blob: 30186fc7a3b50723df60d827b8d2364e2576d3fa [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Raymond Hettingeref19bad2020-06-25 17:03:50 -07003 bytes
4 -----
5 uniform bytes (values between 0 and 255)
6
Tim Petersd7b5e882001-01-25 03:36:26 +00007 integers
8 --------
9 uniform within range
10
11 sequences
12 ---------
13 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000014 pick random sample
Raymond Hettingere8f1e002016-09-06 17:15:29 -070015 pick weighted random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000016 generate random permutation
17
Guido van Rossume7b146f2000-02-04 15:28:42 +000018 distributions on the real line:
19 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000020 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000021 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000022 normal (Gaussian)
23 lognormal
24 negative exponential
25 gamma
26 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000027 pareto
28 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000029
Guido van Rossume7b146f2000-02-04 15:28:42 +000030 distributions on the circle (angles 0 to 2pi)
31 ---------------------------------------------
32 circular uniform
33 von Mises
34
Raymond Hettinger40f62172002-12-29 23:03:38 +000035General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000036
Raymond Hettinger40f62172002-12-29 23:03:38 +000037* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000038* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000039* The random() method is implemented in C, executes in a single Python step,
40 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000041
Guido van Rossume7b146f2000-02-04 15:28:42 +000042"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000043
Raymond Hettingeref19bad2020-06-25 17:03:50 -070044# Translated by Guido van Rossum from C source provided by
45# Adrian Baddeley. Adapted by Raymond Hettinger for use with
46# the Mersenne Twister and os.urandom() core generators.
47
Raymond Hettinger2f726e92003-10-05 09:09:15 +000048from warnings import warn as _warn
Raymond Hettinger91e27c22005-08-19 01:36:35 +000049from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Raymond Hettinger26a1ad12020-06-22 19:38:59 -070050from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Ram Rachumb0dfc752020-09-29 04:32:10 +030051from math import tau as TWOPI, floor as _floor, isfinite as _isfinite
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000052from os import urandom as _urandom
Christian Heimesf1dc3ee2013-10-13 02:04:20 +020053from _collections_abc import Set as _Set, Sequence as _Sequence
Raymond Hettingera9621bb2020-12-28 11:10:34 -080054from operator import index as _index
Raymond Hettinger53822032019-02-16 13:30:51 -080055from itertools import accumulate as _accumulate, repeat as _repeat
Raymond Hettingercfd31f02019-02-13 02:04:17 -080056from bisect import bisect as _bisect
Antoine Pitrou346cbd32017-05-27 17:50:54 +020057import os as _os
Raymond Hettingeref19bad2020-06-25 17:03:50 -070058import _random
Guido van Rossumff03b1a1994-03-09 12:55:02 +000059
Christian Heimesd9145962019-04-10 22:18:02 +020060try:
61 # hashlib is pretty heavy to load, try lean internal module first
62 from _sha512 import sha512 as _sha512
63except ImportError:
64 # fallback to official implementation
65 from hashlib import sha512 as _sha512
66
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070067__all__ = [
68 "Random",
69 "SystemRandom",
70 "betavariate",
71 "choice",
72 "choices",
73 "expovariate",
74 "gammavariate",
75 "gauss",
76 "getrandbits",
77 "getstate",
78 "lognormvariate",
79 "normalvariate",
80 "paretovariate",
Setrak Balian998ae1f2021-01-15 17:50:42 +000081 "randbytes",
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070082 "randint",
83 "random",
84 "randrange",
85 "sample",
86 "seed",
87 "setstate",
88 "shuffle",
89 "triangular",
90 "uniform",
91 "vonmisesvariate",
92 "weibullvariate",
93]
Tim Petersd7b5e882001-01-25 03:36:26 +000094
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070095NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000096LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000097SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000098BPF = 53 # Number of bits in a float
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -070099RECIP_BPF = 2 ** -BPF
Raymond Hettinger768fa142021-01-02 10:24:51 -0800100_ONE = 1
Tim Petersd7b5e882001-01-25 03:36:26 +0000101
Raymond Hettinger356a4592004-08-30 06:14:31 +0000102
Raymond Hettinger145a4a02003-01-07 10:25:55 +0000103class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000104 """Random number generator base class used by bound module functions.
105
106 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000107 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000108
109 Class Random can also be subclassed if you want to use a different basic
110 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000111 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +0000112 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000113 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000114
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000115 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000116
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000117 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +0000118
119 def __init__(self, x=None):
120 """Initialize an instance.
121
122 Optional argument x controls seeding, as for Random.seed().
123 """
124
125 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000126 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +0000127
Raymond Hettingerf763a722010-09-07 00:38:15 +0000128 def seed(self, a=None, version=2):
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700129 """Initialize internal state from a seed.
130
131 The only supported seed types are None, int, float,
132 str, bytes, and bytearray.
Tim Petersd7b5e882001-01-25 03:36:26 +0000133
Raymond Hettinger23f12412004-09-13 22:23:21 +0000134 None or no argument seeds from current time or from an operating
135 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +0000136
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000137 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000138
Raymond Hettinger16eb8272016-09-04 11:17:28 -0700139 For version 2 (the default), all of the bits are used if *a* is a str,
140 bytes, or bytearray. For version 1 (provided for reproducing random
141 sequences from older versions of Python), the algorithm for str and
142 bytes generates a narrower range of seeds.
143
Tim Petersd7b5e882001-01-25 03:36:26 +0000144 """
145
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700146 if version == 1 and isinstance(a, (str, bytes)):
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700147 a = a.decode('latin-1') if isinstance(a, bytes) else a
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700148 x = ord(a[0]) << 7 if a else 0
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700149 for c in map(ord, a):
150 x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700151 x ^= len(a)
152 a = -2 if x == -1 else x
153
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700154 elif version == 2 and isinstance(a, (str, bytes, bytearray)):
Raymond Hettinger2f9cc7a2016-08-31 23:00:32 -0700155 if isinstance(a, str):
156 a = a.encode()
157 a += _sha512(a).digest()
158 a = int.from_bytes(a, 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000159
Raymond Hettingerd0cdeaa2019-08-22 09:19:36 -0700160 elif not isinstance(a, (type(None), int, float, str, bytes, bytearray)):
161 _warn('Seeding based on hashing is deprecated\n'
162 'since Python 3.9 and will be removed in a subsequent '
163 'version. The only \n'
164 'supported seed types are: None, '
165 'int, float, str, bytes, and bytearray.',
166 DeprecationWarning, 2)
167
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000168 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000169 self.gauss_next = None
170
Tim Peterscd804102001-01-25 20:25:57 +0000171 def getstate(self):
172 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000173 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000174
175 def setstate(self, state):
176 """Restore internal state from object returned by getstate()."""
177 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000178 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000179 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000180 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000181 elif version == 2:
182 version, internalstate, self.gauss_next = state
183 # In version 2, the state was saved as signed ints, which causes
184 # inconsistencies between 32/64-bit systems. The state is
185 # really unsigned 32-bit ints, so we convert negative ints from
186 # version 2 to positive longs for version 3.
187 try:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700188 internalstate = tuple(x % (2 ** 32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000189 except ValueError as e:
190 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000191 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000192 else:
193 raise ValueError("state with version %s passed to "
194 "Random.setstate() of version %s" %
195 (version, self.VERSION))
196
Tim Peterscd804102001-01-25 20:25:57 +0000197
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700198 ## -------------------------------------------------------
199 ## ---- Methods below this point do not need to be overridden or extended
200 ## ---- when subclassing for the purpose of using a different core generator.
Victor Stinner2d875772020-04-29 18:49:00 +0200201
Victor Stinner2d875772020-04-29 18:49:00 +0200202
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700203 ## -------------------- pickle support -------------------
Tim Peterscd804102001-01-25 20:25:57 +0000204
R David Murrayd9ebf4d2013-04-02 13:10:52 -0400205 # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
206 # longer called; we leave it here because it has been here since random was
207 # rewritten back in 2001 and why risk breaking something.
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700208 def __getstate__(self): # for pickle
Tim Peterscd804102001-01-25 20:25:57 +0000209 return self.getstate()
210
211 def __setstate__(self, state): # for pickle
212 self.setstate(state)
213
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000214 def __reduce__(self):
215 return self.__class__, (), self.getstate()
216
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700217
218 ## ---- internal support method for evenly distributed integers ----
219
220 def __init_subclass__(cls, /, **kwargs):
221 """Control how subclasses generate random integers.
222
223 The algorithm a subclass can use depends on the random() and/or
224 getrandbits() implementation available to it and determines
225 whether it can generate random integers from arbitrarily large
226 ranges.
227 """
228
229 for c in cls.__mro__:
230 if '_randbelow' in c.__dict__:
231 # just inherit it
232 break
233 if 'getrandbits' in c.__dict__:
234 cls._randbelow = cls._randbelow_with_getrandbits
235 break
236 if 'random' in c.__dict__:
237 cls._randbelow = cls._randbelow_without_getrandbits
238 break
239
240 def _randbelow_with_getrandbits(self, n):
241 "Return a random int in the range [0,n). Returns 0 if n==0."
242
243 if not n:
244 return 0
245 getrandbits = self.getrandbits
246 k = n.bit_length() # don't use (n-1) here because n can be 1
247 r = getrandbits(k) # 0 <= r < 2**k
248 while r >= n:
249 r = getrandbits(k)
250 return r
251
252 def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
253 """Return a random int in the range [0,n). Returns 0 if n==0.
254
255 The implementation does not use getrandbits, but only random.
256 """
257
258 random = self.random
259 if n >= maxsize:
260 _warn("Underlying random() generator does not supply \n"
261 "enough bits to choose from a population range this large.\n"
262 "To remove the range limitation, add a getrandbits() method.")
263 return _floor(random() * n)
264 if n == 0:
265 return 0
266 rem = maxsize % n
267 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
268 r = random()
269 while r >= limit:
270 r = random()
271 return _floor(r * maxsize) % n
272
273 _randbelow = _randbelow_with_getrandbits
274
275
276 ## --------------------------------------------------------
277 ## ---- Methods below this point generate custom distributions
278 ## ---- based on the methods defined above. They do not
279 ## ---- directly touch the underlying generator and only
280 ## ---- access randomness through the methods: random(),
281 ## ---- getrandbits(), or _randbelow().
282
283
284 ## -------------------- bytes methods ---------------------
285
286 def randbytes(self, n):
287 """Generate n random bytes."""
288 return self.getrandbits(n * 8).to_bytes(n, 'little')
289
290
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700291 ## -------------------- integer methods -------------------
Tim Peterscd804102001-01-25 20:25:57 +0000292
Raymond Hettinger768fa142021-01-02 10:24:51 -0800293 def randrange(self, start, stop=None, step=_ONE):
Tim Petersd7b5e882001-01-25 03:36:26 +0000294 """Choose a random item from range(start, stop[, step]).
295
296 This fixes the problem with randint() which includes the
297 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000298
Tim Petersd7b5e882001-01-25 03:36:26 +0000299 """
300
301 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000302 # common case while still doing adequate error checking.
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800303 try:
304 istart = _index(start)
305 except TypeError:
306 if int(start) == start:
307 istart = int(start)
308 _warn('Float arguments to randrange() have been deprecated\n'
309 'since Python 3.10 and will be removed in a subsequent '
310 'version.',
311 DeprecationWarning, 2)
312 else:
313 _warn('randrange() will raise TypeError in the future',
314 DeprecationWarning, 2)
315 raise ValueError("non-integer arg 1 for randrange()")
Raymond Hettinger768fa142021-01-02 10:24:51 -0800316
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000317 if stop is None:
Raymond Hettinger768fa142021-01-02 10:24:51 -0800318 # We don't check for "step != 1" because it hasn't been
319 # type checked and converted to an integer yet.
320 if step is not _ONE:
321 raise TypeError('Missing a non-None stop argument')
Tim Petersd7b5e882001-01-25 03:36:26 +0000322 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000323 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000324 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000325
326 # stop argument supplied.
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800327 try:
328 istop = _index(stop)
329 except TypeError:
330 if int(stop) == stop:
331 istop = int(stop)
332 _warn('Float arguments to randrange() have been deprecated\n'
333 'since Python 3.10 and will be removed in a subsequent '
334 'version.',
335 DeprecationWarning, 2)
336 else:
337 _warn('randrange() will raise TypeError in the future',
338 DeprecationWarning, 2)
339 raise ValueError("non-integer stop for randrange()")
340
341 try:
342 istep = _index(step)
343 except TypeError:
344 if int(step) == step:
345 istep = int(step)
346 _warn('Float arguments to randrange() have been deprecated\n'
347 'since Python 3.10 and will be removed in a subsequent '
348 'version.',
349 DeprecationWarning, 2)
350 else:
351 _warn('randrange() will raise TypeError in the future',
352 DeprecationWarning, 2)
353 raise ValueError("non-integer step for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000354 width = istop - istart
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800355 if istep == 1:
Raymond Hettinger8f8de732021-01-02 12:09:56 -0800356 if width > 0:
357 return istart + self._randbelow(width)
Kumar Akshay2433a2a2019-01-22 00:49:59 +0530358 raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000359
360 # Non-unit step argument supplied.
Tim Petersd7b5e882001-01-25 03:36:26 +0000361 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000362 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000363 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000364 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000365 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000366 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000367 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000368 raise ValueError("empty range for randrange()")
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700369 return istart + istep * self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000370
371 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000372 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000373 """
374
375 return self.randrange(a, b+1)
376
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200377
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700378 ## -------------------- sequence methods -------------------
Tim Peterscd804102001-01-25 20:25:57 +0000379
Tim Petersd7b5e882001-01-25 03:36:26 +0000380 def choice(self, seq):
381 """Choose a random element from a non-empty sequence."""
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700382 # raises IndexError if seq is empty
383 return seq[self._randbelow(len(seq))]
Tim Petersd7b5e882001-01-25 03:36:26 +0000384
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700385 def shuffle(self, x, random=None):
Antoine Pitrou5e394332012-11-04 02:10:33 +0100386 """Shuffle list x in place, and return None.
Tim Petersd7b5e882001-01-25 03:36:26 +0000387
Antoine Pitrou5e394332012-11-04 02:10:33 +0100388 Optional argument random is a 0-argument function returning a
389 random float in [0.0, 1.0); if it is the default None, the
390 standard random.random will be used.
Senthil Kumaranf8ce51a2013-09-11 22:54:31 -0700391
Tim Petersd7b5e882001-01-25 03:36:26 +0000392 """
393
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700394 if random is None:
395 randbelow = self._randbelow
396 for i in reversed(range(1, len(x))):
397 # pick an element in x[:i+1] with which to exchange x[i]
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700398 j = randbelow(i + 1)
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700399 x[i], x[j] = x[j], x[i]
400 else:
Raymond Hettinger190fac92020-05-02 16:45:32 -0700401 _warn('The *random* parameter to shuffle() has been deprecated\n'
402 'since Python 3.9 and will be removed in a subsequent '
403 'version.',
404 DeprecationWarning, 2)
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700405 floor = _floor
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700406 for i in reversed(range(1, len(x))):
407 # pick an element in x[:i+1] with which to exchange x[i]
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700408 j = floor(random() * (i + 1))
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700409 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000410
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700411 def sample(self, population, k, *, counts=None):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000412 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000413
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000414 Returns a new list containing elements from the population while
415 leaving the original population unchanged. The resulting list is
416 in selection order so that all sub-slices will also be valid random
417 samples. This allows raffle winners (the sample) to be partitioned
418 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000419
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000420 Members of the population need not be hashable or unique. If the
421 population contains repeats, then each occurrence is a possible
422 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000423
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700424 Repeated elements can be specified one at a time or with the optional
425 counts parameter. For example:
426
427 sample(['red', 'blue'], counts=[4, 2], k=5)
428
429 is equivalent to:
430
431 sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
432
433 To choose a sample from a range of integers, use range() for the
434 population argument. This is especially fast and space efficient
435 for sampling from a large population:
436
437 sample(range(10000000), 60)
438
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000439 """
440
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000441 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000442 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000443
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000444 # When the number of selections is small compared to the
445 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000446 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000447 # a larger number of selections, the pool tracking method is
448 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000449 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000450
Raymond Hettinger7fc633f2018-12-04 00:13:38 -0800451 # The number of calls to _randbelow() is kept at or near k, the
452 # theoretical minimum. This is important because running time
453 # is dominated by _randbelow() and because it extracts the
454 # least entropy from the underlying random number generators.
455
456 # Memory requirements are kept to the smaller of a k-length
457 # set or an n-length list.
458
459 # There are other sampling algorithms that do not require
460 # auxiliary memory, but they were rejected because they made
461 # too many calls to _randbelow(), making them slower and
462 # causing them to eat more entropy than necessary.
463
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000464 if not isinstance(population, _Sequence):
masklinn1e27b572020-12-19 05:33:36 +0100465 if isinstance(population, _Set):
466 _warn('Sampling from a set deprecated\n'
467 'since Python 3.9 and will be removed in a subsequent version.',
468 DeprecationWarning, 2)
469 population = tuple(population)
470 else:
471 raise TypeError("Population must be a sequence. For dicts or sets, use sorted(d).")
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000472 n = len(population)
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700473 if counts is not None:
474 cum_counts = list(_accumulate(counts))
475 if len(cum_counts) != n:
476 raise ValueError('The number of counts does not match the population')
477 total = cum_counts.pop()
478 if not isinstance(total, int):
479 raise TypeError('Counts must be integers')
480 if total <= 0:
481 raise ValueError('Total of counts must be greater than zero')
jonanifrancof7b5bacd2021-01-18 19:04:29 +0100482 selections = self.sample(range(total), k=k)
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700483 bisect = _bisect
484 return [population[bisect(cum_counts, s)] for s in selections]
485 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000486 if not 0 <= k <= n:
Raymond Hettingerbf871262016-11-21 14:34:33 -0800487 raise ValueError("Sample larger than population or is negative")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000488 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000489 setsize = 21 # size of a small set minus size of an empty list
490 if k > 5:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700491 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000492 if n <= setsize:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700493 # An n-length list is smaller than a k-length set.
494 # Invariant: non-selected at pool[0 : n-i]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000495 pool = list(population)
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700496 for i in range(k):
497 j = randbelow(n - i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000498 result[i] = pool[j]
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700499 pool[j] = pool[n - i - 1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000500 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000501 selected = set()
502 selected_add = selected.add
503 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000504 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000505 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000506 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000507 selected_add(j)
508 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000509 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000510
Raymond Hettinger9016f282016-09-26 21:45:57 -0700511 def choices(self, population, weights=None, *, cum_weights=None, k=1):
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700512 """Return a k sized list of population elements chosen with replacement.
513
514 If the relative weights or cumulative weights are not specified,
515 the selections are made with equal probability.
516
517 """
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700518 random = self.random
Raymond Hettingere69cd162018-07-04 15:28:20 -0700519 n = len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700520 if cum_weights is None:
521 if weights is None:
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700522 floor = _floor
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800523 n += 0.0 # convert to float for a small speed improvement
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700524 return [population[floor(random() * n)] for i in _repeat(None, k)]
Raymond Hettingercfd31f02019-02-13 02:04:17 -0800525 cum_weights = list(_accumulate(weights))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700526 elif weights is not None:
Raymond Hettinger24e42392016-11-13 00:42:56 -0500527 raise TypeError('Cannot specify both weights and cumulative weights')
Raymond Hettingere69cd162018-07-04 15:28:20 -0700528 if len(cum_weights) != n:
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700529 raise ValueError('The number of weights does not match the population')
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800530 total = cum_weights[-1] + 0.0 # convert to float
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800531 if total <= 0.0:
532 raise ValueError('Total of weights must be greater than zero')
Ram Rachumb0dfc752020-09-29 04:32:10 +0300533 if not _isfinite(total):
534 raise ValueError('Total of weights must be finite')
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800535 bisect = _bisect
Raymond Hettingere69cd162018-07-04 15:28:20 -0700536 hi = n - 1
Raymond Hettingerddf71712018-06-27 01:08:31 -0700537 return [population[bisect(cum_weights, random() * total, 0, hi)]
Raymond Hettinger53822032019-02-16 13:30:51 -0800538 for i in _repeat(None, k)]
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700539
Tim Peterscd804102001-01-25 20:25:57 +0000540
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700541 ## -------------------- real-valued distributions -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000542
543 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000544 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700545 return a + (b - a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000546
Christian Heimesfe337bf2008-03-23 21:54:12 +0000547 def triangular(self, low=0.0, high=1.0, mode=None):
548 """Triangular distribution.
549
550 Continuous distribution bounded by given lower and upper limits,
551 and having a given mode value in-between.
552
553 http://en.wikipedia.org/wiki/Triangular_distribution
554
555 """
556 u = self.random()
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700557 try:
558 c = 0.5 if mode is None else (mode - low) / (high - low)
559 except ZeroDivisionError:
560 return low
Christian Heimesfe337bf2008-03-23 21:54:12 +0000561 if u > c:
562 u = 1.0 - u
563 c = 1.0 - c
564 low, high = high, low
Raymond Hettingerf5ea83f2017-09-04 16:51:06 -0700565 return low + (high - low) * _sqrt(u * c)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000566
Tim Petersd7b5e882001-01-25 03:36:26 +0000567 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000568 """Normal distribution.
569
570 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000571
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000572 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000573 # Uses Kinderman and Monahan method. Reference: Kinderman,
574 # A.J. and Monahan, J.F., "Computer generation of random
575 # variables using the ratio of uniform deviates", ACM Trans
576 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000577
Tim Petersd7b5e882001-01-25 03:36:26 +0000578 random = self.random
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700579 while True:
Tim Peters0c9886d2001-01-15 01:18:21 +0000580 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000581 u2 = 1.0 - random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700582 z = NV_MAGICCONST * (u1 - 0.5) / u2
583 zz = z * z / 4.0
Tim Petersd7b5e882001-01-25 03:36:26 +0000584 if zz <= -_log(u2):
585 break
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700586 return mu + z * sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000587
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700588 def gauss(self, mu, sigma):
589 """Gaussian distribution.
590
591 mu is the mean, and sigma is the standard deviation. This is
592 slightly faster than the normalvariate() function.
593
594 Not thread-safe without a lock around calls.
595
596 """
597 # When x and y are two variables from [0, 1), uniformly
598 # distributed, then
599 #
600 # cos(2*pi*x)*sqrt(-2*log(1-y))
601 # sin(2*pi*x)*sqrt(-2*log(1-y))
602 #
603 # are two *independent* variables with normal distribution
604 # (mu = 0, sigma = 1).
605 # (Lambert Meertens)
606 # (corrected version; bug discovered by Mike Miller, fixed by LM)
607
608 # Multithreading note: When two threads call this function
609 # simultaneously, it is possible that they will receive the
610 # same return value. The window is very small though. To
611 # avoid this, you have to use a lock around all calls. (I
612 # didn't want to slow this down in the serial case by using a
613 # lock here.)
614
615 random = self.random
616 z = self.gauss_next
617 self.gauss_next = None
618 if z is None:
619 x2pi = random() * TWOPI
620 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
621 z = _cos(x2pi) * g2rad
622 self.gauss_next = _sin(x2pi) * g2rad
623
624 return mu + z * sigma
Tim Petersd7b5e882001-01-25 03:36:26 +0000625
626 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000627 """Log normal distribution.
628
629 If you take the natural logarithm of this distribution, you'll get a
630 normal distribution with mean mu and standard deviation sigma.
631 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000632
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000633 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000634 return _exp(self.normalvariate(mu, sigma))
635
Tim Petersd7b5e882001-01-25 03:36:26 +0000636 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000637 """Exponential distribution.
638
Mark Dickinson2f947362009-01-07 17:54:07 +0000639 lambd is 1.0 divided by the desired mean. It should be
640 nonzero. (The parameter would be called "lambda", but that is
641 a reserved word in Python.) Returned values range from 0 to
642 positive infinity if lambd is positive, and from negative
643 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000644
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000645 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000646 # lambd: rate lambd = 1/mean
647 # ('lambda' is a Python reserved word)
648
Raymond Hettinger5279fb92011-06-25 11:30:53 +0200649 # we use 1-random() instead of random() to preclude the
650 # possibility of taking the log of zero.
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700651 return -_log(1.0 - self.random()) / lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000652
Tim Petersd7b5e882001-01-25 03:36:26 +0000653 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000654 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000655
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000656 mu is the mean angle, expressed in radians between 0 and 2*pi, and
657 kappa is the concentration parameter, which must be greater than or
658 equal to zero. If kappa is equal to zero, this distribution reduces
659 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000660
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000661 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000662 # Based upon an algorithm published in: Fisher, N.I.,
663 # "Statistical Analysis of Circular Data", Cambridge
664 # University Press, 1993.
665
666 # Thanks to Magnus Kessler for a correction to the
667 # implementation of step 4.
668
669 random = self.random
670 if kappa <= 1e-6:
671 return TWOPI * random()
672
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200673 s = 0.5 / kappa
674 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000675
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700676 while True:
Tim Peters0c9886d2001-01-15 01:18:21 +0000677 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000678 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000679
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200680 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000681 u2 = random()
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200682 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000683 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000684
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200685 q = 1.0 / r
686 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000687 u3 = random()
688 if u3 > 0.5:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000689 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000690 else:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000691 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000692
693 return theta
694
Tim Petersd7b5e882001-01-25 03:36:26 +0000695 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000696 """Gamma distribution. Not the gamma function!
697
698 Conditions on the parameters are alpha > 0 and beta > 0.
699
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700700 The probability distribution function is:
701
702 x ** (alpha - 1) * math.exp(-x / beta)
703 pdf(x) = --------------------------------------
704 math.gamma(alpha) * beta ** alpha
705
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000706 """
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000707 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000708
Guido van Rossum570764d2002-05-14 14:08:12 +0000709 # Warning: a few older sources define the gamma distribution in terms
710 # of alpha > -1.0
711 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000712 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000713
Tim Petersd7b5e882001-01-25 03:36:26 +0000714 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000715 if alpha > 1.0:
716
717 # Uses R.C.H. Cheng, "The generation of Gamma
718 # variables with non-integral shape parameters",
719 # Applied Statistics, (1977), 26, No. 1, p71-74
720
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000721 ainv = _sqrt(2.0 * alpha - 1.0)
722 bbb = alpha - LOG4
723 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000724
Raymond Hettinger6a613f92020-08-02 12:03:32 -0700725 while True:
Tim Petersd7b5e882001-01-25 03:36:26 +0000726 u1 = random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700727 if not 1e-7 < u1 < 0.9999999:
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000728 continue
729 u2 = 1.0 - random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700730 v = _log(u1 / (1.0 - u1)) / ainv
731 x = alpha * _exp(v)
732 z = u1 * u1 * u2
733 r = bbb + ccc * v - x
734 if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000735 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000736
737 elif alpha == 1.0:
leodema9f396b62017-06-04 07:41:41 +0100738 # expovariate(1/beta)
leodema63d15222018-12-24 07:54:25 +0100739 return -_log(1.0 - random()) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000740
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700741 else:
742 # alpha is between 0 and 1 (exclusive)
Tim Petersd7b5e882001-01-25 03:36:26 +0000743 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700744 while True:
Tim Petersd7b5e882001-01-25 03:36:26 +0000745 u = random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700746 b = (_e + alpha) / _e
747 p = b * u
Tim Petersd7b5e882001-01-25 03:36:26 +0000748 if p <= 1.0:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700749 x = p ** (1.0 / alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000750 else:
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700751 x = -_log((b - p) / alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000752 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000753 if p > 1.0:
754 if u1 <= x ** (alpha - 1.0):
755 break
756 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000757 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000758 return x * beta
759
Tim Petersd7b5e882001-01-25 03:36:26 +0000760 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000761 """Beta distribution.
762
Thomas Woutersb2137042007-02-01 18:02:27 +0000763 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000764 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000765
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000766 """
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700767 ## See
768 ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
769 ## for Ivan Frohne's insightful analysis of why the original implementation:
770 ##
771 ## def betavariate(self, alpha, beta):
772 ## # Discrete Event Simulation in C, pp 87-88.
773 ##
774 ## y = self.expovariate(alpha)
775 ## z = self.expovariate(1.0/beta)
776 ## return z/(y+z)
777 ##
778 ## was dead wrong, and how it probably got that way.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000779
Tim Peters85e2e472001-01-26 06:49:56 +0000780 # This version due to Janne Sinkkonen, and matches all the std
781 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300782 y = self.gammavariate(alpha, 1.0)
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700783 if y:
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300784 return y / (y + self.gammavariate(beta, 1.0))
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700785 return 0.0
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000786
Tim Petersd7b5e882001-01-25 03:36:26 +0000787 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000788 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000789 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000790
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000791 u = 1.0 - self.random()
Raymond Hettinger5c327092020-08-01 01:18:26 -0700792 return u ** (-1.0 / alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000793
Tim Petersd7b5e882001-01-25 03:36:26 +0000794 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000795 """Weibull distribution.
796
797 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000798
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000799 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000800 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000801
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000802 u = 1.0 - self.random()
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700803 return alpha * (-_log(u)) ** (1.0 / beta)
804
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000805
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700806## ------------------------------------------------------------------
Raymond Hettinger23f12412004-09-13 22:23:21 +0000807## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000808
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700809
Raymond Hettinger23f12412004-09-13 22:23:21 +0000810class SystemRandom(Random):
811 """Alternate random number generator using sources provided
812 by the operating system (such as /dev/urandom on Unix or
813 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000814
815 Not available on all systems (see os.urandom() for details).
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700816
Raymond Hettinger356a4592004-08-30 06:14:31 +0000817 """
818
819 def random(self):
820 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000821 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000822
823 def getrandbits(self, k):
Serhiy Storchaka95949422013-08-27 19:40:23 +0300824 """getrandbits(k) -> x. Generates an int with k random bits."""
Antoine Pitrou75a33782020-04-17 19:32:14 +0200825 if k < 0:
826 raise ValueError('number of bits must be non-negative')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000827 numbytes = (k + 7) // 8 # bits / 8 and rounded up
828 x = int.from_bytes(_urandom(numbytes), 'big')
829 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000830
Victor Stinner9f5fe792020-04-17 19:05:35 +0200831 def randbytes(self, n):
832 """Generate n random bytes."""
833 # os.urandom(n) fails with ValueError for n < 0
834 # and returns an empty bytes string for n == 0.
835 return _urandom(n)
836
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000837 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000838 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000839 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000840
841 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000842 "Method should not be called for a system random number generator."
843 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000844 getstate = setstate = _notimplemented
845
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700846
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700847# ----------------------------------------------------------------------
848# Create one instance, seeded from current time, and export its methods
849# as module-level functions. The functions share state across all uses
850# (both in the user's code and in the Python libraries), but that's fine
851# for most programs and is easier for the casual user than making them
852# instantiate their own Random() instance.
853
854_inst = Random()
855seed = _inst.seed
856random = _inst.random
857uniform = _inst.uniform
858triangular = _inst.triangular
859randint = _inst.randint
860choice = _inst.choice
861randrange = _inst.randrange
862sample = _inst.sample
863shuffle = _inst.shuffle
864choices = _inst.choices
865normalvariate = _inst.normalvariate
866lognormvariate = _inst.lognormvariate
867expovariate = _inst.expovariate
868vonmisesvariate = _inst.vonmisesvariate
869gammavariate = _inst.gammavariate
870gauss = _inst.gauss
871betavariate = _inst.betavariate
872paretovariate = _inst.paretovariate
873weibullvariate = _inst.weibullvariate
874getstate = _inst.getstate
875setstate = _inst.setstate
876getrandbits = _inst.getrandbits
877randbytes = _inst.randbytes
878
879
880## ------------------------------------------------------
881## ----------------- test program -----------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000882
Raymond Hettinger62297132003-08-30 01:24:19 +0000883def _test_generator(n, func, args):
Raymond Hettinger26a1ad12020-06-22 19:38:59 -0700884 from statistics import stdev, fmean as mean
885 from time import perf_counter
886
887 t0 = perf_counter()
888 data = [func(*args) for i in range(n)]
889 t1 = perf_counter()
890
891 xbar = mean(data)
892 sigma = stdev(data, xbar)
893 low = min(data)
894 high = max(data)
895
896 print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}')
897 print('avg %g, stddev %g, min %g, max %g\n' % (xbar, sigma, low, high))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000898
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000899
900def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000901 _test_generator(N, random, ())
902 _test_generator(N, normalvariate, (0.0, 1.0))
903 _test_generator(N, lognormvariate, (0.0, 1.0))
904 _test_generator(N, vonmisesvariate, (0.0, 1.0))
905 _test_generator(N, gammavariate, (0.01, 1.0))
906 _test_generator(N, gammavariate, (0.1, 1.0))
907 _test_generator(N, gammavariate, (0.1, 2.0))
908 _test_generator(N, gammavariate, (0.5, 1.0))
909 _test_generator(N, gammavariate, (0.9, 1.0))
910 _test_generator(N, gammavariate, (1.0, 1.0))
911 _test_generator(N, gammavariate, (2.0, 1.0))
912 _test_generator(N, gammavariate, (20.0, 1.0))
913 _test_generator(N, gammavariate, (200.0, 1.0))
914 _test_generator(N, gauss, (0.0, 1.0))
915 _test_generator(N, betavariate, (3.0, 3.0))
Raymond Hettinger9db5b8d2020-06-13 09:46:47 -0700916 _test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000917
Raymond Hettinger40f62172002-12-29 23:03:38 +0000918
Raymond Hettingeref19bad2020-06-25 17:03:50 -0700919## ------------------------------------------------------
920## ------------------ fork support ---------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000921
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200922if hasattr(_os, "fork"):
Gregory P. Smith163468a2017-05-29 10:03:41 -0700923 _os.register_at_fork(after_in_child=_inst.seed)
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200924
925
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000926if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000927 _test()