blob: 21730df720911f1b7139ad59f9591415052bdac2 [file] [log] [blame]
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001-- Testcases for functions in math.
2--
3-- Each line takes the form:
4--
5-- <testid> <function> <input_value> -> <output_value> <flags>
6--
7-- where:
8--
9-- <testid> is a short name identifying the test,
10--
11-- <function> is the function to be tested (exp, cos, asinh, ...),
12--
13-- <input_value> is a string representing a floating-point value
14--
15-- <output_value> is the expected (ideal) output value, again
16-- represented as a string.
17--
18-- <flags> is a list of the floating-point flags required by C99
19--
20-- The possible flags are:
21--
22-- divide-by-zero : raised when a finite input gives a
23-- mathematically infinite result.
24--
25-- overflow : raised when a finite input gives a finite result that
26-- is too large to fit in the usual range of an IEEE 754 double.
27--
28-- invalid : raised for invalid inputs (e.g., sqrt(-1))
29--
30-- ignore-sign : indicates that the sign of the result is
31-- unspecified; e.g., if the result is given as inf,
32-- then both -inf and inf should be accepted as correct.
33--
34-- Flags may appear in any order.
35--
36-- Lines beginning with '--' (like this one) start a comment, and are
37-- ignored. Blank lines, or lines containing only whitespace, are also
38-- ignored.
39
40-- Many of the values below were computed with the help of
41-- version 2.4 of the MPFR library for multiple-precision
42-- floating-point computations with correct rounding. All output
43-- values in this file are (modulo yet-to-be-discovered bugs)
44-- correctly rounded, provided that each input and output decimal
45-- floating-point value below is interpreted as a representation of
46-- the corresponding nearest IEEE 754 double-precision value. See the
47-- MPFR homepage at http://www.mpfr.org for more information about the
48-- MPFR project.
49
Mark Dickinson45f992a2009-12-19 11:20:49 +000050
51-------------------------
52-- erf: error function --
53-------------------------
54
55erf0000 erf 0.0 -> 0.0
56erf0001 erf -0.0 -> -0.0
57erf0002 erf inf -> 1.0
58erf0003 erf -inf -> -1.0
59erf0004 erf nan -> nan
60
61-- tiny values
62erf0010 erf 1e-308 -> 1.1283791670955125e-308
63erf0011 erf 5e-324 -> 4.9406564584124654e-324
64erf0012 erf 1e-10 -> 1.1283791670955126e-10
65
66-- small integers
67erf0020 erf 1 -> 0.84270079294971489
68erf0021 erf 2 -> 0.99532226501895271
69erf0022 erf 3 -> 0.99997790950300136
70erf0023 erf 4 -> 0.99999998458274209
71erf0024 erf 5 -> 0.99999999999846256
72erf0025 erf 6 -> 1.0
73
74erf0030 erf -1 -> -0.84270079294971489
75erf0031 erf -2 -> -0.99532226501895271
76erf0032 erf -3 -> -0.99997790950300136
77erf0033 erf -4 -> -0.99999998458274209
78erf0034 erf -5 -> -0.99999999999846256
79erf0035 erf -6 -> -1.0
80
81-- huge values should all go to +/-1, depending on sign
82erf0040 erf -40 -> -1.0
83erf0041 erf 1e16 -> 1.0
84erf0042 erf -1e150 -> -1.0
85erf0043 erf 1.7e308 -> 1.0
86
87
88----------------------------------------
89-- erfc: complementary error function --
90----------------------------------------
91
92erfc0000 erfc 0.0 -> 1.0
93erfc0001 erfc -0.0 -> 1.0
94erfc0002 erfc inf -> 0.0
95erfc0003 erfc -inf -> 2.0
96erfc0004 erfc nan -> nan
97
98-- tiny values
99erfc0010 erfc 1e-308 -> 1.0
100erfc0011 erfc 5e-324 -> 1.0
101erfc0012 erfc 1e-10 -> 0.99999999988716204
102
103-- small integers
104erfc0020 erfc 1 -> 0.15729920705028513
105erfc0021 erfc 2 -> 0.0046777349810472662
106erfc0022 erfc 3 -> 2.2090496998585441e-05
107erfc0023 erfc 4 -> 1.541725790028002e-08
108erfc0024 erfc 5 -> 1.5374597944280349e-12
109erfc0025 erfc 6 -> 2.1519736712498913e-17
110
111erfc0030 erfc -1 -> 1.8427007929497148
112erfc0031 erfc -2 -> 1.9953222650189528
113erfc0032 erfc -3 -> 1.9999779095030015
114erfc0033 erfc -4 -> 1.9999999845827421
115erfc0034 erfc -5 -> 1.9999999999984626
116erfc0035 erfc -6 -> 2.0
117
118-- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
119erfc0040 erfc 20 -> 5.3958656116079012e-176
120erfc0041 erfc 25 -> 8.3001725711965228e-274
121erfc0042 erfc 27 -> 5.2370464393526292e-319
122erfc0043 erfc 28 -> 0.0
123
124-- huge values
125erfc0050 erfc -40 -> 2.0
126erfc0051 erfc 1e16 -> 0.0
127erfc0052 erfc -1e150 -> 2.0
128erfc0053 erfc 1.7e308 -> 0.0
129
130
Mark Dickinson05d2e082009-12-11 20:17:17 +0000131---------------------------------------------------------
132-- lgamma: log of absolute value of the gamma function --
133---------------------------------------------------------
134
135-- special values
136lgam0000 lgamma 0.0 -> inf divide-by-zero
137lgam0001 lgamma -0.0 -> inf divide-by-zero
138lgam0002 lgamma inf -> inf
139lgam0003 lgamma -inf -> inf
140lgam0004 lgamma nan -> nan
141
142-- negative integers
143lgam0010 lgamma -1 -> inf divide-by-zero
144lgam0011 lgamma -2 -> inf divide-by-zero
145lgam0012 lgamma -1e16 -> inf divide-by-zero
146lgam0013 lgamma -1e300 -> inf divide-by-zero
147lgam0014 lgamma -1.79e308 -> inf divide-by-zero
148
149-- small positive integers give factorials
150lgam0020 lgamma 1 -> 0.0
151lgam0021 lgamma 2 -> 0.0
152lgam0022 lgamma 3 -> 0.69314718055994529
153lgam0023 lgamma 4 -> 1.791759469228055
154lgam0024 lgamma 5 -> 3.1780538303479458
155lgam0025 lgamma 6 -> 4.7874917427820458
156
157-- half integers
158lgam0030 lgamma 0.5 -> 0.57236494292470008
159lgam0031 lgamma 1.5 -> -0.12078223763524522
160lgam0032 lgamma 2.5 -> 0.28468287047291918
161lgam0033 lgamma 3.5 -> 1.2009736023470743
162lgam0034 lgamma -0.5 -> 1.2655121234846454
163lgam0035 lgamma -1.5 -> 0.86004701537648098
164lgam0036 lgamma -2.5 -> -0.056243716497674054
165lgam0037 lgamma -3.5 -> -1.309006684993042
166
167-- values near 0
168lgam0040 lgamma 0.1 -> 2.252712651734206
169lgam0041 lgamma 0.01 -> 4.5994798780420219
170lgam0042 lgamma 1e-8 -> 18.420680738180209
171lgam0043 lgamma 1e-16 -> 36.841361487904734
172lgam0044 lgamma 1e-30 -> 69.077552789821368
173lgam0045 lgamma 1e-160 -> 368.41361487904732
174lgam0046 lgamma 1e-308 -> 709.19620864216608
175lgam0047 lgamma 5.6e-309 -> 709.77602713741896
176lgam0048 lgamma 5.5e-309 -> 709.79404564292167
177lgam0049 lgamma 1e-309 -> 711.49879373516012
178lgam0050 lgamma 1e-323 -> 743.74692474082133
179lgam0051 lgamma 5e-324 -> 744.44007192138122
180lgam0060 lgamma -0.1 -> 2.3689613327287886
181lgam0061 lgamma -0.01 -> 4.6110249927528013
182lgam0062 lgamma -1e-8 -> 18.420680749724522
183lgam0063 lgamma -1e-16 -> 36.841361487904734
184lgam0064 lgamma -1e-30 -> 69.077552789821368
185lgam0065 lgamma -1e-160 -> 368.41361487904732
186lgam0066 lgamma -1e-308 -> 709.19620864216608
187lgam0067 lgamma -5.6e-309 -> 709.77602713741896
188lgam0068 lgamma -5.5e-309 -> 709.79404564292167
189lgam0069 lgamma -1e-309 -> 711.49879373516012
190lgam0070 lgamma -1e-323 -> 743.74692474082133
191lgam0071 lgamma -5e-324 -> 744.44007192138122
192
193-- values near negative integers
194lgam0080 lgamma -0.99999999999999989 -> 36.736800569677101
195lgam0081 lgamma -1.0000000000000002 -> 36.043653389117154
196lgam0082 lgamma -1.9999999999999998 -> 35.350506208557213
197lgam0083 lgamma -2.0000000000000004 -> 34.657359027997266
198lgam0084 lgamma -100.00000000000001 -> -331.85460524980607
199lgam0085 lgamma -99.999999999999986 -> -331.85460524980596
200
201-- large inputs
202lgam0100 lgamma 170 -> 701.43726380873704
203lgam0101 lgamma 171 -> 706.57306224578736
204lgam0102 lgamma 171.624 -> 709.78077443669895
205lgam0103 lgamma 171.625 -> 709.78591682948365
206lgam0104 lgamma 172 -> 711.71472580228999
207lgam0105 lgamma 2000 -> 13198.923448054265
208lgam0106 lgamma 2.55998332785163e305 -> 1.7976931348623099e+308
209lgam0107 lgamma 2.55998332785164e305 -> inf overflow
210lgam0108 lgamma 1.7e308 -> inf overflow
211
212-- inputs for which gamma(x) is tiny
213lgam0120 lgamma -100.5 -> -364.90096830942736
214lgam0121 lgamma -160.5 -> -656.88005261126432
215lgam0122 lgamma -170.5 -> -707.99843314507882
216lgam0123 lgamma -171.5 -> -713.14301641168481
217lgam0124 lgamma -176.5 -> -738.95247590846486
218lgam0125 lgamma -177.5 -> -744.13144651738037
219lgam0126 lgamma -178.5 -> -749.3160351186001
220
221lgam0130 lgamma -1000.5 -> -5914.4377011168517
222lgam0131 lgamma -30000.5 -> -279278.6629959144
223lgam0132 lgamma -4503599627370495.5 -> -1.5782258434492883e+17
224
225-- results close to 0: positive argument ...
226lgam0150 lgamma 0.99999999999999989 -> 6.4083812134800075e-17
227lgam0151 lgamma 1.0000000000000002 -> -1.2816762426960008e-16
228lgam0152 lgamma 1.9999999999999998 -> -9.3876980655431170e-17
229lgam0153 lgamma 2.0000000000000004 -> 1.8775396131086244e-16
230
231-- ... and negative argument
232lgam0160 lgamma -2.7476826467 -> -5.2477408147689136e-11
233lgam0161 lgamma -2.457024738 -> 3.3464637541912932e-10
234
235
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000236---------------------------
237-- gamma: Gamma function --
238---------------------------
239
240-- special values
241gam0000 gamma 0.0 -> inf divide-by-zero
242gam0001 gamma -0.0 -> -inf divide-by-zero
243gam0002 gamma inf -> inf
244gam0003 gamma -inf -> nan invalid
245gam0004 gamma nan -> nan
246
247-- negative integers inputs are invalid
248gam0010 gamma -1 -> nan invalid
249gam0011 gamma -2 -> nan invalid
250gam0012 gamma -1e16 -> nan invalid
251gam0013 gamma -1e300 -> nan invalid
252
253-- small positive integers give factorials
254gam0020 gamma 1 -> 1
255gam0021 gamma 2 -> 1
256gam0022 gamma 3 -> 2
257gam0023 gamma 4 -> 6
258gam0024 gamma 5 -> 24
259gam0025 gamma 6 -> 120
260
261-- half integers
262gam0030 gamma 0.5 -> 1.7724538509055161
263gam0031 gamma 1.5 -> 0.88622692545275805
264gam0032 gamma 2.5 -> 1.3293403881791370
265gam0033 gamma 3.5 -> 3.3233509704478426
266gam0034 gamma -0.5 -> -3.5449077018110322
267gam0035 gamma -1.5 -> 2.3632718012073548
268gam0036 gamma -2.5 -> -0.94530872048294190
269gam0037 gamma -3.5 -> 0.27008820585226911
270
271-- values near 0
272gam0040 gamma 0.1 -> 9.5135076986687306
273gam0041 gamma 0.01 -> 99.432585119150602
274gam0042 gamma 1e-8 -> 99999999.422784343
275gam0043 gamma 1e-16 -> 10000000000000000
276gam0044 gamma 1e-30 -> 9.9999999999999988e+29
277gam0045 gamma 1e-160 -> 1.0000000000000000e+160
278gam0046 gamma 1e-308 -> 1.0000000000000000e+308
279gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
280gam0048 gamma 5.5e-309 -> inf overflow
281gam0049 gamma 1e-309 -> inf overflow
282gam0050 gamma 1e-323 -> inf overflow
283gam0051 gamma 5e-324 -> inf overflow
284gam0060 gamma -0.1 -> -10.686287021193193
285gam0061 gamma -0.01 -> -100.58719796441078
286gam0062 gamma -1e-8 -> -100000000.57721567
287gam0063 gamma -1e-16 -> -10000000000000000
288gam0064 gamma -1e-30 -> -9.9999999999999988e+29
289gam0065 gamma -1e-160 -> -1.0000000000000000e+160
290gam0066 gamma -1e-308 -> -1.0000000000000000e+308
291gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
292gam0068 gamma -5.5e-309 -> -inf overflow
293gam0069 gamma -1e-309 -> -inf overflow
294gam0070 gamma -1e-323 -> -inf overflow
295gam0071 gamma -5e-324 -> -inf overflow
296
297-- values near negative integers
298gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
299gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
300gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
301gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
302gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
303gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
304
305-- large inputs
306gam0100 gamma 170 -> 4.2690680090047051e+304
307gam0101 gamma 171 -> 7.2574156153079990e+306
308gam0102 gamma 171.624 -> 1.7942117599248104e+308
309gam0103 gamma 171.625 -> inf overflow
310gam0104 gamma 172 -> inf overflow
311gam0105 gamma 2000 -> inf overflow
312gam0106 gamma 1.7e308 -> inf overflow
313
314-- inputs for which gamma(x) is tiny
315gam0120 gamma -100.5 -> -3.3536908198076787e-159
316gam0121 gamma -160.5 -> -5.2555464470078293e-286
317gam0122 gamma -170.5 -> -3.3127395215386074e-308
318gam0123 gamma -171.5 -> 1.9316265431711902e-310
319gam0124 gamma -176.5 -> -1.1956388629358166e-321
320gam0125 gamma -177.5 -> 4.9406564584124654e-324
321gam0126 gamma -178.5 -> -0.0
322gam0127 gamma -179.5 -> 0.0
323gam0128 gamma -201.0001 -> 0.0
324gam0129 gamma -202.9999 -> -0.0
325gam0130 gamma -1000.5 -> -0.0
326gam0131 gamma -1000000000.3 -> -0.0
327gam0132 gamma -4503599627370495.5 -> 0.0
328
329-- inputs that cause problems for the standard reflection formula,
330-- thanks to loss of accuracy in 1-x
331gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
332gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
Mark Dickinson664b5112009-12-16 20:23:42 +0000333
Mark Dickinson45f992a2009-12-19 11:20:49 +0000334
Mark Dickinson664b5112009-12-16 20:23:42 +0000335-----------------------------------------------------------
336-- expm1: exp(x) - 1, without precision loss for small x --
337-----------------------------------------------------------
338
339-- special values
340expm10000 expm1 0.0 -> 0.0
341expm10001 expm1 -0.0 -> -0.0
342expm10002 expm1 inf -> inf
343expm10003 expm1 -inf -> -1.0
344expm10004 expm1 nan -> nan
345
346-- expm1(x) ~ x for tiny x
347expm10010 expm1 5e-324 -> 5e-324
348expm10011 expm1 1e-320 -> 1e-320
349expm10012 expm1 1e-300 -> 1e-300
350expm10013 expm1 1e-150 -> 1e-150
351expm10014 expm1 1e-20 -> 1e-20
352
353expm10020 expm1 -5e-324 -> -5e-324
354expm10021 expm1 -1e-320 -> -1e-320
355expm10022 expm1 -1e-300 -> -1e-300
356expm10023 expm1 -1e-150 -> -1e-150
357expm10024 expm1 -1e-20 -> -1e-20
358
359-- moderate sized values, where direct evaluation runs into trouble
360expm10100 expm1 1e-10 -> 1.0000000000500000e-10
361expm10101 expm1 -9.9999999999999995e-08 -> -9.9999995000000163e-8
362expm10102 expm1 3.0000000000000001e-05 -> 3.0000450004500034e-5
363expm10103 expm1 -0.0070000000000000001 -> -0.0069755570667648951
364expm10104 expm1 -0.071499208740094633 -> -0.069002985744820250
365expm10105 expm1 -0.063296004180116799 -> -0.061334416373633009
366expm10106 expm1 0.02390954035597756 -> 0.024197665143819942
367expm10107 expm1 0.085637352649044901 -> 0.089411184580357767
368expm10108 expm1 0.5966174947411006 -> 0.81596588596501485
369expm10109 expm1 0.30247206212075139 -> 0.35319987035848677
370expm10110 expm1 0.74574727375889516 -> 1.1080161116737459
371expm10111 expm1 0.97767512926555711 -> 1.6582689207372185
372expm10112 expm1 0.8450154566787712 -> 1.3280137976535897
373expm10113 expm1 -0.13979260323125264 -> -0.13046144381396060
374expm10114 expm1 -0.52899322039643271 -> -0.41080213643695923
375expm10115 expm1 -0.74083261478900631 -> -0.52328317124797097
376expm10116 expm1 -0.93847766984546055 -> -0.60877704724085946
377expm10117 expm1 10.0 -> 22025.465794806718
378expm10118 expm1 27.0 -> 532048240600.79865
379expm10119 expm1 123 -> 2.6195173187490626e+53
380expm10120 expm1 -12.0 -> -0.99999385578764666
381expm10121 expm1 -35.100000000000001 -> -0.99999999999999944
382
383-- extreme negative values
384expm10201 expm1 -37.0 -> -0.99999999999999989
385expm10200 expm1 -38.0 -> -1.0
386expm10210 expm1 -710.0 -> -1.0
387-- the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so
388-- well when exp(x/2) is subnormal or underflows to zero; check we're
389-- not using it!
390expm10211 expm1 -1420.0 -> -1.0
391expm10212 expm1 -1450.0 -> -1.0
392expm10213 expm1 -1500.0 -> -1.0
393expm10214 expm1 -1e50 -> -1.0
394expm10215 expm1 -1.79e308 -> -1.0
395
396-- extreme positive values
397expm10300 expm1 300 -> 1.9424263952412558e+130
398expm10301 expm1 700 -> 1.0142320547350045e+304
Mark Dickinsone82ac512009-12-29 20:52:27 +0000399-- the next test (expm10302) is disabled because it causes failure on
400-- OS X 10.4/Intel: apparently all values over 709.78 produce an
401-- overflow on that platform. See issue #7575.
402-- expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308
Mark Dickinson664b5112009-12-16 20:23:42 +0000403expm10303 expm1 709.78271289348402 -> inf overflow
404expm10304 expm1 1000 -> inf overflow
405expm10305 expm1 1e50 -> inf overflow
406expm10306 expm1 1.79e308 -> inf overflow
Mark Dickinsone82ac512009-12-29 20:52:27 +0000407
408-- weaker version of expm10302
409expm10307 expm1 709.5 -> 1.3549863193146328e+308