blob: 8e04475a4e9556a2a1c54d13f292df6002f8eac0 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`collections` --- High-performance container datatypes
3===========================================================
4
5.. module:: collections
6 :synopsis: High-performance datatypes
7.. moduleauthor:: Raymond Hettinger <python@rcn.com>
8.. sectionauthor:: Raymond Hettinger <python@rcn.com>
9
10
Georg Brandl116aa622007-08-15 14:28:22 +000011This module implements high-performance container datatypes. Currently,
12there are two datatypes, :class:`deque` and :class:`defaultdict`, and
Raymond Hettingerebcee3f2008-02-06 19:54:00 +000013one datatype factory function, :func:`namedtuple`.
Georg Brandl116aa622007-08-15 14:28:22 +000014
Raymond Hettingerebcee3f2008-02-06 19:54:00 +000015The specialized containers provided in this module provide alternatives
16to Python's general purpose built-in containers, :class:`dict`,
17:class:`list`, :class:`set`, and :class:`tuple`.
18
19Besides the containers provided here, the optional :mod:`bsddb`
20module offers the ability to create in-memory or file based ordered
21dictionaries with string keys using the :meth:`bsddb.btopen` method.
Georg Brandl116aa622007-08-15 14:28:22 +000022
Mark Summerfield08898b42007-09-05 08:43:04 +000023In addition to containers, the collections module provides some ABCs
Raymond Hettingerebcee3f2008-02-06 19:54:00 +000024(abstract base classes) that can be used to test whether a class
25provides a particular interface, for example, is it hashable or
26a mapping.
27
28ABCs - abstract base classes
29----------------------------
30
31The collections module offers the following ABCs:
Mark Summerfield08898b42007-09-05 08:43:04 +000032
Mark Summerfield8f2d0062008-02-06 13:30:44 +000033===================================== ================================================================================
Mark Summerfield08898b42007-09-05 08:43:04 +000034ABC Notes
Mark Summerfield8f2d0062008-02-06 13:30:44 +000035===================================== ================================================================================
Mark Summerfield08898b42007-09-05 08:43:04 +000036:class:`collections.Container` Defines ``__contains__()``
37:class:`collections.Hashable` Defines ``__hash__()``
38:class:`collections.Iterable` Defines ``__iter__()``
39:class:`collections.Iterator` Derived from :class:`Iterable` and in
40 addition defines ``__next__()``
Raymond Hettingere4c96ad2008-02-06 01:23:58 +000041:class:`collections.Sized` Defines ``__len__()``
Mark Summerfield08898b42007-09-05 08:43:04 +000042:class:`collections.Mapping` Derived from :class:`Container`,
43 :class:`Iterable`,
44 and :class:`Sized`, and in addition
45 defines ``__getitem__()``, ``get()``,
46 ``__contains__()``, ``__len__()``,
Raymond Hettingere4c96ad2008-02-06 01:23:58 +000047 ``__eq__()``, ``__ne__()``,
Mark Summerfield08898b42007-09-05 08:43:04 +000048 ``__iter__()``, ``keys()``,
49 ``items()``, and ``values()``
50:class:`collections.MutableMapping` Derived from :class:`Mapping`
Mark Summerfield08898b42007-09-05 08:43:04 +000051:class:`collections.Sequence` Derived from :class:`Container`,
52 :class:`Iterable`, and :class:`Sized`,
53 and in addition defines
Mark Summerfield8f2d0062008-02-06 13:30:44 +000054 ``__getitem__()``
Raymond Hettingere4c96ad2008-02-06 01:23:58 +000055:class:`collections.MutableSequence` Derived from :class:`Sequence`
Mark Summerfield8f2d0062008-02-06 13:30:44 +000056:class:`collections.Set` Derived from :class:`Container`,
57 :class:`Iterable`, and :class:`Sized`,
Raymond Hettingere4c96ad2008-02-06 01:23:58 +000058 add in addition defines
Mark Summerfield8f2d0062008-02-06 13:30:44 +000059 ``__le__()``, ``__lt__()``,
60 ``__eq__()``, ``__and__()``,
61 ``__or__()``, ``__sub__()``,
Raymond Hettingere4c96ad2008-02-06 01:23:58 +000062 ``__xor__()``, and ``isdisjoint()``,
63:class:`collections.MutableSet` Derived from :class:`Set` and in
64 addition defines ``add()``,
65 ``clear()``, ``discard()``, ``pop()``,
Mark Summerfield8f2d0062008-02-06 13:30:44 +000066 ``remove()``, ``__ior__()``,
67 ``__iand__()``, ``__ixor__()``, and
68 ``__isub__()``
69===================================== ================================================================================
Mark Summerfield08898b42007-09-05 08:43:04 +000070
Mark Summerfield08898b42007-09-05 08:43:04 +000071These ABCs allow us to ask classes or instances if they provide
72particular functionality, for example::
73
Mark Summerfield08898b42007-09-05 08:43:04 +000074 size = None
Raymond Hettingerebcee3f2008-02-06 19:54:00 +000075 if isinstance(myvar, collections.Sized):
Mark Summerfield08898b42007-09-05 08:43:04 +000076 size = len(myvar)
77
Raymond Hettingerebcee3f2008-02-06 19:54:00 +000078Several of the ABCs are also useful as mixins that make it easier to develop
79classes supporting container APIs. For example, to write a class supporting
80the full :class:`Set` API, it only necessary to supply the three underlying
81abstract methods: :meth:`__contains__`, :meth:`__iter__`, and :meth:`__len__`.
82The ABC supplies the remaining methods such as :meth:`__and__` and
83:meth:`isdisjoint` ::
84
85 class ListBasedSet(collections.Set):
86 'Alternate set implementation favoring space over speed'
87 def __init__(self, iterable):
88 self.elements = list(set(iterable))
89 def __iter__(self):
90 return iter(self.elements)
91 def __contains__(self, value):
92 return value in self.elements
93 def __len__(self):
94 return len(self.elements)
95
96 s1 = ListBasedSet('abcdef')
97 s2 = ListBasedSet('defghi')
98 overlap = s1 & s2 # The __and__() method is supported automatically
99
100
Mark Summerfield08898b42007-09-05 08:43:04 +0000101(For more about ABCs, see the :mod:`abc` module and :pep:`3119`.)
102
103
Georg Brandl116aa622007-08-15 14:28:22 +0000104
105.. _deque-objects:
106
107:class:`deque` objects
108----------------------
109
110
Georg Brandl9afde1c2007-11-01 20:32:30 +0000111.. class:: deque([iterable[, maxlen]])
Georg Brandl116aa622007-08-15 14:28:22 +0000112
113 Returns a new deque object initialized left-to-right (using :meth:`append`) with
114 data from *iterable*. If *iterable* is not specified, the new deque is empty.
115
116 Deques are a generalization of stacks and queues (the name is pronounced "deck"
117 and is short for "double-ended queue"). Deques support thread-safe, memory
118 efficient appends and pops from either side of the deque with approximately the
119 same O(1) performance in either direction.
120
121 Though :class:`list` objects support similar operations, they are optimized for
122 fast fixed-length operations and incur O(n) memory movement costs for
123 ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
124 position of the underlying data representation.
125
Georg Brandl116aa622007-08-15 14:28:22 +0000126
Georg Brandl9afde1c2007-11-01 20:32:30 +0000127 If *maxlen* is not specified or is *None*, deques may grow to an
128 arbitrary length. Otherwise, the deque is bounded to the specified maximum
129 length. Once a bounded length deque is full, when new items are added, a
130 corresponding number of items are discarded from the opposite end. Bounded
131 length deques provide functionality similar to the ``tail`` filter in
132 Unix. They are also useful for tracking transactions and other pools of data
133 where only the most recent activity is of interest.
134
Georg Brandl9afde1c2007-11-01 20:32:30 +0000135
Georg Brandl116aa622007-08-15 14:28:22 +0000136Deque objects support the following methods:
137
Georg Brandl116aa622007-08-15 14:28:22 +0000138.. method:: deque.append(x)
139
140 Add *x* to the right side of the deque.
141
142
143.. method:: deque.appendleft(x)
144
145 Add *x* to the left side of the deque.
146
147
148.. method:: deque.clear()
149
150 Remove all elements from the deque leaving it with length 0.
151
152
153.. method:: deque.extend(iterable)
154
155 Extend the right side of the deque by appending elements from the iterable
156 argument.
157
158
159.. method:: deque.extendleft(iterable)
160
161 Extend the left side of the deque by appending elements from *iterable*. Note,
162 the series of left appends results in reversing the order of elements in the
163 iterable argument.
164
165
166.. method:: deque.pop()
167
168 Remove and return an element from the right side of the deque. If no elements
169 are present, raises an :exc:`IndexError`.
170
171
172.. method:: deque.popleft()
173
174 Remove and return an element from the left side of the deque. If no elements are
175 present, raises an :exc:`IndexError`.
176
177
178.. method:: deque.remove(value)
179
180 Removed the first occurrence of *value*. If not found, raises a
181 :exc:`ValueError`.
182
Georg Brandl116aa622007-08-15 14:28:22 +0000183
184.. method:: deque.rotate(n)
185
186 Rotate the deque *n* steps to the right. If *n* is negative, rotate to the
187 left. Rotating one step to the right is equivalent to:
188 ``d.appendleft(d.pop())``.
189
190In addition to the above, deques support iteration, pickling, ``len(d)``,
191``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
192the :keyword:`in` operator, and subscript references such as ``d[-1]``.
193
194Example::
195
196 >>> from collections import deque
197 >>> d = deque('ghi') # make a new deque with three items
198 >>> for elem in d: # iterate over the deque's elements
Georg Brandl6911e3c2007-09-04 07:15:32 +0000199 ... print(elem.upper())
Georg Brandl116aa622007-08-15 14:28:22 +0000200 G
201 H
202 I
203
204 >>> d.append('j') # add a new entry to the right side
205 >>> d.appendleft('f') # add a new entry to the left side
206 >>> d # show the representation of the deque
207 deque(['f', 'g', 'h', 'i', 'j'])
208
209 >>> d.pop() # return and remove the rightmost item
210 'j'
211 >>> d.popleft() # return and remove the leftmost item
212 'f'
213 >>> list(d) # list the contents of the deque
214 ['g', 'h', 'i']
215 >>> d[0] # peek at leftmost item
216 'g'
217 >>> d[-1] # peek at rightmost item
218 'i'
219
220 >>> list(reversed(d)) # list the contents of a deque in reverse
221 ['i', 'h', 'g']
222 >>> 'h' in d # search the deque
223 True
224 >>> d.extend('jkl') # add multiple elements at once
225 >>> d
226 deque(['g', 'h', 'i', 'j', 'k', 'l'])
227 >>> d.rotate(1) # right rotation
228 >>> d
229 deque(['l', 'g', 'h', 'i', 'j', 'k'])
230 >>> d.rotate(-1) # left rotation
231 >>> d
232 deque(['g', 'h', 'i', 'j', 'k', 'l'])
233
234 >>> deque(reversed(d)) # make a new deque in reverse order
235 deque(['l', 'k', 'j', 'i', 'h', 'g'])
236 >>> d.clear() # empty the deque
237 >>> d.pop() # cannot pop from an empty deque
238 Traceback (most recent call last):
239 File "<pyshell#6>", line 1, in -toplevel-
240 d.pop()
241 IndexError: pop from an empty deque
242
243 >>> d.extendleft('abc') # extendleft() reverses the input order
244 >>> d
245 deque(['c', 'b', 'a'])
246
247
248.. _deque-recipes:
249
Georg Brandl9afde1c2007-11-01 20:32:30 +0000250:class:`deque` Recipes
251^^^^^^^^^^^^^^^^^^^^^^
Georg Brandl116aa622007-08-15 14:28:22 +0000252
253This section shows various approaches to working with deques.
254
255The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
256deletion. For example, a pure python implementation of ``del d[n]`` relies on
257the :meth:`rotate` method to position elements to be popped::
258
259 def delete_nth(d, n):
260 d.rotate(-n)
261 d.popleft()
262 d.rotate(n)
263
264To implement :class:`deque` slicing, use a similar approach applying
265:meth:`rotate` to bring a target element to the left side of the deque. Remove
266old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
267reverse the rotation.
Georg Brandl116aa622007-08-15 14:28:22 +0000268With minor variations on that approach, it is easy to implement Forth style
269stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
270``rot``, and ``roll``.
271
Georg Brandl116aa622007-08-15 14:28:22 +0000272Multi-pass data reduction algorithms can be succinctly expressed and efficiently
273coded by extracting elements with multiple calls to :meth:`popleft`, applying
Georg Brandl9afde1c2007-11-01 20:32:30 +0000274a reduction function, and calling :meth:`append` to add the result back to the
275deque.
Georg Brandl116aa622007-08-15 14:28:22 +0000276
277For example, building a balanced binary tree of nested lists entails reducing
278two adjacent nodes into one by grouping them in a list::
279
280 >>> def maketree(iterable):
281 ... d = deque(iterable)
282 ... while len(d) > 1:
283 ... pair = [d.popleft(), d.popleft()]
284 ... d.append(pair)
285 ... return list(d)
286 ...
Georg Brandl6911e3c2007-09-04 07:15:32 +0000287 >>> print(maketree('abcdefgh'))
Georg Brandl116aa622007-08-15 14:28:22 +0000288 [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]
289
Georg Brandl9afde1c2007-11-01 20:32:30 +0000290Bounded length deques provide functionality similar to the ``tail`` filter
291in Unix::
Georg Brandl116aa622007-08-15 14:28:22 +0000292
Georg Brandl9afde1c2007-11-01 20:32:30 +0000293 def tail(filename, n=10):
294 'Return the last n lines of a file'
295 return deque(open(filename), n)
Georg Brandl116aa622007-08-15 14:28:22 +0000296
297.. _defaultdict-objects:
298
299:class:`defaultdict` objects
300----------------------------
301
302
303.. class:: defaultdict([default_factory[, ...]])
304
305 Returns a new dictionary-like object. :class:`defaultdict` is a subclass of the
306 builtin :class:`dict` class. It overrides one method and adds one writable
307 instance variable. The remaining functionality is the same as for the
308 :class:`dict` class and is not documented here.
309
310 The first argument provides the initial value for the :attr:`default_factory`
311 attribute; it defaults to ``None``. All remaining arguments are treated the same
312 as if they were passed to the :class:`dict` constructor, including keyword
313 arguments.
314
Georg Brandl116aa622007-08-15 14:28:22 +0000315
316:class:`defaultdict` objects support the following method in addition to the
317standard :class:`dict` operations:
318
Georg Brandl116aa622007-08-15 14:28:22 +0000319.. method:: defaultdict.__missing__(key)
320
321 If the :attr:`default_factory` attribute is ``None``, this raises an
322 :exc:`KeyError` exception with the *key* as argument.
323
324 If :attr:`default_factory` is not ``None``, it is called without arguments to
325 provide a default value for the given *key*, this value is inserted in the
326 dictionary for the *key*, and returned.
327
328 If calling :attr:`default_factory` raises an exception this exception is
329 propagated unchanged.
330
331 This method is called by the :meth:`__getitem__` method of the :class:`dict`
332 class when the requested key is not found; whatever it returns or raises is then
333 returned or raised by :meth:`__getitem__`.
334
335:class:`defaultdict` objects support the following instance variable:
336
337
338.. attribute:: defaultdict.default_factory
339
340 This attribute is used by the :meth:`__missing__` method; it is initialized from
341 the first argument to the constructor, if present, or to ``None``, if absent.
342
343
344.. _defaultdict-examples:
345
346:class:`defaultdict` Examples
347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
348
349Using :class:`list` as the :attr:`default_factory`, it is easy to group a
350sequence of key-value pairs into a dictionary of lists::
351
352 >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
353 >>> d = defaultdict(list)
354 >>> for k, v in s:
355 ... d[k].append(v)
356 ...
357 >>> d.items()
358 [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
359
360When each key is encountered for the first time, it is not already in the
361mapping; so an entry is automatically created using the :attr:`default_factory`
362function which returns an empty :class:`list`. The :meth:`list.append`
363operation then attaches the value to the new list. When keys are encountered
364again, the look-up proceeds normally (returning the list for that key) and the
365:meth:`list.append` operation adds another value to the list. This technique is
366simpler and faster than an equivalent technique using :meth:`dict.setdefault`::
367
368 >>> d = {}
369 >>> for k, v in s:
370 ... d.setdefault(k, []).append(v)
371 ...
372 >>> d.items()
373 [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
374
375Setting the :attr:`default_factory` to :class:`int` makes the
376:class:`defaultdict` useful for counting (like a bag or multiset in other
377languages)::
378
379 >>> s = 'mississippi'
380 >>> d = defaultdict(int)
381 >>> for k in s:
382 ... d[k] += 1
383 ...
384 >>> d.items()
385 [('i', 4), ('p', 2), ('s', 4), ('m', 1)]
386
387When a letter is first encountered, it is missing from the mapping, so the
388:attr:`default_factory` function calls :func:`int` to supply a default count of
389zero. The increment operation then builds up the count for each letter.
390
391The function :func:`int` which always returns zero is just a special case of
392constant functions. A faster and more flexible way to create constant functions
393is to use a lambda function which can supply any constant value (not just
394zero)::
395
396 >>> def constant_factory(value):
397 ... return lambda: value
398 >>> d = defaultdict(constant_factory('<missing>'))
399 >>> d.update(name='John', action='ran')
400 >>> '%(name)s %(action)s to %(object)s' % d
401 'John ran to <missing>'
402
403Setting the :attr:`default_factory` to :class:`set` makes the
404:class:`defaultdict` useful for building a dictionary of sets::
405
406 >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
407 >>> d = defaultdict(set)
408 >>> for k, v in s:
409 ... d[k].add(v)
410 ...
411 >>> d.items()
412 [('blue', set([2, 4])), ('red', set([1, 3]))]
413
414
415.. _named-tuple-factory:
416
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000417:func:`namedtuple` Factory Function for Tuples with Named Fields
Christian Heimes790c8232008-01-07 21:14:23 +0000418----------------------------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000419
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000420Named tuples assign meaning to each position in a tuple and allow for more readable,
421self-documenting code. They can be used wherever regular tuples are used, and
422they add the ability to access fields by name instead of position index.
Georg Brandl116aa622007-08-15 14:28:22 +0000423
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000424.. function:: namedtuple(typename, fieldnames, [verbose])
Georg Brandl116aa622007-08-15 14:28:22 +0000425
426 Returns a new tuple subclass named *typename*. The new subclass is used to
427 create tuple-like objects that have fields accessable by attribute lookup as
428 well as being indexable and iterable. Instances of the subclass also have a
429 helpful docstring (with typename and fieldnames) and a helpful :meth:`__repr__`
430 method which lists the tuple contents in a ``name=value`` format.
431
Georg Brandl9afde1c2007-11-01 20:32:30 +0000432 The *fieldnames* are a single string with each fieldname separated by whitespace
Christian Heimes25bb7832008-01-11 16:17:00 +0000433 and/or commas, for example ``'x y'`` or ``'x, y'``. Alternatively, *fieldnames*
434 can be a sequence of strings such as ``['x', 'y']``.
Georg Brandl9afde1c2007-11-01 20:32:30 +0000435
436 Any valid Python identifier may be used for a fieldname except for names
Christian Heimes0449f632007-12-15 01:27:15 +0000437 starting with an underscore. Valid identifiers consist of letters, digits,
438 and underscores but do not start with a digit or underscore and cannot be
Georg Brandlf6945182008-02-01 11:56:49 +0000439 a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*,
Georg Brandl9afde1c2007-11-01 20:32:30 +0000440 or *raise*.
Georg Brandl116aa622007-08-15 14:28:22 +0000441
Christian Heimes25bb7832008-01-11 16:17:00 +0000442 If *verbose* is true, the class definition is printed just before being built.
Georg Brandl116aa622007-08-15 14:28:22 +0000443
Georg Brandl9afde1c2007-11-01 20:32:30 +0000444 Named tuple instances do not have per-instance dictionaries, so they are
Thomas Wouters8ce81f72007-09-20 18:22:40 +0000445 lightweight and require no more memory than regular tuples.
Georg Brandl116aa622007-08-15 14:28:22 +0000446
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000447Example::
Georg Brandl116aa622007-08-15 14:28:22 +0000448
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000449 >>> Point = namedtuple('Point', 'x y', verbose=True)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000450 class Point(tuple):
451 'Point(x, y)'
Christian Heimes0449f632007-12-15 01:27:15 +0000452
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000453 __slots__ = ()
Christian Heimes0449f632007-12-15 01:27:15 +0000454
Christian Heimesfaf2f632008-01-06 16:59:19 +0000455 _fields = ('x', 'y')
456
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000457 def __new__(cls, x, y):
458 return tuple.__new__(cls, (x, y))
Christian Heimes0449f632007-12-15 01:27:15 +0000459
Christian Heimesfaf2f632008-01-06 16:59:19 +0000460 @classmethod
461 def _make(cls, iterable):
462 'Make a new Point object from a sequence or iterable'
463 result = tuple.__new__(cls, iterable)
464 if len(result) != 2:
465 raise TypeError('Expected 2 arguments, got %d' % len(result))
466 return result
Christian Heimes99170a52007-12-19 02:07:34 +0000467
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000468 def __repr__(self):
469 return 'Point(x=%r, y=%r)' % self
Christian Heimes0449f632007-12-15 01:27:15 +0000470
Christian Heimes99170a52007-12-19 02:07:34 +0000471 def _asdict(t):
Christian Heimes0449f632007-12-15 01:27:15 +0000472 'Return a new dict which maps field names to their values'
Christian Heimes99170a52007-12-19 02:07:34 +0000473 return {'x': t[0], 'y': t[1]}
Christian Heimes0449f632007-12-15 01:27:15 +0000474
475 def _replace(self, **kwds):
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000476 'Return a new Point object replacing specified fields with new values'
Christian Heimesfaf2f632008-01-06 16:59:19 +0000477 result = self._make(map(kwds.pop, ('x', 'y'), self))
478 if kwds:
479 raise ValueError('Got unexpected field names: %r' % kwds.keys())
480 return result
Christian Heimes0449f632007-12-15 01:27:15 +0000481
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000482 x = property(itemgetter(0))
483 y = property(itemgetter(1))
Georg Brandl116aa622007-08-15 14:28:22 +0000484
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000485 >>> p = Point(11, y=22) # instantiate with positional or keyword arguments
Christian Heimes99170a52007-12-19 02:07:34 +0000486 >>> p[0] + p[1] # indexable like the plain tuple (11, 22)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000487 33
488 >>> x, y = p # unpack like a regular tuple
489 >>> x, y
490 (11, 22)
491 >>> p.x + p.y # fields also accessable by name
492 33
493 >>> p # readable __repr__ with a name=value style
494 Point(x=11, y=22)
Georg Brandl116aa622007-08-15 14:28:22 +0000495
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000496Named tuples are especially useful for assigning field names to result tuples returned
497by the :mod:`csv` or :mod:`sqlite3` modules::
498
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000499 EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')
Georg Brandl9afde1c2007-11-01 20:32:30 +0000500
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000501 import csv
Christian Heimesfaf2f632008-01-06 16:59:19 +0000502 for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000503 print(emp.name, emp.title)
504
Georg Brandl9afde1c2007-11-01 20:32:30 +0000505 import sqlite3
506 conn = sqlite3.connect('/companydata')
507 cursor = conn.cursor()
508 cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
Christian Heimesfaf2f632008-01-06 16:59:19 +0000509 for emp in map(EmployeeRecord._make, cursor.fetchall()):
Christian Heimes00412232008-01-10 16:02:19 +0000510 print(emp.name, emp.title)
Georg Brandl9afde1c2007-11-01 20:32:30 +0000511
Christian Heimes99170a52007-12-19 02:07:34 +0000512In addition to the methods inherited from tuples, named tuples support
Christian Heimes2380ac72008-01-09 00:17:24 +0000513three additional methods and one attribute. To prevent conflicts with
514field names, the method and attribute names start with an underscore.
Christian Heimes99170a52007-12-19 02:07:34 +0000515
Christian Heimes790c8232008-01-07 21:14:23 +0000516.. method:: somenamedtuple._make(iterable)
Christian Heimes99170a52007-12-19 02:07:34 +0000517
Christian Heimesfaf2f632008-01-06 16:59:19 +0000518 Class method that makes a new instance from an existing sequence or iterable.
Christian Heimes99170a52007-12-19 02:07:34 +0000519
520::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000521
Christian Heimesfaf2f632008-01-06 16:59:19 +0000522 >>> t = [11, 22]
523 >>> Point._make(t)
524 Point(x=11, y=22)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000525
Christian Heimes790c8232008-01-07 21:14:23 +0000526.. method:: somenamedtuple._asdict()
Georg Brandl9afde1c2007-11-01 20:32:30 +0000527
528 Return a new dict which maps field names to their corresponding values:
529
530::
531
Christian Heimes0449f632007-12-15 01:27:15 +0000532 >>> p._asdict()
Georg Brandl9afde1c2007-11-01 20:32:30 +0000533 {'x': 11, 'y': 22}
534
Christian Heimes790c8232008-01-07 21:14:23 +0000535.. method:: somenamedtuple._replace(kwargs)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000536
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000537 Return a new instance of the named tuple replacing specified fields with new values:
Thomas Wouters8ce81f72007-09-20 18:22:40 +0000538
539::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000540
541 >>> p = Point(x=11, y=22)
Christian Heimes0449f632007-12-15 01:27:15 +0000542 >>> p._replace(x=33)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000543 Point(x=33, y=22)
544
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000545 >>> for partnum, record in inventory.items():
Christian Heimes454f37b2008-01-10 00:10:02 +0000546 ... inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000547
Christian Heimes790c8232008-01-07 21:14:23 +0000548.. attribute:: somenamedtuple._fields
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000549
Christian Heimes2380ac72008-01-09 00:17:24 +0000550 Tuple of strings listing the field names. Useful for introspection
Georg Brandl9afde1c2007-11-01 20:32:30 +0000551 and for creating new named tuple types from existing named tuples.
Thomas Wouters8ce81f72007-09-20 18:22:40 +0000552
553::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000554
Christian Heimes0449f632007-12-15 01:27:15 +0000555 >>> p._fields # view the field names
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000556 ('x', 'y')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000557
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000558 >>> Color = namedtuple('Color', 'red green blue')
Christian Heimes0449f632007-12-15 01:27:15 +0000559 >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000560 >>> Pixel(11, 22, 128, 255, 0)
Christian Heimes454f37b2008-01-10 00:10:02 +0000561 Pixel(x=11, y=22, red=128, green=255, blue=0)
Georg Brandl116aa622007-08-15 14:28:22 +0000562
Christian Heimes0449f632007-12-15 01:27:15 +0000563To retrieve a field whose name is stored in a string, use the :func:`getattr`
Christian Heimes790c8232008-01-07 21:14:23 +0000564function::
Christian Heimes0449f632007-12-15 01:27:15 +0000565
566 >>> getattr(p, 'x')
567 11
568
Christian Heimes25bb7832008-01-11 16:17:00 +0000569To convert a dictionary to a named tuple, use the double-star-operator [#]_::
Christian Heimes99170a52007-12-19 02:07:34 +0000570
571 >>> d = {'x': 11, 'y': 22}
572 >>> Point(**d)
573 Point(x=11, y=22)
574
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000575Since a named tuple is a regular Python class, it is easy to add or change
Christian Heimes043d6f62008-01-07 17:19:16 +0000576functionality with a subclass. Here is how to add a calculated field and
577a fixed-width print format::
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000578
Christian Heimes043d6f62008-01-07 17:19:16 +0000579 >>> class Point(namedtuple('Point', 'x y')):
Christian Heimes25bb7832008-01-11 16:17:00 +0000580 ... __slots__ = ()
Christian Heimes454f37b2008-01-10 00:10:02 +0000581 ... @property
582 ... def hypot(self):
583 ... return (self.x ** 2 + self.y ** 2) ** 0.5
584 ... def __str__(self):
Christian Heimes25bb7832008-01-11 16:17:00 +0000585 ... return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000586
Christian Heimes25bb7832008-01-11 16:17:00 +0000587 >>> for p in Point(3, 4), Point(14, 5/7.):
Christian Heimes00412232008-01-10 16:02:19 +0000588 ... print(p)
Christian Heimes790c8232008-01-07 21:14:23 +0000589
Christian Heimes25bb7832008-01-11 16:17:00 +0000590 Point: x= 3.000 y= 4.000 hypot= 5.000
591 Point: x=14.000 y= 0.714 hypot=14.018
Christian Heimes043d6f62008-01-07 17:19:16 +0000592
Christian Heimesaf98da12008-01-27 15:18:18 +0000593The subclass shown above sets ``__slots__`` to an empty tuple. This keeps
Christian Heimes679db4a2008-01-18 09:56:22 +0000594keep memory requirements low by preventing the creation of instance dictionaries.
595
Christian Heimes2380ac72008-01-09 00:17:24 +0000596
597Subclassing is not useful for adding new, stored fields. Instead, simply
598create a new named tuple type from the :attr:`_fields` attribute::
599
Christian Heimes25bb7832008-01-11 16:17:00 +0000600 >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))
Christian Heimes2380ac72008-01-09 00:17:24 +0000601
602Default values can be implemented by using :meth:`_replace` to
Christian Heimes790c8232008-01-07 21:14:23 +0000603customize a prototype instance::
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000604
605 >>> Account = namedtuple('Account', 'owner balance transaction_count')
Christian Heimes587c2bf2008-01-19 16:21:02 +0000606 >>> default_account = Account('<owner name>', 0.0, 0)
607 >>> johns_account = default_account._replace(owner='John')
Guido van Rossum3d392eb2007-11-16 00:35:22 +0000608
Thomas Wouters47b49bf2007-08-30 22:15:33 +0000609.. rubric:: Footnotes
610
Christian Heimes99170a52007-12-19 02:07:34 +0000611.. [#] For information on the double-star-operator see
Thomas Wouters47b49bf2007-08-30 22:15:33 +0000612 :ref:`tut-unpacking-arguments` and :ref:`calls`.
Raymond Hettingere4c96ad2008-02-06 01:23:58 +0000613
614
615
616:class:`UserDict` objects
Mark Summerfield8f2d0062008-02-06 13:30:44 +0000617-------------------------
Raymond Hettingere4c96ad2008-02-06 01:23:58 +0000618
619The class, :class:`UserDict` acts as a wrapper around dictionary objects.
620The need for this class has been partially supplanted by the ability to
621subclass directly from :class:`dict`; however, this class can be easier
622to work with because the underlying dictionary is accessible as an
623attribute.
624
625.. class:: UserDict([initialdata])
626
627 Class that simulates a dictionary. The instance's contents are kept in a
628 regular dictionary, which is accessible via the :attr:`data` attribute of
629 :class:`UserDict` instances. If *initialdata* is provided, :attr:`data` is
630 initialized with its contents; note that a reference to *initialdata* will not
631 be kept, allowing it be used for other purposes.
632
633In addition to supporting the methods and operations of mappings,
Raymond Hettingerebcee3f2008-02-06 19:54:00 +0000634:class:`UserDict` instances provide the following attribute:
Raymond Hettingere4c96ad2008-02-06 01:23:58 +0000635
636.. attribute:: UserDict.data
637
638 A real dictionary used to store the contents of the :class:`UserDict` class.