01-25 03:36:26 +0000352 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000353
Christian Heimesfe337bf2008-03-23 21:54:12 +0000354## -------------------- triangular --------------------
355
356 def triangular(self, low=0.0, high=1.0, mode=None):
357 """Triangular distribution.
358
359 Continuous distribution bounded by given lower and upper limits,
360 and having a given mode value in-between.
361
362 http://en.wikipedia.org/wiki/Triangular_distribution
363
364 """
365 u = self.random()
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700366 try:
367 c = 0.5 if mode is None else (mode - low) / (high - low)
368 except ZeroDivisionError:
369 return low
Christian Heimesfe337bf2008-03-23 21:54:12 +0000370 if u > c:
371 u = 1.0 - u
372 c = 1.0 - c
373 low, high = high, low
374 return low + (high - low) * (u * c) ** 0.5
375
Tim Peterscd804102001-01-25 20:25:57 +0000376## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000377
Tim Petersd7b5e882001-01-25 03:36:26 +0000378 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000379 """Normal distribution.
380
381 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000382
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000383 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000384 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000385
Tim Petersd7b5e882001-01-25 03:36:26 +0000386 # Uses Kinderman and Monahan method. Reference: Kinderman,
387 # A.J. and Monahan, J.F., "Computer generation of random
388 # variables using the ratio of uniform deviates", ACM Trans
389 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000390
Tim Petersd7b5e882001-01-25 03:36:26 +0000391 random = self.random
Raymond Hettinger42406e62005-04-30 09:02:51 +0000392 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000393 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000394 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000395 z = NV_MAGICCONST*(u1-0.5)/u2
396 zz = z*z/4.0
397 if zz <= -_log(u2):
398 break
399 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000400
Tim Peterscd804102001-01-25 20:25:57 +0000401## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000402
403 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000404 """Log normal distribution.
405
406 If you take the natural logarithm of this distribution, you'll get a
407 normal distribution with mean mu and standard deviation sigma.
408 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000409
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000410 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000411 return _exp(self.normalvariate(mu, sigma))
412
Tim Peterscd804102001-01-25 20:25:57 +0000413## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000414
415 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000416 """Exponential distribution.
417
Mark Dickinson2f947362009-01-07 17:54:07 +0000418 lambd is 1.0 divided by the desired mean. It should be
419 nonzero. (The parameter would be called "lambda", but that is
420 a reserved word in Python.) Returned values range from 0 to
421 positive infinity if lambd is positive, and from negative
422 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000423
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000424 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000425 # lambd: rate lambd = 1/mean
426 # ('lambda' is a Python reserved word)
427
Raymond Hettinger5279fb92011-06-25 11:30:53 +0200428 # we use 1-random() instead of random() to preclude the
429 # possibility of taking the log of zero.
430 return -_log(1.0 - self.random())/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000431
Tim Peterscd804102001-01-25 20:25:57 +0000432## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000433
Tim Petersd7b5e882001-01-25 03:36:26 +0000434 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000435 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000436
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000437 mu is the mean angle, expressed in radians between 0 and 2*pi, and
438 kappa is the concentration parameter, which must be greater than or
439 equal to zero. If kappa is equal to zero, this distribution reduces
440 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000441
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000442 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000443 # mu: mean angle (in radians between 0 and 2*pi)
444 # kappa: concentration parameter kappa (>= 0)
445 # if kappa = 0 generate uniform random angle
446
447 # Based upon an algorithm published in: Fisher, N.I.,
448 # "Statistical Analysis of Circular Data", Cambridge
449 # University Press, 1993.
450
451 # Thanks to Magnus Kessler for a correction to the
452 # implementation of step 4.
453
454 random = self.random
455 if kappa <= 1e-6:
456 return TWOPI * random()
457
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200458 s = 0.5 / kappa
459 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000460
Raymond Hettinger42406e62005-04-30 09:02:51 +0000461 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000462 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000463 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000464
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200465 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000466 u2 = random()
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200467 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000468 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000469
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200470 q = 1.0 / r
471 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000472 u3 = random()
473 if u3 > 0.5:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000474 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000475 else:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000476 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000477
478 return theta
479
Tim Peterscd804102001-01-25 20:25:57 +0000480## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000481
482 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000483 """Gamma distribution. Not the gamma function!
484
485 Conditions on the parameters are alpha > 0 and beta > 0.
486
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700487 The probability distribution function is:
488
489 x ** (alpha - 1) * math.exp(-x / beta)
490 pdf(x) = --------------------------------------
491 math.gamma(alpha) * beta ** alpha
492
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000493 """
Tim Peters8ac14952002-05-23 15:15:30 +0000494
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000495 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000496
Guido van Rossum570764d2002-05-14 14:08:12 +0000497 # Warning: a few older sources define the gamma distribution in terms
498 # of alpha > -1.0
499 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000500 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000501
Tim Petersd7b5e882001-01-25 03:36:26 +0000502 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000503 if alpha > 1.0:
504
505 # Uses R.C.H. Cheng, "The generation of Gamma
506 # variables with non-integral shape parameters",
507 # Applied Statistics, (1977), 26, No. 1, p71-74
508
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000509 ainv = _sqrt(2.0 * alpha - 1.0)
510 bbb = alpha - LOG4
511 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000512
Raymond Hettinger42406e62005-04-30 09:02:51 +0000513 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000514 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000515 if not 1e-7 < u1 < .9999999:
516 continue
517 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000518 v = _log(u1/(1.0-u1))/ainv
519 x = alpha*_exp(v)
520 z = u1*u1*u2
521 r = bbb+ccc*v-x
522 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000523 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000524
525 elif alpha == 1.0:
526 # expovariate(1)
527 u = random()
528 while u <= 1e-7:
529 u = random()
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000530 return -_log(u) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000531
532 else: # alpha is between 0 and 1 (exclusive)
533
534 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
535
Raymond Hettinger42406e62005-04-30 09:02:51 +0000536 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000537 u = random()
538 b = (_e + alpha)/_e
539 p = b*u
540 if p <= 1.0:
Raymond Hettinger42406e62005-04-30 09:02:51 +0000541 x = p ** (1.0/alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000542 else:
Tim Petersd7b5e882001-01-25 03:36:26 +0000543 x = -_log((b-p)/alpha)
544 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000545 if p > 1.0:
546 if u1 <= x ** (alpha - 1.0):
547 break
548 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000549 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000550 return x * beta
551
Tim Peterscd804102001-01-25 20:25:57 +0000552## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000553
Tim Petersd7b5e882001-01-25 03:36:26 +0000554 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000555 """Gaussian distribution.
556
557 mu is the mean, and sigma is the standard deviation. This is
558 slightly faster than the normalvariate() function.
559
560 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000561
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000562 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000563
Tim Petersd7b5e882001-01-25 03:36:26 +0000564 # When x and y are two variables from [0, 1), uniformly
565 # distributed, then
566 #
567 # cos(2*pi*x)*sqrt(-2*log(1-y))
568 # sin(2*pi*x)*sqrt(-2*log(1-y))
569 #
570 # are two *independent* variables with normal distribution
571 # (mu = 0, sigma = 1).
572 # (Lambert Meertens)
573 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000574
Tim Petersd7b5e882001-01-25 03:36:26 +0000575 # Multithreading note: When two threads call this function
576 # simultaneously, it is possible that they will receive the
577 # same return value. The window is very small though. To
578 # avoid this, you have to use a lock around all calls. (I
579 # didn't want to slow this down in the serial case by using a
580 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000581
Tim Petersd7b5e882001-01-25 03:36:26 +0000582 random = self.random
583 z = self.gauss_next
584 self.gauss_next = None
585 if z is None:
586 x2pi = random() * TWOPI
587 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
588 z = _cos(x2pi) * g2rad
589 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000590
Tim Petersd7b5e882001-01-25 03:36:26 +0000591 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000592
Tim Peterscd804102001-01-25 20:25:57 +0000593## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000594## See
Ezio Melotti20f53f12011-04-15 08:25:16 +0300595## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
Tim Peters85e2e472001-01-26 06:49:56 +0000596## for Ivan Frohne's insightful analysis of why the original implementation:
597##
598## def betavariate(self, alpha, beta):
599## # Discrete Event Simulation in C, pp 87-88.
600##
601## y = self.expovariate(alpha)
602## z = self.expovariate(1.0/beta)
603## return z/(y+z)
604##
605## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000606
Tim Petersd7b5e882001-01-25 03:36:26 +0000607 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000608 """Beta distribution.
609
Thomas Woutersb2137042007-02-01 18:02:27 +0000610 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000611 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000612
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000613 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000614
Tim Peters85e2e472001-01-26 06:49:56 +0000615 # This version due to Janne Sinkkonen, and matches all the std
616 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300617 y = self.gammavariate(alpha, 1.0)
Tim Peters85e2e472001-01-26 06:49:56 +0000618 if y == 0:
619 return 0.0
620 else:
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300621 return y / (y + self.gammavariate(beta, 1.0))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000622
Tim Peterscd804102001-01-25 20:25:57 +0000623## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000624
Tim Petersd7b5e882001-01-25 03:36:26 +0000625 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000626 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000627 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000628
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000629 u = 1.0 - self.random()
Raymond Hettinger8ff10992010-09-08 18:58:33 +0000630 return 1.0 / u ** (1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000631
Tim Peterscd804102001-01-25 20:25:57 +0000632## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000633
Tim Petersd7b5e882001-01-25 03:36:26 +0000634 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000635 """Weibull distribution.
636
637 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000638
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000639 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000640 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000641
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000642 u = 1.0 - self.random()
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000643 return alpha * (-_log(u)) ** (1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000644
Raymond Hettinger23f12412004-09-13 22:23:21 +0000645## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000646
Raymond Hettinger23f12412004-09-13 22:23:21 +0000647class SystemRandom(Random):
648 """Alternate random number generator using sources provided
649 by the operating system (such as /dev/urandom on Unix or
650 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000651
652 Not available on all systems (see os.urandom() for details).
653 """
654
655 def random(self):
656 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000657 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000658
659 def getrandbits(self, k):
Serhiy Storchaka95949422013-08-27 19:40:23 +0300660 """getrandbits(k) -> x. Generates an int with k random bits."""
Raymond Hettinger356a4592004-08-30 06:14:31 +0000661 if k <= 0:
662 raise ValueError('number of bits must be greater than zero')
663 if k != int(k):
664 raise TypeError('number of bits should be an integer')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000665 numbytes = (k + 7) // 8 # bits / 8 and rounded up
666 x = int.from_bytes(_urandom(numbytes), 'big')
667 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000668
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000669 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000670 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000671 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000672
673 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000674 "Method should not be called for a system random number generator."
675 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000676 getstate = setstate = _notimplemented
677
Tim Peterscd804102001-01-25 20:25:57 +0000678## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000679
Raymond Hettinger62297132003-08-30 01:24:19 +0000680def _test_generator(n, func, args):
Tim Peters0c9886d2001-01-15 01:18:21 +0000681 import time
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000682 print(n, 'times', func.__name__)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000683 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000684 sqsum = 0.0
685 smallest = 1e10
686 largest = -1e10
687 t0 = time.time()
688 for i in range(n):
Raymond Hettinger62297132003-08-30 01:24:19 +0000689 x = func(*args)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000690 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000691 sqsum = sqsum + x*x
692 smallest = min(x, smallest)
693 largest = max(x, largest)
694 t1 = time.time()
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000695 print(round(t1-t0, 3), 'sec,', end=' ')
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000696 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000697 stddev = _sqrt(sqsum/n - avg*avg)
Raymond Hettinger1f548142014-05-19 20:21:43 +0100698 print('avg %g, stddev %g, min %g, max %g\n' % \
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000699 (avg, stddev, smallest, largest))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000700
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000701
702def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000703 _test_generator(N, random, ())
704 _test_generator(N, normalvariate, (0.0, 1.0))
705 _test_generator(N, lognormvariate, (0.0, 1.0))
706 _test_generator(N, vonmisesvariate, (0.0, 1.0))
707 _test_generator(N, gammavariate, (0.01, 1.0))
708 _test_generator(N, gammavariate, (0.1, 1.0))
709 _test_generator(N, gammavariate, (0.1, 2.0))
710 _test_generator(N, gammavariate, (0.5, 1.0))
711 _test_generator(N, gammavariate, (0.9, 1.0))
712 _test_generator(N, gammavariate, (1.0, 1.0))
713 _test_generator(N, gammavariate, (2.0, 1.0))
714 _test_generator(N, gammavariate, (20.0, 1.0))
715 _test_generator(N, gammavariate, (200.0, 1.0))
716 _test_generator(N, gauss, (0.0, 1.0))
717 _test_generator(N, betavariate, (3.0, 3.0))
Christian Heimesfe337bf2008-03-23 21:54:12 +0000718 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000719
Tim Peters715c4c42001-01-26 22:56:56 +0000720# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000721# as module-level functions. The functions share state across all uses
722#(both in the user's code and in the Python libraries), but that's fine
723# for most programs and is easier for the casual user than making them
724# instantiate their own Random() instance.
725
Tim Petersd7b5e882001-01-25 03:36:26 +0000726_inst = Random()
727seed = _inst.seed
728random = _inst.random
729uniform = _inst.uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +0000730triangular = _inst.triangular
Tim Petersd7b5e882001-01-25 03:36:26 +0000731randint = _inst.randint
732choice = _inst.choice
733randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000734sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000735shuffle = _inst.shuffle
736normalvariate = _inst.normalvariate
737lognormvariate = _inst.lognormvariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000738expovariate = _inst.expovariate
739vonmisesvariate = _inst.vonmisesvariate
740gammavariate = _inst.gammavariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000741gauss = _inst.gauss
742betavariate = _inst.betavariate
743paretovariate = _inst.paretovariate
744weibullvariate = _inst.weibullvariate
745getstate = _inst.getstate
746setstate = _inst.setstate
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000747getrandbits = _inst.getrandbits
Tim Petersd7b5e882001-01-25 03:36:26 +0000748
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000749if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000750 _test()