Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1 | /**************************************************************** |
| 2 | * |
| 3 | * The author of this software is David M. Gay. |
| 4 | * |
| 5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 6 | * |
| 7 | * Permission to use, copy, modify, and distribute this software for any |
| 8 | * purpose without fee is hereby granted, provided that this entire notice |
| 9 | * is included in all copies of any software which is or includes a copy |
| 10 | * or modification of this software and in all copies of the supporting |
| 11 | * documentation for such software. |
| 12 | * |
| 13 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 14 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 15 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 16 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 17 | * |
| 18 | ***************************************************************/ |
| 19 | |
| 20 | /**************************************************************** |
| 21 | * This is dtoa.c by David M. Gay, downloaded from |
| 22 | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for |
| 23 | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. |
Mark Dickinson | 7f0ea32 | 2009-04-17 16:06:28 +0000 | [diff] [blame] | 24 | * |
| 25 | * Please remember to check http://www.netlib.org/fp regularly (and especially |
| 26 | * before any Python release) for bugfixes and updates. |
| 27 | * |
| 28 | * The major modifications from Gay's original code are as follows: |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 29 | * |
| 30 | * 0. The original code has been specialized to Python's needs by removing |
| 31 | * many of the #ifdef'd sections. In particular, code to support VAX and |
| 32 | * IBM floating-point formats, hex NaNs, hex floats, locale-aware |
| 33 | * treatment of the decimal point, and setting of the inexact flag have |
| 34 | * been removed. |
| 35 | * |
| 36 | * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. |
| 37 | * |
| 38 | * 2. The public functions strtod, dtoa and freedtoa all now have |
| 39 | * a _Py_dg_ prefix. |
| 40 | * |
| 41 | * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread |
| 42 | * PyMem_Malloc failures through the code. The functions |
| 43 | * |
| 44 | * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b |
| 45 | * |
| 46 | * of return type *Bigint all return NULL to indicate a malloc failure. |
| 47 | * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on |
| 48 | * failure. bigcomp now has return type int (it used to be void) and |
| 49 | * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL |
| 50 | * on failure. _Py_dg_strtod indicates failure due to malloc failure |
| 51 | * by returning -1.0, setting errno=ENOMEM and *se to s00. |
| 52 | * |
| 53 | * 4. The static variable dtoa_result has been removed. Callers of |
| 54 | * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free |
| 55 | * the memory allocated by _Py_dg_dtoa. |
| 56 | * |
| 57 | * 5. The code has been reformatted to better fit with Python's |
| 58 | * C style guide (PEP 7). |
| 59 | * |
Mark Dickinson | 7f0ea32 | 2009-04-17 16:06:28 +0000 | [diff] [blame] | 60 | * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory |
| 61 | * that hasn't been MALLOC'ed, private_mem should only be used when k <= |
| 62 | * Kmax. |
| 63 | * |
Mark Dickinson | 725bfd8 | 2009-05-03 20:33:40 +0000 | [diff] [blame] | 64 | * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with |
| 65 | * leading whitespace. |
| 66 | * |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 67 | ***************************************************************/ |
| 68 | |
| 69 | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg |
| 70 | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). |
| 71 | * Please report bugs for this modified version using the Python issue tracker |
| 72 | * (http://bugs.python.org). */ |
| 73 | |
| 74 | /* On a machine with IEEE extended-precision registers, it is |
| 75 | * necessary to specify double-precision (53-bit) rounding precision |
| 76 | * before invoking strtod or dtoa. If the machine uses (the equivalent |
| 77 | * of) Intel 80x87 arithmetic, the call |
| 78 | * _control87(PC_53, MCW_PC); |
| 79 | * does this with many compilers. Whether this or another call is |
| 80 | * appropriate depends on the compiler; for this to work, it may be |
| 81 | * necessary to #include "float.h" or another system-dependent header |
| 82 | * file. |
| 83 | */ |
| 84 | |
| 85 | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
| 86 | * |
| 87 | * This strtod returns a nearest machine number to the input decimal |
| 88 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
| 89 | * broken by the IEEE round-even rule. Otherwise ties are broken by |
| 90 | * biased rounding (add half and chop). |
| 91 | * |
| 92 | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
| 93 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
| 94 | * |
| 95 | * Modifications: |
| 96 | * |
| 97 | * 1. We only require IEEE, IBM, or VAX double-precision |
| 98 | * arithmetic (not IEEE double-extended). |
| 99 | * 2. We get by with floating-point arithmetic in a case that |
| 100 | * Clinger missed -- when we're computing d * 10^n |
| 101 | * for a small integer d and the integer n is not too |
| 102 | * much larger than 22 (the maximum integer k for which |
| 103 | * we can represent 10^k exactly), we may be able to |
| 104 | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
| 105 | * 3. Rather than a bit-at-a-time adjustment of the binary |
| 106 | * result in the hard case, we use floating-point |
| 107 | * arithmetic to determine the adjustment to within |
| 108 | * one bit; only in really hard cases do we need to |
| 109 | * compute a second residual. |
| 110 | * 4. Because of 3., we don't need a large table of powers of 10 |
| 111 | * for ten-to-e (just some small tables, e.g. of 10^k |
| 112 | * for 0 <= k <= 22). |
| 113 | */ |
| 114 | |
| 115 | /* Linking of Python's #defines to Gay's #defines starts here. */ |
| 116 | |
| 117 | #include "Python.h" |
| 118 | |
| 119 | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile |
| 120 | the following code */ |
| 121 | #ifndef PY_NO_SHORT_FLOAT_REPR |
| 122 | |
| 123 | #include "float.h" |
| 124 | |
| 125 | #define MALLOC PyMem_Malloc |
| 126 | #define FREE PyMem_Free |
| 127 | |
| 128 | /* This code should also work for ARM mixed-endian format on little-endian |
| 129 | machines, where doubles have byte order 45670123 (in increasing address |
| 130 | order, 0 being the least significant byte). */ |
| 131 | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 |
| 132 | # define IEEE_8087 |
| 133 | #endif |
| 134 | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ |
| 135 | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) |
| 136 | # define IEEE_MC68k |
| 137 | #endif |
| 138 | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 |
| 139 | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." |
| 140 | #endif |
| 141 | |
| 142 | /* The code below assumes that the endianness of integers matches the |
| 143 | endianness of the two 32-bit words of a double. Check this. */ |
| 144 | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ |
| 145 | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) |
| 146 | #error "doubles and ints have incompatible endianness" |
| 147 | #endif |
| 148 | |
| 149 | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) |
| 150 | #error "doubles and ints have incompatible endianness" |
| 151 | #endif |
| 152 | |
| 153 | |
| 154 | #if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T) |
| 155 | typedef PY_UINT32_T ULong; |
| 156 | typedef PY_INT32_T Long; |
| 157 | #else |
| 158 | #error "Failed to find an exact-width 32-bit integer type" |
| 159 | #endif |
| 160 | |
| 161 | #if defined(HAVE_UINT64_T) |
| 162 | #define ULLong PY_UINT64_T |
| 163 | #else |
| 164 | #undef ULLong |
| 165 | #endif |
| 166 | |
| 167 | #undef DEBUG |
| 168 | #ifdef Py_DEBUG |
| 169 | #define DEBUG |
| 170 | #endif |
| 171 | |
| 172 | /* End Python #define linking */ |
| 173 | |
| 174 | #ifdef DEBUG |
| 175 | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
| 176 | #endif |
| 177 | |
| 178 | #ifndef PRIVATE_MEM |
| 179 | #define PRIVATE_MEM 2304 |
| 180 | #endif |
| 181 | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
| 182 | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
| 183 | |
| 184 | #ifdef __cplusplus |
| 185 | extern "C" { |
| 186 | #endif |
| 187 | |
| 188 | typedef union { double d; ULong L[2]; } U; |
| 189 | |
| 190 | #ifdef IEEE_8087 |
| 191 | #define word0(x) (x)->L[1] |
| 192 | #define word1(x) (x)->L[0] |
| 193 | #else |
| 194 | #define word0(x) (x)->L[0] |
| 195 | #define word1(x) (x)->L[1] |
| 196 | #endif |
| 197 | #define dval(x) (x)->d |
| 198 | |
| 199 | #ifndef STRTOD_DIGLIM |
| 200 | #define STRTOD_DIGLIM 40 |
| 201 | #endif |
| 202 | |
| 203 | #ifdef DIGLIM_DEBUG |
| 204 | extern int strtod_diglim; |
| 205 | #else |
| 206 | #define strtod_diglim STRTOD_DIGLIM |
| 207 | #endif |
| 208 | |
| 209 | /* The following definition of Storeinc is appropriate for MIPS processors. |
| 210 | * An alternative that might be better on some machines is |
| 211 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
| 212 | */ |
| 213 | #if defined(IEEE_8087) |
| 214 | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
| 215 | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
| 216 | #else |
| 217 | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
| 218 | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
| 219 | #endif |
| 220 | |
| 221 | /* #define P DBL_MANT_DIG */ |
| 222 | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
| 223 | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
| 224 | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
| 225 | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
| 226 | |
| 227 | #define Exp_shift 20 |
| 228 | #define Exp_shift1 20 |
| 229 | #define Exp_msk1 0x100000 |
| 230 | #define Exp_msk11 0x100000 |
| 231 | #define Exp_mask 0x7ff00000 |
| 232 | #define P 53 |
| 233 | #define Nbits 53 |
| 234 | #define Bias 1023 |
| 235 | #define Emax 1023 |
| 236 | #define Emin (-1022) |
| 237 | #define Exp_1 0x3ff00000 |
| 238 | #define Exp_11 0x3ff00000 |
| 239 | #define Ebits 11 |
| 240 | #define Frac_mask 0xfffff |
| 241 | #define Frac_mask1 0xfffff |
| 242 | #define Ten_pmax 22 |
| 243 | #define Bletch 0x10 |
| 244 | #define Bndry_mask 0xfffff |
| 245 | #define Bndry_mask1 0xfffff |
| 246 | #define LSB 1 |
| 247 | #define Sign_bit 0x80000000 |
| 248 | #define Log2P 1 |
| 249 | #define Tiny0 0 |
| 250 | #define Tiny1 1 |
| 251 | #define Quick_max 14 |
| 252 | #define Int_max 14 |
| 253 | |
| 254 | #ifndef Flt_Rounds |
| 255 | #ifdef FLT_ROUNDS |
| 256 | #define Flt_Rounds FLT_ROUNDS |
| 257 | #else |
| 258 | #define Flt_Rounds 1 |
| 259 | #endif |
| 260 | #endif /*Flt_Rounds*/ |
| 261 | |
| 262 | #define Rounding Flt_Rounds |
| 263 | |
| 264 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
| 265 | #define Big1 0xffffffff |
| 266 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 267 | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ |
| 268 | |
| 269 | typedef struct BCinfo BCinfo; |
| 270 | struct |
| 271 | BCinfo { |
| 272 | int dp0, dp1, dplen, dsign, e0, inexact; |
| 273 | int nd, nd0, rounding, scale, uflchk; |
| 274 | }; |
| 275 | |
| 276 | #define FFFFFFFF 0xffffffffUL |
| 277 | |
| 278 | #define Kmax 7 |
| 279 | |
| 280 | /* struct Bigint is used to represent arbitrary-precision integers. These |
| 281 | integers are stored in sign-magnitude format, with the magnitude stored as |
| 282 | an array of base 2**32 digits. Bigints are always normalized: if x is a |
| 283 | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. |
| 284 | |
| 285 | The Bigint fields are as follows: |
| 286 | |
| 287 | - next is a header used by Balloc and Bfree to keep track of lists |
| 288 | of freed Bigints; it's also used for the linked list of |
| 289 | powers of 5 of the form 5**2**i used by pow5mult. |
| 290 | - k indicates which pool this Bigint was allocated from |
| 291 | - maxwds is the maximum number of words space was allocated for |
| 292 | (usually maxwds == 2**k) |
| 293 | - sign is 1 for negative Bigints, 0 for positive. The sign is unused |
| 294 | (ignored on inputs, set to 0 on outputs) in almost all operations |
| 295 | involving Bigints: a notable exception is the diff function, which |
| 296 | ignores signs on inputs but sets the sign of the output correctly. |
| 297 | - wds is the actual number of significant words |
| 298 | - x contains the vector of words (digits) for this Bigint, from least |
| 299 | significant (x[0]) to most significant (x[wds-1]). |
| 300 | */ |
| 301 | |
| 302 | struct |
| 303 | Bigint { |
| 304 | struct Bigint *next; |
| 305 | int k, maxwds, sign, wds; |
| 306 | ULong x[1]; |
| 307 | }; |
| 308 | |
| 309 | typedef struct Bigint Bigint; |
| 310 | |
| 311 | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools |
| 312 | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == |
| 313 | 1 << k. These pools are maintained as linked lists, with freelist[k] |
| 314 | pointing to the head of the list for pool k. |
| 315 | |
| 316 | On allocation, if there's no free slot in the appropriate pool, MALLOC is |
| 317 | called to get more memory. This memory is not returned to the system until |
| 318 | Python quits. There's also a private memory pool that's allocated from |
| 319 | in preference to using MALLOC. |
| 320 | |
| 321 | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 |
| 322 | decimal digits), memory is directly allocated using MALLOC, and freed using |
| 323 | FREE. |
| 324 | |
| 325 | XXX: it would be easy to bypass this memory-management system and |
| 326 | translate each call to Balloc into a call to PyMem_Malloc, and each |
| 327 | Bfree to PyMem_Free. Investigate whether this has any significant |
| 328 | performance on impact. */ |
| 329 | |
| 330 | static Bigint *freelist[Kmax+1]; |
| 331 | |
| 332 | /* Allocate space for a Bigint with up to 1<<k digits */ |
| 333 | |
| 334 | static Bigint * |
| 335 | Balloc(int k) |
| 336 | { |
| 337 | int x; |
| 338 | Bigint *rv; |
| 339 | unsigned int len; |
| 340 | |
| 341 | if (k <= Kmax && (rv = freelist[k])) |
| 342 | freelist[k] = rv->next; |
| 343 | else { |
| 344 | x = 1 << k; |
| 345 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
| 346 | /sizeof(double); |
Mark Dickinson | 7f0ea32 | 2009-04-17 16:06:28 +0000 | [diff] [blame] | 347 | if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 348 | rv = (Bigint*)pmem_next; |
| 349 | pmem_next += len; |
| 350 | } |
| 351 | else { |
| 352 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
| 353 | if (rv == NULL) |
| 354 | return NULL; |
| 355 | } |
| 356 | rv->k = k; |
| 357 | rv->maxwds = x; |
| 358 | } |
| 359 | rv->sign = rv->wds = 0; |
| 360 | return rv; |
| 361 | } |
| 362 | |
| 363 | /* Free a Bigint allocated with Balloc */ |
| 364 | |
| 365 | static void |
| 366 | Bfree(Bigint *v) |
| 367 | { |
| 368 | if (v) { |
| 369 | if (v->k > Kmax) |
| 370 | FREE((void*)v); |
| 371 | else { |
| 372 | v->next = freelist[v->k]; |
| 373 | freelist[v->k] = v; |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
| 379 | y->wds*sizeof(Long) + 2*sizeof(int)) |
| 380 | |
| 381 | /* Multiply a Bigint b by m and add a. Either modifies b in place and returns |
| 382 | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. |
| 383 | On failure, return NULL. In this case, b will have been already freed. */ |
| 384 | |
| 385 | static Bigint * |
| 386 | multadd(Bigint *b, int m, int a) /* multiply by m and add a */ |
| 387 | { |
| 388 | int i, wds; |
| 389 | #ifdef ULLong |
| 390 | ULong *x; |
| 391 | ULLong carry, y; |
| 392 | #else |
| 393 | ULong carry, *x, y; |
| 394 | ULong xi, z; |
| 395 | #endif |
| 396 | Bigint *b1; |
| 397 | |
| 398 | wds = b->wds; |
| 399 | x = b->x; |
| 400 | i = 0; |
| 401 | carry = a; |
| 402 | do { |
| 403 | #ifdef ULLong |
| 404 | y = *x * (ULLong)m + carry; |
| 405 | carry = y >> 32; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 406 | *x++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 407 | #else |
| 408 | xi = *x; |
| 409 | y = (xi & 0xffff) * m + carry; |
| 410 | z = (xi >> 16) * m + (y >> 16); |
| 411 | carry = z >> 16; |
| 412 | *x++ = (z << 16) + (y & 0xffff); |
| 413 | #endif |
| 414 | } |
| 415 | while(++i < wds); |
| 416 | if (carry) { |
| 417 | if (wds >= b->maxwds) { |
| 418 | b1 = Balloc(b->k+1); |
| 419 | if (b1 == NULL){ |
| 420 | Bfree(b); |
| 421 | return NULL; |
| 422 | } |
| 423 | Bcopy(b1, b); |
| 424 | Bfree(b); |
| 425 | b = b1; |
| 426 | } |
| 427 | b->x[wds++] = (ULong)carry; |
| 428 | b->wds = wds; |
| 429 | } |
| 430 | return b; |
| 431 | } |
| 432 | |
| 433 | /* convert a string s containing nd decimal digits (possibly containing a |
| 434 | decimal separator at position nd0, which is ignored) to a Bigint. This |
| 435 | function carries on where the parsing code in _Py_dg_strtod leaves off: on |
| 436 | entry, y9 contains the result of converting the first 9 digits. Returns |
| 437 | NULL on failure. */ |
| 438 | |
| 439 | static Bigint * |
| 440 | s2b(const char *s, int nd0, int nd, ULong y9, int dplen) |
| 441 | { |
| 442 | Bigint *b; |
| 443 | int i, k; |
| 444 | Long x, y; |
| 445 | |
| 446 | x = (nd + 8) / 9; |
| 447 | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
| 448 | b = Balloc(k); |
| 449 | if (b == NULL) |
| 450 | return NULL; |
| 451 | b->x[0] = y9; |
| 452 | b->wds = 1; |
| 453 | |
| 454 | i = 9; |
| 455 | if (9 < nd0) { |
| 456 | s += 9; |
| 457 | do { |
| 458 | b = multadd(b, 10, *s++ - '0'); |
| 459 | if (b == NULL) |
| 460 | return NULL; |
| 461 | } while(++i < nd0); |
| 462 | s += dplen; |
| 463 | } |
| 464 | else |
| 465 | s += dplen + 9; |
| 466 | for(; i < nd; i++) { |
| 467 | b = multadd(b, 10, *s++ - '0'); |
| 468 | if (b == NULL) |
| 469 | return NULL; |
| 470 | } |
| 471 | return b; |
| 472 | } |
| 473 | |
| 474 | /* count leading 0 bits in the 32-bit integer x. */ |
| 475 | |
| 476 | static int |
| 477 | hi0bits(ULong x) |
| 478 | { |
| 479 | int k = 0; |
| 480 | |
| 481 | if (!(x & 0xffff0000)) { |
| 482 | k = 16; |
| 483 | x <<= 16; |
| 484 | } |
| 485 | if (!(x & 0xff000000)) { |
| 486 | k += 8; |
| 487 | x <<= 8; |
| 488 | } |
| 489 | if (!(x & 0xf0000000)) { |
| 490 | k += 4; |
| 491 | x <<= 4; |
| 492 | } |
| 493 | if (!(x & 0xc0000000)) { |
| 494 | k += 2; |
| 495 | x <<= 2; |
| 496 | } |
| 497 | if (!(x & 0x80000000)) { |
| 498 | k++; |
| 499 | if (!(x & 0x40000000)) |
| 500 | return 32; |
| 501 | } |
| 502 | return k; |
| 503 | } |
| 504 | |
| 505 | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that |
| 506 | number of bits. */ |
| 507 | |
| 508 | static int |
| 509 | lo0bits(ULong *y) |
| 510 | { |
| 511 | int k; |
| 512 | ULong x = *y; |
| 513 | |
| 514 | if (x & 7) { |
| 515 | if (x & 1) |
| 516 | return 0; |
| 517 | if (x & 2) { |
| 518 | *y = x >> 1; |
| 519 | return 1; |
| 520 | } |
| 521 | *y = x >> 2; |
| 522 | return 2; |
| 523 | } |
| 524 | k = 0; |
| 525 | if (!(x & 0xffff)) { |
| 526 | k = 16; |
| 527 | x >>= 16; |
| 528 | } |
| 529 | if (!(x & 0xff)) { |
| 530 | k += 8; |
| 531 | x >>= 8; |
| 532 | } |
| 533 | if (!(x & 0xf)) { |
| 534 | k += 4; |
| 535 | x >>= 4; |
| 536 | } |
| 537 | if (!(x & 0x3)) { |
| 538 | k += 2; |
| 539 | x >>= 2; |
| 540 | } |
| 541 | if (!(x & 1)) { |
| 542 | k++; |
| 543 | x >>= 1; |
| 544 | if (!x) |
| 545 | return 32; |
| 546 | } |
| 547 | *y = x; |
| 548 | return k; |
| 549 | } |
| 550 | |
| 551 | /* convert a small nonnegative integer to a Bigint */ |
| 552 | |
| 553 | static Bigint * |
| 554 | i2b(int i) |
| 555 | { |
| 556 | Bigint *b; |
| 557 | |
| 558 | b = Balloc(1); |
| 559 | if (b == NULL) |
| 560 | return NULL; |
| 561 | b->x[0] = i; |
| 562 | b->wds = 1; |
| 563 | return b; |
| 564 | } |
| 565 | |
| 566 | /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores |
| 567 | the signs of a and b. */ |
| 568 | |
| 569 | static Bigint * |
| 570 | mult(Bigint *a, Bigint *b) |
| 571 | { |
| 572 | Bigint *c; |
| 573 | int k, wa, wb, wc; |
| 574 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
| 575 | ULong y; |
| 576 | #ifdef ULLong |
| 577 | ULLong carry, z; |
| 578 | #else |
| 579 | ULong carry, z; |
| 580 | ULong z2; |
| 581 | #endif |
| 582 | |
| 583 | if (a->wds < b->wds) { |
| 584 | c = a; |
| 585 | a = b; |
| 586 | b = c; |
| 587 | } |
| 588 | k = a->k; |
| 589 | wa = a->wds; |
| 590 | wb = b->wds; |
| 591 | wc = wa + wb; |
| 592 | if (wc > a->maxwds) |
| 593 | k++; |
| 594 | c = Balloc(k); |
| 595 | if (c == NULL) |
| 596 | return NULL; |
| 597 | for(x = c->x, xa = x + wc; x < xa; x++) |
| 598 | *x = 0; |
| 599 | xa = a->x; |
| 600 | xae = xa + wa; |
| 601 | xb = b->x; |
| 602 | xbe = xb + wb; |
| 603 | xc0 = c->x; |
| 604 | #ifdef ULLong |
| 605 | for(; xb < xbe; xc0++) { |
| 606 | if ((y = *xb++)) { |
| 607 | x = xa; |
| 608 | xc = xc0; |
| 609 | carry = 0; |
| 610 | do { |
| 611 | z = *x++ * (ULLong)y + *xc + carry; |
| 612 | carry = z >> 32; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 613 | *xc++ = (ULong)(z & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 614 | } |
| 615 | while(x < xae); |
| 616 | *xc = (ULong)carry; |
| 617 | } |
| 618 | } |
| 619 | #else |
| 620 | for(; xb < xbe; xb++, xc0++) { |
| 621 | if (y = *xb & 0xffff) { |
| 622 | x = xa; |
| 623 | xc = xc0; |
| 624 | carry = 0; |
| 625 | do { |
| 626 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
| 627 | carry = z >> 16; |
| 628 | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
| 629 | carry = z2 >> 16; |
| 630 | Storeinc(xc, z2, z); |
| 631 | } |
| 632 | while(x < xae); |
| 633 | *xc = carry; |
| 634 | } |
| 635 | if (y = *xb >> 16) { |
| 636 | x = xa; |
| 637 | xc = xc0; |
| 638 | carry = 0; |
| 639 | z2 = *xc; |
| 640 | do { |
| 641 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
| 642 | carry = z >> 16; |
| 643 | Storeinc(xc, z, z2); |
| 644 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
| 645 | carry = z2 >> 16; |
| 646 | } |
| 647 | while(x < xae); |
| 648 | *xc = z2; |
| 649 | } |
| 650 | } |
| 651 | #endif |
| 652 | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
| 653 | c->wds = wc; |
| 654 | return c; |
| 655 | } |
| 656 | |
| 657 | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ |
| 658 | |
| 659 | static Bigint *p5s; |
| 660 | |
| 661 | /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on |
| 662 | failure; if the returned pointer is distinct from b then the original |
| 663 | Bigint b will have been Bfree'd. Ignores the sign of b. */ |
| 664 | |
| 665 | static Bigint * |
| 666 | pow5mult(Bigint *b, int k) |
| 667 | { |
| 668 | Bigint *b1, *p5, *p51; |
| 669 | int i; |
| 670 | static int p05[3] = { 5, 25, 125 }; |
| 671 | |
| 672 | if ((i = k & 3)) { |
| 673 | b = multadd(b, p05[i-1], 0); |
| 674 | if (b == NULL) |
| 675 | return NULL; |
| 676 | } |
| 677 | |
| 678 | if (!(k >>= 2)) |
| 679 | return b; |
| 680 | p5 = p5s; |
| 681 | if (!p5) { |
| 682 | /* first time */ |
| 683 | p5 = i2b(625); |
| 684 | if (p5 == NULL) { |
| 685 | Bfree(b); |
| 686 | return NULL; |
| 687 | } |
| 688 | p5s = p5; |
| 689 | p5->next = 0; |
| 690 | } |
| 691 | for(;;) { |
| 692 | if (k & 1) { |
| 693 | b1 = mult(b, p5); |
| 694 | Bfree(b); |
| 695 | b = b1; |
| 696 | if (b == NULL) |
| 697 | return NULL; |
| 698 | } |
| 699 | if (!(k >>= 1)) |
| 700 | break; |
| 701 | p51 = p5->next; |
| 702 | if (!p51) { |
| 703 | p51 = mult(p5,p5); |
| 704 | if (p51 == NULL) { |
| 705 | Bfree(b); |
| 706 | return NULL; |
| 707 | } |
| 708 | p51->next = 0; |
| 709 | p5->next = p51; |
| 710 | } |
| 711 | p5 = p51; |
| 712 | } |
| 713 | return b; |
| 714 | } |
| 715 | |
| 716 | /* shift a Bigint b left by k bits. Return a pointer to the shifted result, |
| 717 | or NULL on failure. If the returned pointer is distinct from b then the |
| 718 | original b will have been Bfree'd. Ignores the sign of b. */ |
| 719 | |
| 720 | static Bigint * |
| 721 | lshift(Bigint *b, int k) |
| 722 | { |
| 723 | int i, k1, n, n1; |
| 724 | Bigint *b1; |
| 725 | ULong *x, *x1, *xe, z; |
| 726 | |
| 727 | n = k >> 5; |
| 728 | k1 = b->k; |
| 729 | n1 = n + b->wds + 1; |
| 730 | for(i = b->maxwds; n1 > i; i <<= 1) |
| 731 | k1++; |
| 732 | b1 = Balloc(k1); |
| 733 | if (b1 == NULL) { |
| 734 | Bfree(b); |
| 735 | return NULL; |
| 736 | } |
| 737 | x1 = b1->x; |
| 738 | for(i = 0; i < n; i++) |
| 739 | *x1++ = 0; |
| 740 | x = b->x; |
| 741 | xe = x + b->wds; |
| 742 | if (k &= 0x1f) { |
| 743 | k1 = 32 - k; |
| 744 | z = 0; |
| 745 | do { |
| 746 | *x1++ = *x << k | z; |
| 747 | z = *x++ >> k1; |
| 748 | } |
| 749 | while(x < xe); |
| 750 | if ((*x1 = z)) |
| 751 | ++n1; |
| 752 | } |
| 753 | else do |
| 754 | *x1++ = *x++; |
| 755 | while(x < xe); |
| 756 | b1->wds = n1 - 1; |
| 757 | Bfree(b); |
| 758 | return b1; |
| 759 | } |
| 760 | |
| 761 | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and |
| 762 | 1 if a > b. Ignores signs of a and b. */ |
| 763 | |
| 764 | static int |
| 765 | cmp(Bigint *a, Bigint *b) |
| 766 | { |
| 767 | ULong *xa, *xa0, *xb, *xb0; |
| 768 | int i, j; |
| 769 | |
| 770 | i = a->wds; |
| 771 | j = b->wds; |
| 772 | #ifdef DEBUG |
| 773 | if (i > 1 && !a->x[i-1]) |
| 774 | Bug("cmp called with a->x[a->wds-1] == 0"); |
| 775 | if (j > 1 && !b->x[j-1]) |
| 776 | Bug("cmp called with b->x[b->wds-1] == 0"); |
| 777 | #endif |
| 778 | if (i -= j) |
| 779 | return i; |
| 780 | xa0 = a->x; |
| 781 | xa = xa0 + j; |
| 782 | xb0 = b->x; |
| 783 | xb = xb0 + j; |
| 784 | for(;;) { |
| 785 | if (*--xa != *--xb) |
| 786 | return *xa < *xb ? -1 : 1; |
| 787 | if (xa <= xa0) |
| 788 | break; |
| 789 | } |
| 790 | return 0; |
| 791 | } |
| 792 | |
| 793 | /* Take the difference of Bigints a and b, returning a new Bigint. Returns |
| 794 | NULL on failure. The signs of a and b are ignored, but the sign of the |
| 795 | result is set appropriately. */ |
| 796 | |
| 797 | static Bigint * |
| 798 | diff(Bigint *a, Bigint *b) |
| 799 | { |
| 800 | Bigint *c; |
| 801 | int i, wa, wb; |
| 802 | ULong *xa, *xae, *xb, *xbe, *xc; |
| 803 | #ifdef ULLong |
| 804 | ULLong borrow, y; |
| 805 | #else |
| 806 | ULong borrow, y; |
| 807 | ULong z; |
| 808 | #endif |
| 809 | |
| 810 | i = cmp(a,b); |
| 811 | if (!i) { |
| 812 | c = Balloc(0); |
| 813 | if (c == NULL) |
| 814 | return NULL; |
| 815 | c->wds = 1; |
| 816 | c->x[0] = 0; |
| 817 | return c; |
| 818 | } |
| 819 | if (i < 0) { |
| 820 | c = a; |
| 821 | a = b; |
| 822 | b = c; |
| 823 | i = 1; |
| 824 | } |
| 825 | else |
| 826 | i = 0; |
| 827 | c = Balloc(a->k); |
| 828 | if (c == NULL) |
| 829 | return NULL; |
| 830 | c->sign = i; |
| 831 | wa = a->wds; |
| 832 | xa = a->x; |
| 833 | xae = xa + wa; |
| 834 | wb = b->wds; |
| 835 | xb = b->x; |
| 836 | xbe = xb + wb; |
| 837 | xc = c->x; |
| 838 | borrow = 0; |
| 839 | #ifdef ULLong |
| 840 | do { |
| 841 | y = (ULLong)*xa++ - *xb++ - borrow; |
| 842 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 843 | *xc++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 844 | } |
| 845 | while(xb < xbe); |
| 846 | while(xa < xae) { |
| 847 | y = *xa++ - borrow; |
| 848 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 849 | *xc++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 850 | } |
| 851 | #else |
| 852 | do { |
| 853 | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
| 854 | borrow = (y & 0x10000) >> 16; |
| 855 | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
| 856 | borrow = (z & 0x10000) >> 16; |
| 857 | Storeinc(xc, z, y); |
| 858 | } |
| 859 | while(xb < xbe); |
| 860 | while(xa < xae) { |
| 861 | y = (*xa & 0xffff) - borrow; |
| 862 | borrow = (y & 0x10000) >> 16; |
| 863 | z = (*xa++ >> 16) - borrow; |
| 864 | borrow = (z & 0x10000) >> 16; |
| 865 | Storeinc(xc, z, y); |
| 866 | } |
| 867 | #endif |
| 868 | while(!*--xc) |
| 869 | wa--; |
| 870 | c->wds = wa; |
| 871 | return c; |
| 872 | } |
| 873 | |
| 874 | /* Given a positive normal double x, return the difference between x and the next |
| 875 | double up. Doesn't give correct results for subnormals. */ |
| 876 | |
| 877 | static double |
| 878 | ulp(U *x) |
| 879 | { |
| 880 | Long L; |
| 881 | U u; |
| 882 | |
| 883 | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
| 884 | word0(&u) = L; |
| 885 | word1(&u) = 0; |
| 886 | return dval(&u); |
| 887 | } |
| 888 | |
| 889 | /* Convert a Bigint to a double plus an exponent */ |
| 890 | |
| 891 | static double |
| 892 | b2d(Bigint *a, int *e) |
| 893 | { |
| 894 | ULong *xa, *xa0, w, y, z; |
| 895 | int k; |
| 896 | U d; |
| 897 | |
| 898 | xa0 = a->x; |
| 899 | xa = xa0 + a->wds; |
| 900 | y = *--xa; |
| 901 | #ifdef DEBUG |
| 902 | if (!y) Bug("zero y in b2d"); |
| 903 | #endif |
| 904 | k = hi0bits(y); |
| 905 | *e = 32 - k; |
| 906 | if (k < Ebits) { |
| 907 | word0(&d) = Exp_1 | y >> (Ebits - k); |
| 908 | w = xa > xa0 ? *--xa : 0; |
| 909 | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); |
| 910 | goto ret_d; |
| 911 | } |
| 912 | z = xa > xa0 ? *--xa : 0; |
| 913 | if (k -= Ebits) { |
| 914 | word0(&d) = Exp_1 | y << k | z >> (32 - k); |
| 915 | y = xa > xa0 ? *--xa : 0; |
| 916 | word1(&d) = z << k | y >> (32 - k); |
| 917 | } |
| 918 | else { |
| 919 | word0(&d) = Exp_1 | y; |
| 920 | word1(&d) = z; |
| 921 | } |
| 922 | ret_d: |
| 923 | return dval(&d); |
| 924 | } |
| 925 | |
| 926 | /* Convert a double to a Bigint plus an exponent. Return NULL on failure. |
| 927 | |
| 928 | Given a finite nonzero double d, return an odd Bigint b and exponent *e |
| 929 | such that fabs(d) = b * 2**e. On return, *bbits gives the number of |
| 930 | significant bits of e; that is, 2**(*bbits-1) <= b < 2**(*bbits). |
| 931 | |
| 932 | If d is zero, then b == 0, *e == -1010, *bbits = 0. |
| 933 | */ |
| 934 | |
| 935 | |
| 936 | static Bigint * |
| 937 | d2b(U *d, int *e, int *bits) |
| 938 | { |
| 939 | Bigint *b; |
| 940 | int de, k; |
| 941 | ULong *x, y, z; |
| 942 | int i; |
| 943 | |
| 944 | b = Balloc(1); |
| 945 | if (b == NULL) |
| 946 | return NULL; |
| 947 | x = b->x; |
| 948 | |
| 949 | z = word0(d) & Frac_mask; |
| 950 | word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
| 951 | if ((de = (int)(word0(d) >> Exp_shift))) |
| 952 | z |= Exp_msk1; |
| 953 | if ((y = word1(d))) { |
| 954 | if ((k = lo0bits(&y))) { |
| 955 | x[0] = y | z << (32 - k); |
| 956 | z >>= k; |
| 957 | } |
| 958 | else |
| 959 | x[0] = y; |
| 960 | i = |
| 961 | b->wds = (x[1] = z) ? 2 : 1; |
| 962 | } |
| 963 | else { |
| 964 | k = lo0bits(&z); |
| 965 | x[0] = z; |
| 966 | i = |
| 967 | b->wds = 1; |
| 968 | k += 32; |
| 969 | } |
| 970 | if (de) { |
| 971 | *e = de - Bias - (P-1) + k; |
| 972 | *bits = P - k; |
| 973 | } |
| 974 | else { |
| 975 | *e = de - Bias - (P-1) + 1 + k; |
| 976 | *bits = 32*i - hi0bits(x[i-1]); |
| 977 | } |
| 978 | return b; |
| 979 | } |
| 980 | |
| 981 | /* Compute the ratio of two Bigints, as a double. The result may have an |
| 982 | error of up to 2.5 ulps. */ |
| 983 | |
| 984 | static double |
| 985 | ratio(Bigint *a, Bigint *b) |
| 986 | { |
| 987 | U da, db; |
| 988 | int k, ka, kb; |
| 989 | |
| 990 | dval(&da) = b2d(a, &ka); |
| 991 | dval(&db) = b2d(b, &kb); |
| 992 | k = ka - kb + 32*(a->wds - b->wds); |
| 993 | if (k > 0) |
| 994 | word0(&da) += k*Exp_msk1; |
| 995 | else { |
| 996 | k = -k; |
| 997 | word0(&db) += k*Exp_msk1; |
| 998 | } |
| 999 | return dval(&da) / dval(&db); |
| 1000 | } |
| 1001 | |
| 1002 | static const double |
| 1003 | tens[] = { |
| 1004 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1005 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| 1006 | 1e20, 1e21, 1e22 |
| 1007 | }; |
| 1008 | |
| 1009 | static const double |
| 1010 | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
| 1011 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
| 1012 | 9007199254740992.*9007199254740992.e-256 |
| 1013 | /* = 2^106 * 1e-256 */ |
| 1014 | }; |
| 1015 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
| 1016 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
| 1017 | #define Scale_Bit 0x10 |
| 1018 | #define n_bigtens 5 |
| 1019 | |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1020 | #define ULbits 32 |
| 1021 | #define kshift 5 |
| 1022 | #define kmask 31 |
| 1023 | |
| 1024 | |
| 1025 | static int |
| 1026 | dshift(Bigint *b, int p2) |
| 1027 | { |
| 1028 | int rv = hi0bits(b->x[b->wds-1]) - 4; |
| 1029 | if (p2 > 0) |
| 1030 | rv -= p2; |
| 1031 | return rv & kmask; |
| 1032 | } |
| 1033 | |
| 1034 | /* special case of Bigint division. The quotient is always in the range 0 <= |
| 1035 | quotient < 10, and on entry the divisor S is normalized so that its top 4 |
| 1036 | bits (28--31) are zero and bit 27 is set. */ |
| 1037 | |
| 1038 | static int |
| 1039 | quorem(Bigint *b, Bigint *S) |
| 1040 | { |
| 1041 | int n; |
| 1042 | ULong *bx, *bxe, q, *sx, *sxe; |
| 1043 | #ifdef ULLong |
| 1044 | ULLong borrow, carry, y, ys; |
| 1045 | #else |
| 1046 | ULong borrow, carry, y, ys; |
| 1047 | ULong si, z, zs; |
| 1048 | #endif |
| 1049 | |
| 1050 | n = S->wds; |
| 1051 | #ifdef DEBUG |
| 1052 | /*debug*/ if (b->wds > n) |
| 1053 | /*debug*/ Bug("oversize b in quorem"); |
| 1054 | #endif |
| 1055 | if (b->wds < n) |
| 1056 | return 0; |
| 1057 | sx = S->x; |
| 1058 | sxe = sx + --n; |
| 1059 | bx = b->x; |
| 1060 | bxe = bx + n; |
| 1061 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
| 1062 | #ifdef DEBUG |
| 1063 | /*debug*/ if (q > 9) |
| 1064 | /*debug*/ Bug("oversized quotient in quorem"); |
| 1065 | #endif |
| 1066 | if (q) { |
| 1067 | borrow = 0; |
| 1068 | carry = 0; |
| 1069 | do { |
| 1070 | #ifdef ULLong |
| 1071 | ys = *sx++ * (ULLong)q + carry; |
| 1072 | carry = ys >> 32; |
| 1073 | y = *bx - (ys & FFFFFFFF) - borrow; |
| 1074 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 1075 | *bx++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1076 | #else |
| 1077 | si = *sx++; |
| 1078 | ys = (si & 0xffff) * q + carry; |
| 1079 | zs = (si >> 16) * q + (ys >> 16); |
| 1080 | carry = zs >> 16; |
| 1081 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1082 | borrow = (y & 0x10000) >> 16; |
| 1083 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1084 | borrow = (z & 0x10000) >> 16; |
| 1085 | Storeinc(bx, z, y); |
| 1086 | #endif |
| 1087 | } |
| 1088 | while(sx <= sxe); |
| 1089 | if (!*bxe) { |
| 1090 | bx = b->x; |
| 1091 | while(--bxe > bx && !*bxe) |
| 1092 | --n; |
| 1093 | b->wds = n; |
| 1094 | } |
| 1095 | } |
| 1096 | if (cmp(b, S) >= 0) { |
| 1097 | q++; |
| 1098 | borrow = 0; |
| 1099 | carry = 0; |
| 1100 | bx = b->x; |
| 1101 | sx = S->x; |
| 1102 | do { |
| 1103 | #ifdef ULLong |
| 1104 | ys = *sx++ + carry; |
| 1105 | carry = ys >> 32; |
| 1106 | y = *bx - (ys & FFFFFFFF) - borrow; |
| 1107 | borrow = y >> 32 & (ULong)1; |
Mark Dickinson | fd2ad8b | 2009-04-17 19:29:46 +0000 | [diff] [blame] | 1108 | *bx++ = (ULong)(y & FFFFFFFF); |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1109 | #else |
| 1110 | si = *sx++; |
| 1111 | ys = (si & 0xffff) + carry; |
| 1112 | zs = (si >> 16) + (ys >> 16); |
| 1113 | carry = zs >> 16; |
| 1114 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1115 | borrow = (y & 0x10000) >> 16; |
| 1116 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1117 | borrow = (z & 0x10000) >> 16; |
| 1118 | Storeinc(bx, z, y); |
| 1119 | #endif |
| 1120 | } |
| 1121 | while(sx <= sxe); |
| 1122 | bx = b->x; |
| 1123 | bxe = bx + n; |
| 1124 | if (!*bxe) { |
| 1125 | while(--bxe > bx && !*bxe) |
| 1126 | --n; |
| 1127 | b->wds = n; |
| 1128 | } |
| 1129 | } |
| 1130 | return q; |
| 1131 | } |
| 1132 | |
| 1133 | |
| 1134 | /* return 0 on success, -1 on failure */ |
| 1135 | |
| 1136 | static int |
| 1137 | bigcomp(U *rv, const char *s0, BCinfo *bc) |
| 1138 | { |
| 1139 | Bigint *b, *d; |
| 1140 | int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase; |
| 1141 | |
| 1142 | dsign = bc->dsign; |
| 1143 | nd = bc->nd; |
| 1144 | nd0 = bc->nd0; |
| 1145 | p5 = nd + bc->e0 - 1; |
| 1146 | speccase = 0; |
| 1147 | if (rv->d == 0.) { /* special case: value near underflow-to-zero */ |
| 1148 | /* threshold was rounded to zero */ |
| 1149 | b = i2b(1); |
| 1150 | if (b == NULL) |
| 1151 | return -1; |
| 1152 | p2 = Emin - P + 1; |
| 1153 | bbits = 1; |
| 1154 | word0(rv) = (P+2) << Exp_shift; |
| 1155 | i = 0; |
| 1156 | { |
| 1157 | speccase = 1; |
| 1158 | --p2; |
| 1159 | dsign = 0; |
| 1160 | goto have_i; |
| 1161 | } |
| 1162 | } |
| 1163 | else |
| 1164 | { |
| 1165 | b = d2b(rv, &p2, &bbits); |
| 1166 | if (b == NULL) |
| 1167 | return -1; |
| 1168 | } |
| 1169 | p2 -= bc->scale; |
| 1170 | /* floor(log2(rv)) == bbits - 1 + p2 */ |
| 1171 | /* Check for denormal case. */ |
| 1172 | i = P - bbits; |
| 1173 | if (i > (j = P - Emin - 1 + p2)) { |
| 1174 | i = j; |
| 1175 | } |
| 1176 | { |
| 1177 | b = lshift(b, ++i); |
| 1178 | if (b == NULL) |
| 1179 | return -1; |
| 1180 | b->x[0] |= 1; |
| 1181 | } |
| 1182 | have_i: |
| 1183 | p2 -= p5 + i; |
| 1184 | d = i2b(1); |
| 1185 | if (d == NULL) { |
| 1186 | Bfree(b); |
| 1187 | return -1; |
| 1188 | } |
| 1189 | /* Arrange for convenient computation of quotients: |
| 1190 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 1191 | */ |
| 1192 | if (p5 > 0) { |
| 1193 | d = pow5mult(d, p5); |
| 1194 | if (d == NULL) { |
| 1195 | Bfree(b); |
| 1196 | return -1; |
| 1197 | } |
| 1198 | } |
| 1199 | else if (p5 < 0) { |
| 1200 | b = pow5mult(b, -p5); |
| 1201 | if (b == NULL) { |
| 1202 | Bfree(d); |
| 1203 | return -1; |
| 1204 | } |
| 1205 | } |
| 1206 | if (p2 > 0) { |
| 1207 | b2 = p2; |
| 1208 | d2 = 0; |
| 1209 | } |
| 1210 | else { |
| 1211 | b2 = 0; |
| 1212 | d2 = -p2; |
| 1213 | } |
| 1214 | i = dshift(d, d2); |
| 1215 | if ((b2 += i) > 0) { |
| 1216 | b = lshift(b, b2); |
| 1217 | if (b == NULL) { |
| 1218 | Bfree(d); |
| 1219 | return -1; |
| 1220 | } |
| 1221 | } |
| 1222 | if ((d2 += i) > 0) { |
| 1223 | d = lshift(d, d2); |
| 1224 | if (d == NULL) { |
| 1225 | Bfree(b); |
| 1226 | return -1; |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | /* Now b/d = exactly half-way between the two floating-point values */ |
| 1231 | /* on either side of the input string. Compute first digit of b/d. */ |
| 1232 | |
| 1233 | if (!(dig = quorem(b,d))) { |
| 1234 | b = multadd(b, 10, 0); /* very unlikely */ |
| 1235 | if (b == NULL) { |
| 1236 | Bfree(d); |
| 1237 | return -1; |
| 1238 | } |
| 1239 | dig = quorem(b,d); |
| 1240 | } |
| 1241 | |
| 1242 | /* Compare b/d with s0 */ |
| 1243 | |
| 1244 | assert(nd > 0); |
| 1245 | dd = 9999; /* silence gcc compiler warning */ |
| 1246 | for(i = 0; i < nd0; ) { |
| 1247 | if ((dd = s0[i++] - '0' - dig)) |
| 1248 | goto ret; |
| 1249 | if (!b->x[0] && b->wds == 1) { |
| 1250 | if (i < nd) |
| 1251 | dd = 1; |
| 1252 | goto ret; |
| 1253 | } |
| 1254 | b = multadd(b, 10, 0); |
| 1255 | if (b == NULL) { |
| 1256 | Bfree(d); |
| 1257 | return -1; |
| 1258 | } |
| 1259 | dig = quorem(b,d); |
| 1260 | } |
| 1261 | for(j = bc->dp1; i++ < nd;) { |
| 1262 | if ((dd = s0[j++] - '0' - dig)) |
| 1263 | goto ret; |
| 1264 | if (!b->x[0] && b->wds == 1) { |
| 1265 | if (i < nd) |
| 1266 | dd = 1; |
| 1267 | goto ret; |
| 1268 | } |
| 1269 | b = multadd(b, 10, 0); |
| 1270 | if (b == NULL) { |
| 1271 | Bfree(d); |
| 1272 | return -1; |
| 1273 | } |
| 1274 | dig = quorem(b,d); |
| 1275 | } |
| 1276 | if (b->x[0] || b->wds > 1) |
| 1277 | dd = -1; |
| 1278 | ret: |
| 1279 | Bfree(b); |
| 1280 | Bfree(d); |
| 1281 | if (speccase) { |
| 1282 | if (dd <= 0) |
| 1283 | rv->d = 0.; |
| 1284 | } |
| 1285 | else if (dd < 0) { |
| 1286 | if (!dsign) /* does not happen for round-near */ |
| 1287 | retlow1: |
| 1288 | dval(rv) -= ulp(rv); |
| 1289 | } |
| 1290 | else if (dd > 0) { |
| 1291 | if (dsign) { |
| 1292 | rethi1: |
| 1293 | dval(rv) += ulp(rv); |
| 1294 | } |
| 1295 | } |
| 1296 | else { |
| 1297 | /* Exact half-way case: apply round-even rule. */ |
| 1298 | if (word1(rv) & 1) { |
| 1299 | if (dsign) |
| 1300 | goto rethi1; |
| 1301 | goto retlow1; |
| 1302 | } |
| 1303 | } |
| 1304 | |
| 1305 | return 0; |
| 1306 | } |
| 1307 | |
| 1308 | double |
| 1309 | _Py_dg_strtod(const char *s00, char **se) |
| 1310 | { |
| 1311 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error; |
| 1312 | int esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
| 1313 | const char *s, *s0, *s1; |
| 1314 | double aadj, aadj1; |
| 1315 | Long L; |
| 1316 | U aadj2, adj, rv, rv0; |
| 1317 | ULong y, z; |
| 1318 | BCinfo bc; |
| 1319 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
| 1320 | |
| 1321 | sign = nz0 = nz = bc.dplen = bc.uflchk = 0; |
| 1322 | dval(&rv) = 0.; |
| 1323 | for(s = s00;;s++) switch(*s) { |
| 1324 | case '-': |
| 1325 | sign = 1; |
| 1326 | /* no break */ |
| 1327 | case '+': |
| 1328 | if (*++s) |
| 1329 | goto break2; |
| 1330 | /* no break */ |
| 1331 | case 0: |
| 1332 | goto ret0; |
Mark Dickinson | 725bfd8 | 2009-05-03 20:33:40 +0000 | [diff] [blame] | 1333 | /* modify original dtoa.c so that it doesn't accept leading whitespace |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1334 | case '\t': |
| 1335 | case '\n': |
| 1336 | case '\v': |
| 1337 | case '\f': |
| 1338 | case '\r': |
| 1339 | case ' ': |
| 1340 | continue; |
Mark Dickinson | 725bfd8 | 2009-05-03 20:33:40 +0000 | [diff] [blame] | 1341 | */ |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1342 | default: |
| 1343 | goto break2; |
| 1344 | } |
| 1345 | break2: |
| 1346 | if (*s == '0') { |
| 1347 | nz0 = 1; |
| 1348 | while(*++s == '0') ; |
| 1349 | if (!*s) |
| 1350 | goto ret; |
| 1351 | } |
| 1352 | s0 = s; |
| 1353 | y = z = 0; |
| 1354 | for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
| 1355 | if (nd < 9) |
| 1356 | y = 10*y + c - '0'; |
| 1357 | else if (nd < 16) |
| 1358 | z = 10*z + c - '0'; |
| 1359 | nd0 = nd; |
| 1360 | bc.dp0 = bc.dp1 = s - s0; |
| 1361 | if (c == '.') { |
| 1362 | c = *++s; |
| 1363 | bc.dp1 = s - s0; |
| 1364 | bc.dplen = bc.dp1 - bc.dp0; |
| 1365 | if (!nd) { |
| 1366 | for(; c == '0'; c = *++s) |
| 1367 | nz++; |
| 1368 | if (c > '0' && c <= '9') { |
| 1369 | s0 = s; |
| 1370 | nf += nz; |
| 1371 | nz = 0; |
| 1372 | goto have_dig; |
| 1373 | } |
| 1374 | goto dig_done; |
| 1375 | } |
| 1376 | for(; c >= '0' && c <= '9'; c = *++s) { |
| 1377 | have_dig: |
| 1378 | nz++; |
| 1379 | if (c -= '0') { |
| 1380 | nf += nz; |
| 1381 | for(i = 1; i < nz; i++) |
| 1382 | if (nd++ < 9) |
| 1383 | y *= 10; |
| 1384 | else if (nd <= DBL_DIG + 1) |
| 1385 | z *= 10; |
| 1386 | if (nd++ < 9) |
| 1387 | y = 10*y + c; |
| 1388 | else if (nd <= DBL_DIG + 1) |
| 1389 | z = 10*z + c; |
| 1390 | nz = 0; |
| 1391 | } |
| 1392 | } |
| 1393 | } |
| 1394 | dig_done: |
| 1395 | e = 0; |
| 1396 | if (c == 'e' || c == 'E') { |
| 1397 | if (!nd && !nz && !nz0) { |
| 1398 | goto ret0; |
| 1399 | } |
| 1400 | s00 = s; |
| 1401 | esign = 0; |
| 1402 | switch(c = *++s) { |
| 1403 | case '-': |
| 1404 | esign = 1; |
| 1405 | case '+': |
| 1406 | c = *++s; |
| 1407 | } |
| 1408 | if (c >= '0' && c <= '9') { |
| 1409 | while(c == '0') |
| 1410 | c = *++s; |
| 1411 | if (c > '0' && c <= '9') { |
| 1412 | L = c - '0'; |
| 1413 | s1 = s; |
| 1414 | while((c = *++s) >= '0' && c <= '9') |
| 1415 | L = 10*L + c - '0'; |
| 1416 | if (s - s1 > 8 || L > 19999) |
| 1417 | /* Avoid confusion from exponents |
| 1418 | * so large that e might overflow. |
| 1419 | */ |
| 1420 | e = 19999; /* safe for 16 bit ints */ |
| 1421 | else |
| 1422 | e = (int)L; |
| 1423 | if (esign) |
| 1424 | e = -e; |
| 1425 | } |
| 1426 | else |
| 1427 | e = 0; |
| 1428 | } |
| 1429 | else |
| 1430 | s = s00; |
| 1431 | } |
| 1432 | if (!nd) { |
| 1433 | if (!nz && !nz0) { |
Mark Dickinson | b08a53a | 2009-04-16 19:52:09 +0000 | [diff] [blame] | 1434 | ret0: |
| 1435 | s = s00; |
| 1436 | sign = 0; |
| 1437 | } |
| 1438 | goto ret; |
| 1439 | } |
| 1440 | bc.e0 = e1 = e -= nf; |
| 1441 | |
| 1442 | /* Now we have nd0 digits, starting at s0, followed by a |
| 1443 | * decimal point, followed by nd-nd0 digits. The number we're |
| 1444 | * after is the integer represented by those digits times |
| 1445 | * 10**e */ |
| 1446 | |
| 1447 | if (!nd0) |
| 1448 | nd0 = nd; |
| 1449 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
| 1450 | dval(&rv) = y; |
| 1451 | if (k > 9) { |
| 1452 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
| 1453 | } |
| 1454 | bd0 = 0; |
| 1455 | if (nd <= DBL_DIG |
| 1456 | && Flt_Rounds == 1 |
| 1457 | ) { |
| 1458 | if (!e) |
| 1459 | goto ret; |
| 1460 | if (e > 0) { |
| 1461 | if (e <= Ten_pmax) { |
| 1462 | dval(&rv) *= tens[e]; |
| 1463 | goto ret; |
| 1464 | } |
| 1465 | i = DBL_DIG - nd; |
| 1466 | if (e <= Ten_pmax + i) { |
| 1467 | /* A fancier test would sometimes let us do |
| 1468 | * this for larger i values. |
| 1469 | */ |
| 1470 | e -= i; |
| 1471 | dval(&rv) *= tens[i]; |
| 1472 | dval(&rv) *= tens[e]; |
| 1473 | goto ret; |
| 1474 | } |
| 1475 | } |
| 1476 | else if (e >= -Ten_pmax) { |
| 1477 | dval(&rv) /= tens[-e]; |
| 1478 | goto ret; |
| 1479 | } |
| 1480 | } |
| 1481 | e1 += nd - k; |
| 1482 | |
| 1483 | bc.scale = 0; |
| 1484 | |
| 1485 | /* Get starting approximation = rv * 10**e1 */ |
| 1486 | |
| 1487 | if (e1 > 0) { |
| 1488 | if ((i = e1 & 15)) |
| 1489 | dval(&rv) *= tens[i]; |
| 1490 | if (e1 &= ~15) { |
| 1491 | if (e1 > DBL_MAX_10_EXP) { |
| 1492 | ovfl: |
| 1493 | errno = ERANGE; |
| 1494 | /* Can't trust HUGE_VAL */ |
| 1495 | word0(&rv) = Exp_mask; |
| 1496 | word1(&rv) = 0; |
| 1497 | goto ret; |
| 1498 | } |
| 1499 | e1 >>= 4; |
| 1500 | for(j = 0; e1 > 1; j++, e1 >>= 1) |
| 1501 | if (e1 & 1) |
| 1502 | dval(&rv) *= bigtens[j]; |
| 1503 | /* The last multiplication could overflow. */ |
| 1504 | word0(&rv) -= P*Exp_msk1; |
| 1505 | dval(&rv) *= bigtens[j]; |
| 1506 | if ((z = word0(&rv) & Exp_mask) |
| 1507 | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
| 1508 | goto ovfl; |
| 1509 | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
| 1510 | /* set to largest number */ |
| 1511 | /* (Can't trust DBL_MAX) */ |
| 1512 | word0(&rv) = Big0; |
| 1513 | word1(&rv) = Big1; |
| 1514 | } |
| 1515 | else |
| 1516 | word0(&rv) += P*Exp_msk1; |
| 1517 | } |
| 1518 | } |
| 1519 | else if (e1 < 0) { |
| 1520 | e1 = -e1; |
| 1521 | if ((i = e1 & 15)) |
| 1522 | dval(&rv) /= tens[i]; |
| 1523 | if (e1 >>= 4) { |
| 1524 | if (e1 >= 1 << n_bigtens) |
| 1525 | goto undfl; |
| 1526 | if (e1 & Scale_Bit) |
| 1527 | bc.scale = 2*P; |
| 1528 | for(j = 0; e1 > 0; j++, e1 >>= 1) |
| 1529 | if (e1 & 1) |
| 1530 | dval(&rv) *= tinytens[j]; |
| 1531 | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) |
| 1532 | >> Exp_shift)) > 0) { |
| 1533 | /* scaled rv is denormal; clear j low bits */ |
| 1534 | if (j >= 32) { |
| 1535 | word1(&rv) = 0; |
| 1536 | if (j >= 53) |
| 1537 | word0(&rv) = (P+2)*Exp_msk1; |
| 1538 | else |
| 1539 | word0(&rv) &= 0xffffffff << (j-32); |
| 1540 | } |
| 1541 | else |
| 1542 | word1(&rv) &= 0xffffffff << j; |
| 1543 | } |
| 1544 | if (!dval(&rv)) { |
| 1545 | undfl: |
| 1546 | dval(&rv) = 0.; |
| 1547 | errno = ERANGE; |
| 1548 | goto ret; |
| 1549 | } |
| 1550 | } |
| 1551 | } |
| 1552 | |
| 1553 | /* Now the hard part -- adjusting rv to the correct value.*/ |
| 1554 | |
| 1555 | /* Put digits into bd: true value = bd * 10^e */ |
| 1556 | |
| 1557 | bc.nd = nd; |
| 1558 | bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */ |
| 1559 | /* to silence an erroneous warning about bc.nd0 */ |
| 1560 | /* possibly not being initialized. */ |
| 1561 | if (nd > strtod_diglim) { |
| 1562 | /* ASSERT(strtod_diglim >= 18); 18 == one more than the */ |
| 1563 | /* minimum number of decimal digits to distinguish double values */ |
| 1564 | /* in IEEE arithmetic. */ |
| 1565 | i = j = 18; |
| 1566 | if (i > nd0) |
| 1567 | j += bc.dplen; |
| 1568 | for(;;) { |
| 1569 | if (--j <= bc.dp1 && j >= bc.dp0) |
| 1570 | j = bc.dp0 - 1; |
| 1571 | if (s0[j] != '0') |
| 1572 | break; |
| 1573 | --i; |
| 1574 | } |
| 1575 | e += nd - i; |
| 1576 | nd = i; |
| 1577 | if (nd0 > nd) |
| 1578 | nd0 = nd; |
| 1579 | if (nd < 9) { /* must recompute y */ |
| 1580 | y = 0; |
| 1581 | for(i = 0; i < nd0; ++i) |
| 1582 | y = 10*y + s0[i] - '0'; |
| 1583 | for(j = bc.dp1; i < nd; ++i) |
| 1584 | y = 10*y + s0[j++] - '0'; |
| 1585 | } |
| 1586 | } |
| 1587 | bd0 = s2b(s0, nd0, nd, y, bc.dplen); |
| 1588 | if (bd0 == NULL) |
| 1589 | goto failed_malloc; |
| 1590 | |
| 1591 | for(;;) { |
| 1592 | bd = Balloc(bd0->k); |
| 1593 | if (bd == NULL) { |
| 1594 | Bfree(bd0); |
| 1595 | goto failed_malloc; |
| 1596 | } |
| 1597 | Bcopy(bd, bd0); |
| 1598 | bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ |
| 1599 | if (bb == NULL) { |
| 1600 | Bfree(bd); |
| 1601 | Bfree(bd0); |
| 1602 | goto failed_malloc; |
| 1603 | } |
| 1604 | bs = i2b(1); |
| 1605 | if (bs == NULL) { |
| 1606 | Bfree(bb); |
| 1607 | Bfree(bd); |
| 1608 | Bfree(bd0); |
| 1609 | goto failed_malloc; |
| 1610 | } |
| 1611 | |
| 1612 | if (e >= 0) { |
| 1613 | bb2 = bb5 = 0; |
| 1614 | bd2 = bd5 = e; |
| 1615 | } |
| 1616 | else { |
| 1617 | bb2 = bb5 = -e; |
| 1618 | bd2 = bd5 = 0; |
| 1619 | } |
| 1620 | if (bbe >= 0) |
| 1621 | bb2 += bbe; |
| 1622 | else |
| 1623 | bd2 -= bbe; |
| 1624 | bs2 = bb2; |
| 1625 | j = bbe - bc.scale; |
| 1626 | i = j + bbbits - 1; /* logb(rv) */ |
| 1627 | if (i < Emin) /* denormal */ |
| 1628 | j += P - Emin; |
| 1629 | else |
| 1630 | j = P + 1 - bbbits; |
| 1631 | bb2 += j; |
| 1632 | bd2 += j; |
| 1633 | bd2 += bc.scale; |
| 1634 | i = bb2 < bd2 ? bb2 : bd2; |
| 1635 | if (i > bs2) |
| 1636 | i = bs2; |
| 1637 | if (i > 0) { |
| 1638 | bb2 -= i; |
| 1639 | bd2 -= i; |
| 1640 | bs2 -= i; |
| 1641 | } |
| 1642 | if (bb5 > 0) { |
| 1643 | bs = pow5mult(bs, bb5); |
| 1644 | if (bs == NULL) { |
| 1645 | Bfree(bb); |
| 1646 | Bfree(bd); |
| 1647 | Bfree(bd0); |
| 1648 | goto failed_malloc; |
| 1649 | } |
| 1650 | bb1 = mult(bs, bb); |
| 1651 | Bfree(bb); |
| 1652 | bb = bb1; |
| 1653 | if (bb == NULL) { |
| 1654 | Bfree(bs); |
| 1655 | Bfree(bd); |
| 1656 | Bfree(bd0); |
| 1657 | goto failed_malloc; |
| 1658 | } |
| 1659 | } |
| 1660 | if (bb2 > 0) { |
| 1661 | bb = lshift(bb, bb2); |
| 1662 | if (bb == NULL) { |
| 1663 | Bfree(bs); |
| 1664 | Bfree(bd); |
| 1665 | Bfree(bd0); |
| 1666 | goto failed_malloc; |
| 1667 | } |
| 1668 | } |
| 1669 | if (bd5 > 0) { |
| 1670 | bd = pow5mult(bd, bd5); |
| 1671 | if (bd == NULL) { |
| 1672 | Bfree(bb); |
| 1673 | Bfree(bs); |
| 1674 | Bfree(bd0); |
| 1675 | goto failed_malloc; |
| 1676 | } |
| 1677 | } |
| 1678 | if (bd2 > 0) { |
| 1679 | bd = lshift(bd, bd2); |
| 1680 | if (bd == NULL) { |
| 1681 | Bfree(bb); |
| 1682 | Bfree(bs); |
| 1683 | Bfree(bd0); |
| 1684 | goto failed_malloc; |
| 1685 | } |
| 1686 | } |
| 1687 | if (bs2 > 0) { |
| 1688 | bs = lshift(bs, bs2); |
| 1689 | if (bs == NULL) { |
| 1690 | Bfree(bb); |
| 1691 | Bfree(bd); |
| 1692 | Bfree(bd0); |
| 1693 | goto failed_malloc; |
| 1694 | } |
| 1695 | } |
| 1696 | delta = diff(bb, bd); |
| 1697 | if (delta == NULL) { |
| 1698 | Bfree(bb); |
| 1699 | Bfree(bs); |
| 1700 | Bfree(bd); |
| 1701 | Bfree(bd0); |
| 1702 | goto failed_malloc; |
| 1703 | } |
| 1704 | bc.dsign = delta->sign; |
| 1705 | delta->sign = 0; |
| 1706 | i = cmp(delta, bs); |
| 1707 | if (bc.nd > nd && i <= 0) { |
| 1708 | if (bc.dsign) |
| 1709 | break; /* Must use bigcomp(). */ |
| 1710 | { |
| 1711 | bc.nd = nd; |
| 1712 | i = -1; /* Discarded digits make delta smaller. */ |
| 1713 | } |
| 1714 | } |
| 1715 | |
| 1716 | if (i < 0) { |
| 1717 | /* Error is less than half an ulp -- check for |
| 1718 | * special case of mantissa a power of two. |
| 1719 | */ |
| 1720 | if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask |
| 1721 | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
| 1722 | ) { |
| 1723 | break; |
| 1724 | } |
| 1725 | if (!delta->x[0] && delta->wds <= 1) { |
| 1726 | /* exact result */ |
| 1727 | break; |
| 1728 | } |
| 1729 | delta = lshift(delta,Log2P); |
| 1730 | if (delta == NULL) { |
| 1731 | Bfree(bb); |
| 1732 | Bfree(bs); |
| 1733 | Bfree(bd); |
| 1734 | Bfree(bd0); |
| 1735 | goto failed_malloc; |
| 1736 | } |
| 1737 | if (cmp(delta, bs) > 0) |
| 1738 | goto drop_down; |
| 1739 | break; |
| 1740 | } |
| 1741 | if (i == 0) { |
| 1742 | /* exactly half-way between */ |
| 1743 | if (bc.dsign) { |
| 1744 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
| 1745 | && word1(&rv) == ( |
| 1746 | (bc.scale && |
| 1747 | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? |
| 1748 | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
| 1749 | 0xffffffff)) { |
| 1750 | /*boundary case -- increment exponent*/ |
| 1751 | word0(&rv) = (word0(&rv) & Exp_mask) |
| 1752 | + Exp_msk1 |
| 1753 | ; |
| 1754 | word1(&rv) = 0; |
| 1755 | bc.dsign = 0; |
| 1756 | break; |
| 1757 | } |
| 1758 | } |
| 1759 | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
| 1760 | drop_down: |
| 1761 | /* boundary case -- decrement exponent */ |
| 1762 | if (bc.scale) { |
| 1763 | L = word0(&rv) & Exp_mask; |
| 1764 | if (L <= (2*P+1)*Exp_msk1) { |
| 1765 | if (L > (P+2)*Exp_msk1) |
| 1766 | /* round even ==> */ |
| 1767 | /* accept rv */ |
| 1768 | break; |
| 1769 | /* rv = smallest denormal */ |
| 1770 | if (bc.nd >nd) { |
| 1771 | bc.uflchk = 1; |
| 1772 | break; |
| 1773 | } |
| 1774 | goto undfl; |
| 1775 | } |
| 1776 | } |
| 1777 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
| 1778 | word0(&rv) = L | Bndry_mask1; |
| 1779 | word1(&rv) = 0xffffffff; |
| 1780 | break; |
| 1781 | } |
| 1782 | if (!(word1(&rv) & LSB)) |
| 1783 | break; |
| 1784 | if (bc.dsign) |
| 1785 | dval(&rv) += ulp(&rv); |
| 1786 | else { |
| 1787 | dval(&rv) -= ulp(&rv); |
| 1788 | if (!dval(&rv)) { |
| 1789 | if (bc.nd >nd) { |
| 1790 | bc.uflchk = 1; |
| 1791 | break; |
| 1792 | } |
| 1793 | goto undfl; |
| 1794 | } |
| 1795 | } |
| 1796 | bc.dsign = 1 - bc.dsign; |
| 1797 | break; |
| 1798 | } |
| 1799 | if ((aadj = ratio(delta, bs)) <= 2.) { |
| 1800 | if (bc.dsign) |
| 1801 | aadj = aadj1 = 1.; |
| 1802 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
| 1803 | if (word1(&rv) == Tiny1 && !word0(&rv)) { |
| 1804 | if (bc.nd >nd) { |
| 1805 | bc.uflchk = 1; |
| 1806 | break; |
| 1807 | } |
| 1808 | goto undfl; |
| 1809 | } |
| 1810 | aadj = 1.; |
| 1811 | aadj1 = -1.; |
| 1812 | } |
| 1813 | else { |
| 1814 | /* special case -- power of FLT_RADIX to be */ |
| 1815 | /* rounded down... */ |
| 1816 | |
| 1817 | if (aadj < 2./FLT_RADIX) |
| 1818 | aadj = 1./FLT_RADIX; |
| 1819 | else |
| 1820 | aadj *= 0.5; |
| 1821 | aadj1 = -aadj; |
| 1822 | } |
| 1823 | } |
| 1824 | else { |
| 1825 | aadj *= 0.5; |
| 1826 | aadj1 = bc.dsign ? aadj : -aadj; |
| 1827 | if (Flt_Rounds == 0) |
| 1828 | aadj1 += 0.5; |
| 1829 | } |
| 1830 | y = word0(&rv) & Exp_mask; |
| 1831 | |
| 1832 | /* Check for overflow */ |
| 1833 | |
| 1834 | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
| 1835 | dval(&rv0) = dval(&rv); |
| 1836 | word0(&rv) -= P*Exp_msk1; |
| 1837 | adj.d = aadj1 * ulp(&rv); |
| 1838 | dval(&rv) += adj.d; |
| 1839 | if ((word0(&rv) & Exp_mask) >= |
| 1840 | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
| 1841 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) |
| 1842 | goto ovfl; |
| 1843 | word0(&rv) = Big0; |
| 1844 | word1(&rv) = Big1; |
| 1845 | goto cont; |
| 1846 | } |
| 1847 | else |
| 1848 | word0(&rv) += P*Exp_msk1; |
| 1849 | } |
| 1850 | else { |
| 1851 | if (bc.scale && y <= 2*P*Exp_msk1) { |
| 1852 | if (aadj <= 0x7fffffff) { |
| 1853 | if ((z = (ULong)aadj) <= 0) |
| 1854 | z = 1; |
| 1855 | aadj = z; |
| 1856 | aadj1 = bc.dsign ? aadj : -aadj; |
| 1857 | } |
| 1858 | dval(&aadj2) = aadj1; |
| 1859 | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; |
| 1860 | aadj1 = dval(&aadj2); |
| 1861 | } |
| 1862 | adj.d = aadj1 * ulp(&rv); |
| 1863 | dval(&rv) += adj.d; |
| 1864 | } |
| 1865 | z = word0(&rv) & Exp_mask; |
| 1866 | if (bc.nd == nd) { |
| 1867 | if (!bc.scale) |
| 1868 | if (y == z) { |
| 1869 | /* Can we stop now? */ |
| 1870 | L = (Long)aadj; |
| 1871 | aadj -= L; |
| 1872 | /* The tolerances below are conservative. */ |
| 1873 | if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
| 1874 | if (aadj < .4999999 || aadj > .5000001) |
| 1875 | break; |
| 1876 | } |
| 1877 | else if (aadj < .4999999/FLT_RADIX) |
| 1878 | break; |
| 1879 | } |
| 1880 | } |
| 1881 | cont: |
| 1882 | Bfree(bb); |
| 1883 | Bfree(bd); |
| 1884 | Bfree(bs); |
| 1885 | Bfree(delta); |
| 1886 | } |
| 1887 | Bfree(bb); |
| 1888 | Bfree(bd); |
| 1889 | Bfree(bs); |
| 1890 | Bfree(bd0); |
| 1891 | Bfree(delta); |
| 1892 | if (bc.nd > nd) { |
| 1893 | error = bigcomp(&rv, s0, &bc); |
| 1894 | if (error) |
| 1895 | goto failed_malloc; |
| 1896 | } |
| 1897 | |
| 1898 | if (bc.scale) { |
| 1899 | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; |
| 1900 | word1(&rv0) = 0; |
| 1901 | dval(&rv) *= dval(&rv0); |
| 1902 | /* try to avoid the bug of testing an 8087 register value */ |
| 1903 | if (!(word0(&rv) & Exp_mask)) |
| 1904 | errno = ERANGE; |
| 1905 | } |
| 1906 | ret: |
| 1907 | if (se) |
| 1908 | *se = (char *)s; |
| 1909 | return sign ? -dval(&rv) : dval(&rv); |
| 1910 | |
| 1911 | failed_malloc: |
| 1912 | if (se) |
| 1913 | *se = (char *)s00; |
| 1914 | errno = ENOMEM; |
| 1915 | return -1.0; |
| 1916 | } |
| 1917 | |
| 1918 | static char * |
| 1919 | rv_alloc(int i) |
| 1920 | { |
| 1921 | int j, k, *r; |
| 1922 | |
| 1923 | j = sizeof(ULong); |
| 1924 | for(k = 0; |
| 1925 | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; |
| 1926 | j <<= 1) |
| 1927 | k++; |
| 1928 | r = (int*)Balloc(k); |
| 1929 | if (r == NULL) |
| 1930 | return NULL; |
| 1931 | *r = k; |
| 1932 | return (char *)(r+1); |
| 1933 | } |
| 1934 | |
| 1935 | static char * |
| 1936 | nrv_alloc(char *s, char **rve, int n) |
| 1937 | { |
| 1938 | char *rv, *t; |
| 1939 | |
| 1940 | rv = rv_alloc(n); |
| 1941 | if (rv == NULL) |
| 1942 | return NULL; |
| 1943 | t = rv; |
| 1944 | while((*t = *s++)) t++; |
| 1945 | if (rve) |
| 1946 | *rve = t; |
| 1947 | return rv; |
| 1948 | } |
| 1949 | |
| 1950 | /* freedtoa(s) must be used to free values s returned by dtoa |
| 1951 | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
| 1952 | * but for consistency with earlier versions of dtoa, it is optional |
| 1953 | * when MULTIPLE_THREADS is not defined. |
| 1954 | */ |
| 1955 | |
| 1956 | void |
| 1957 | _Py_dg_freedtoa(char *s) |
| 1958 | { |
| 1959 | Bigint *b = (Bigint *)((int *)s - 1); |
| 1960 | b->maxwds = 1 << (b->k = *(int*)b); |
| 1961 | Bfree(b); |
| 1962 | } |
| 1963 | |
| 1964 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| 1965 | * |
| 1966 | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
| 1967 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| 1968 | * |
| 1969 | * Modifications: |
| 1970 | * 1. Rather than iterating, we use a simple numeric overestimate |
| 1971 | * to determine k = floor(log10(d)). We scale relevant |
| 1972 | * quantities using O(log2(k)) rather than O(k) multiplications. |
| 1973 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| 1974 | * try to generate digits strictly left to right. Instead, we |
| 1975 | * compute with fewer bits and propagate the carry if necessary |
| 1976 | * when rounding the final digit up. This is often faster. |
| 1977 | * 3. Under the assumption that input will be rounded nearest, |
| 1978 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| 1979 | * That is, we allow equality in stopping tests when the |
| 1980 | * round-nearest rule will give the same floating-point value |
| 1981 | * as would satisfaction of the stopping test with strict |
| 1982 | * inequality. |
| 1983 | * 4. We remove common factors of powers of 2 from relevant |
| 1984 | * quantities. |
| 1985 | * 5. When converting floating-point integers less than 1e16, |
| 1986 | * we use floating-point arithmetic rather than resorting |
| 1987 | * to multiple-precision integers. |
| 1988 | * 6. When asked to produce fewer than 15 digits, we first try |
| 1989 | * to get by with floating-point arithmetic; we resort to |
| 1990 | * multiple-precision integer arithmetic only if we cannot |
| 1991 | * guarantee that the floating-point calculation has given |
| 1992 | * the correctly rounded result. For k requested digits and |
| 1993 | * "uniformly" distributed input, the probability is |
| 1994 | * something like 10^(k-15) that we must resort to the Long |
| 1995 | * calculation. |
| 1996 | */ |
| 1997 | |
| 1998 | /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory |
| 1999 | leakage, a successful call to _Py_dg_dtoa should always be matched by a |
| 2000 | call to _Py_dg_freedtoa. */ |
| 2001 | |
| 2002 | char * |
| 2003 | _Py_dg_dtoa(double dd, int mode, int ndigits, |
| 2004 | int *decpt, int *sign, char **rve) |
| 2005 | { |
| 2006 | /* Arguments ndigits, decpt, sign are similar to those |
| 2007 | of ecvt and fcvt; trailing zeros are suppressed from |
| 2008 | the returned string. If not null, *rve is set to point |
| 2009 | to the end of the return value. If d is +-Infinity or NaN, |
| 2010 | then *decpt is set to 9999. |
| 2011 | |
| 2012 | mode: |
| 2013 | 0 ==> shortest string that yields d when read in |
| 2014 | and rounded to nearest. |
| 2015 | 1 ==> like 0, but with Steele & White stopping rule; |
| 2016 | e.g. with IEEE P754 arithmetic , mode 0 gives |
| 2017 | 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 2018 | 2 ==> max(1,ndigits) significant digits. This gives a |
| 2019 | return value similar to that of ecvt, except |
| 2020 | that trailing zeros are suppressed. |
| 2021 | 3 ==> through ndigits past the decimal point. This |
| 2022 | gives a return value similar to that from fcvt, |
| 2023 | except that trailing zeros are suppressed, and |
| 2024 | ndigits can be negative. |
| 2025 | 4,5 ==> similar to 2 and 3, respectively, but (in |
| 2026 | round-nearest mode) with the tests of mode 0 to |
| 2027 | possibly return a shorter string that rounds to d. |
| 2028 | With IEEE arithmetic and compilation with |
| 2029 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
| 2030 | as modes 2 and 3 when FLT_ROUNDS != 1. |
| 2031 | 6-9 ==> Debugging modes similar to mode - 4: don't try |
| 2032 | fast floating-point estimate (if applicable). |
| 2033 | |
| 2034 | Values of mode other than 0-9 are treated as mode 0. |
| 2035 | |
| 2036 | Sufficient space is allocated to the return value |
| 2037 | to hold the suppressed trailing zeros. |
| 2038 | */ |
| 2039 | |
| 2040 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
| 2041 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
| 2042 | spec_case, try_quick; |
| 2043 | Long L; |
| 2044 | int denorm; |
| 2045 | ULong x; |
| 2046 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
| 2047 | U d2, eps, u; |
| 2048 | double ds; |
| 2049 | char *s, *s0; |
| 2050 | |
| 2051 | /* set pointers to NULL, to silence gcc compiler warnings and make |
| 2052 | cleanup easier on error */ |
| 2053 | mlo = mhi = b = S = 0; |
| 2054 | s0 = 0; |
| 2055 | |
| 2056 | u.d = dd; |
| 2057 | if (word0(&u) & Sign_bit) { |
| 2058 | /* set sign for everything, including 0's and NaNs */ |
| 2059 | *sign = 1; |
| 2060 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
| 2061 | } |
| 2062 | else |
| 2063 | *sign = 0; |
| 2064 | |
| 2065 | /* quick return for Infinities, NaNs and zeros */ |
| 2066 | if ((word0(&u) & Exp_mask) == Exp_mask) |
| 2067 | { |
| 2068 | /* Infinity or NaN */ |
| 2069 | *decpt = 9999; |
| 2070 | if (!word1(&u) && !(word0(&u) & 0xfffff)) |
| 2071 | return nrv_alloc("Infinity", rve, 8); |
| 2072 | return nrv_alloc("NaN", rve, 3); |
| 2073 | } |
| 2074 | if (!dval(&u)) { |
| 2075 | *decpt = 1; |
| 2076 | return nrv_alloc("0", rve, 1); |
| 2077 | } |
| 2078 | |
| 2079 | /* compute k = floor(log10(d)). The computation may leave k |
| 2080 | one too large, but should never leave k too small. */ |
| 2081 | b = d2b(&u, &be, &bbits); |
| 2082 | if (b == NULL) |
| 2083 | goto failed_malloc; |
| 2084 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
| 2085 | dval(&d2) = dval(&u); |
| 2086 | word0(&d2) &= Frac_mask1; |
| 2087 | word0(&d2) |= Exp_11; |
| 2088 | |
| 2089 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| 2090 | * log10(x) = log(x) / log(10) |
| 2091 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| 2092 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
| 2093 | * |
| 2094 | * This suggests computing an approximation k to log10(d) by |
| 2095 | * |
| 2096 | * k = (i - Bias)*0.301029995663981 |
| 2097 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| 2098 | * |
| 2099 | * We want k to be too large rather than too small. |
| 2100 | * The error in the first-order Taylor series approximation |
| 2101 | * is in our favor, so we just round up the constant enough |
| 2102 | * to compensate for any error in the multiplication of |
| 2103 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| 2104 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| 2105 | * adding 1e-13 to the constant term more than suffices. |
| 2106 | * Hence we adjust the constant term to 0.1760912590558. |
| 2107 | * (We could get a more accurate k by invoking log10, |
| 2108 | * but this is probably not worthwhile.) |
| 2109 | */ |
| 2110 | |
| 2111 | i -= Bias; |
| 2112 | denorm = 0; |
| 2113 | } |
| 2114 | else { |
| 2115 | /* d is denormalized */ |
| 2116 | |
| 2117 | i = bbits + be + (Bias + (P-1) - 1); |
| 2118 | x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
| 2119 | : word1(&u) << (32 - i); |
| 2120 | dval(&d2) = x; |
| 2121 | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
| 2122 | i -= (Bias + (P-1) - 1) + 1; |
| 2123 | denorm = 1; |
| 2124 | } |
| 2125 | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + |
| 2126 | i*0.301029995663981; |
| 2127 | k = (int)ds; |
| 2128 | if (ds < 0. && ds != k) |
| 2129 | k--; /* want k = floor(ds) */ |
| 2130 | k_check = 1; |
| 2131 | if (k >= 0 && k <= Ten_pmax) { |
| 2132 | if (dval(&u) < tens[k]) |
| 2133 | k--; |
| 2134 | k_check = 0; |
| 2135 | } |
| 2136 | j = bbits - i - 1; |
| 2137 | if (j >= 0) { |
| 2138 | b2 = 0; |
| 2139 | s2 = j; |
| 2140 | } |
| 2141 | else { |
| 2142 | b2 = -j; |
| 2143 | s2 = 0; |
| 2144 | } |
| 2145 | if (k >= 0) { |
| 2146 | b5 = 0; |
| 2147 | s5 = k; |
| 2148 | s2 += k; |
| 2149 | } |
| 2150 | else { |
| 2151 | b2 -= k; |
| 2152 | b5 = -k; |
| 2153 | s5 = 0; |
| 2154 | } |
| 2155 | if (mode < 0 || mode > 9) |
| 2156 | mode = 0; |
| 2157 | |
| 2158 | try_quick = 1; |
| 2159 | |
| 2160 | if (mode > 5) { |
| 2161 | mode -= 4; |
| 2162 | try_quick = 0; |
| 2163 | } |
| 2164 | leftright = 1; |
| 2165 | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
| 2166 | /* silence erroneous "gcc -Wall" warning. */ |
| 2167 | switch(mode) { |
| 2168 | case 0: |
| 2169 | case 1: |
| 2170 | i = 18; |
| 2171 | ndigits = 0; |
| 2172 | break; |
| 2173 | case 2: |
| 2174 | leftright = 0; |
| 2175 | /* no break */ |
| 2176 | case 4: |
| 2177 | if (ndigits <= 0) |
| 2178 | ndigits = 1; |
| 2179 | ilim = ilim1 = i = ndigits; |
| 2180 | break; |
| 2181 | case 3: |
| 2182 | leftright = 0; |
| 2183 | /* no break */ |
| 2184 | case 5: |
| 2185 | i = ndigits + k + 1; |
| 2186 | ilim = i; |
| 2187 | ilim1 = i - 1; |
| 2188 | if (i <= 0) |
| 2189 | i = 1; |
| 2190 | } |
| 2191 | s0 = rv_alloc(i); |
| 2192 | if (s0 == NULL) |
| 2193 | goto failed_malloc; |
| 2194 | s = s0; |
| 2195 | |
| 2196 | |
| 2197 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
| 2198 | |
| 2199 | /* Try to get by with floating-point arithmetic. */ |
| 2200 | |
| 2201 | i = 0; |
| 2202 | dval(&d2) = dval(&u); |
| 2203 | k0 = k; |
| 2204 | ilim0 = ilim; |
| 2205 | ieps = 2; /* conservative */ |
| 2206 | if (k > 0) { |
| 2207 | ds = tens[k&0xf]; |
| 2208 | j = k >> 4; |
| 2209 | if (j & Bletch) { |
| 2210 | /* prevent overflows */ |
| 2211 | j &= Bletch - 1; |
| 2212 | dval(&u) /= bigtens[n_bigtens-1]; |
| 2213 | ieps++; |
| 2214 | } |
| 2215 | for(; j; j >>= 1, i++) |
| 2216 | if (j & 1) { |
| 2217 | ieps++; |
| 2218 | ds *= bigtens[i]; |
| 2219 | } |
| 2220 | dval(&u) /= ds; |
| 2221 | } |
| 2222 | else if ((j1 = -k)) { |
| 2223 | dval(&u) *= tens[j1 & 0xf]; |
| 2224 | for(j = j1 >> 4; j; j >>= 1, i++) |
| 2225 | if (j & 1) { |
| 2226 | ieps++; |
| 2227 | dval(&u) *= bigtens[i]; |
| 2228 | } |
| 2229 | } |
| 2230 | if (k_check && dval(&u) < 1. && ilim > 0) { |
| 2231 | if (ilim1 <= 0) |
| 2232 | goto fast_failed; |
| 2233 | ilim = ilim1; |
| 2234 | k--; |
| 2235 | dval(&u) *= 10.; |
| 2236 | ieps++; |
| 2237 | } |
| 2238 | dval(&eps) = ieps*dval(&u) + 7.; |
| 2239 | word0(&eps) -= (P-1)*Exp_msk1; |
| 2240 | if (ilim == 0) { |
| 2241 | S = mhi = 0; |
| 2242 | dval(&u) -= 5.; |
| 2243 | if (dval(&u) > dval(&eps)) |
| 2244 | goto one_digit; |
| 2245 | if (dval(&u) < -dval(&eps)) |
| 2246 | goto no_digits; |
| 2247 | goto fast_failed; |
| 2248 | } |
| 2249 | if (leftright) { |
| 2250 | /* Use Steele & White method of only |
| 2251 | * generating digits needed. |
| 2252 | */ |
| 2253 | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
| 2254 | for(i = 0;;) { |
| 2255 | L = (Long)dval(&u); |
| 2256 | dval(&u) -= L; |
| 2257 | *s++ = '0' + (int)L; |
| 2258 | if (dval(&u) < dval(&eps)) |
| 2259 | goto ret1; |
| 2260 | if (1. - dval(&u) < dval(&eps)) |
| 2261 | goto bump_up; |
| 2262 | if (++i >= ilim) |
| 2263 | break; |
| 2264 | dval(&eps) *= 10.; |
| 2265 | dval(&u) *= 10.; |
| 2266 | } |
| 2267 | } |
| 2268 | else { |
| 2269 | /* Generate ilim digits, then fix them up. */ |
| 2270 | dval(&eps) *= tens[ilim-1]; |
| 2271 | for(i = 1;; i++, dval(&u) *= 10.) { |
| 2272 | L = (Long)(dval(&u)); |
| 2273 | if (!(dval(&u) -= L)) |
| 2274 | ilim = i; |
| 2275 | *s++ = '0' + (int)L; |
| 2276 | if (i == ilim) { |
| 2277 | if (dval(&u) > 0.5 + dval(&eps)) |
| 2278 | goto bump_up; |
| 2279 | else if (dval(&u) < 0.5 - dval(&eps)) { |
| 2280 | while(*--s == '0'); |
| 2281 | s++; |
| 2282 | goto ret1; |
| 2283 | } |
| 2284 | break; |
| 2285 | } |
| 2286 | } |
| 2287 | } |
| 2288 | fast_failed: |
| 2289 | s = s0; |
| 2290 | dval(&u) = dval(&d2); |
| 2291 | k = k0; |
| 2292 | ilim = ilim0; |
| 2293 | } |
| 2294 | |
| 2295 | /* Do we have a "small" integer? */ |
| 2296 | |
| 2297 | if (be >= 0 && k <= Int_max) { |
| 2298 | /* Yes. */ |
| 2299 | ds = tens[k]; |
| 2300 | if (ndigits < 0 && ilim <= 0) { |
| 2301 | S = mhi = 0; |
| 2302 | if (ilim < 0 || dval(&u) <= 5*ds) |
| 2303 | goto no_digits; |
| 2304 | goto one_digit; |
| 2305 | } |
| 2306 | for(i = 1;; i++, dval(&u) *= 10.) { |
| 2307 | L = (Long)(dval(&u) / ds); |
| 2308 | dval(&u) -= L*ds; |
| 2309 | *s++ = '0' + (int)L; |
| 2310 | if (!dval(&u)) { |
| 2311 | break; |
| 2312 | } |
| 2313 | if (i == ilim) { |
| 2314 | dval(&u) += dval(&u); |
| 2315 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { |
| 2316 | bump_up: |
| 2317 | while(*--s == '9') |
| 2318 | if (s == s0) { |
| 2319 | k++; |
| 2320 | *s = '0'; |
| 2321 | break; |
| 2322 | } |
| 2323 | ++*s++; |
| 2324 | } |
| 2325 | break; |
| 2326 | } |
| 2327 | } |
| 2328 | goto ret1; |
| 2329 | } |
| 2330 | |
| 2331 | m2 = b2; |
| 2332 | m5 = b5; |
| 2333 | if (leftright) { |
| 2334 | i = |
| 2335 | denorm ? be + (Bias + (P-1) - 1 + 1) : |
| 2336 | 1 + P - bbits; |
| 2337 | b2 += i; |
| 2338 | s2 += i; |
| 2339 | mhi = i2b(1); |
| 2340 | if (mhi == NULL) |
| 2341 | goto failed_malloc; |
| 2342 | } |
| 2343 | if (m2 > 0 && s2 > 0) { |
| 2344 | i = m2 < s2 ? m2 : s2; |
| 2345 | b2 -= i; |
| 2346 | m2 -= i; |
| 2347 | s2 -= i; |
| 2348 | } |
| 2349 | if (b5 > 0) { |
| 2350 | if (leftright) { |
| 2351 | if (m5 > 0) { |
| 2352 | mhi = pow5mult(mhi, m5); |
| 2353 | if (mhi == NULL) |
| 2354 | goto failed_malloc; |
| 2355 | b1 = mult(mhi, b); |
| 2356 | Bfree(b); |
| 2357 | b = b1; |
| 2358 | if (b == NULL) |
| 2359 | goto failed_malloc; |
| 2360 | } |
| 2361 | if ((j = b5 - m5)) { |
| 2362 | b = pow5mult(b, j); |
| 2363 | if (b == NULL) |
| 2364 | goto failed_malloc; |
| 2365 | } |
| 2366 | } |
| 2367 | else { |
| 2368 | b = pow5mult(b, b5); |
| 2369 | if (b == NULL) |
| 2370 | goto failed_malloc; |
| 2371 | } |
| 2372 | } |
| 2373 | S = i2b(1); |
| 2374 | if (S == NULL) |
| 2375 | goto failed_malloc; |
| 2376 | if (s5 > 0) { |
| 2377 | S = pow5mult(S, s5); |
| 2378 | if (S == NULL) |
| 2379 | goto failed_malloc; |
| 2380 | } |
| 2381 | |
| 2382 | /* Check for special case that d is a normalized power of 2. */ |
| 2383 | |
| 2384 | spec_case = 0; |
| 2385 | if ((mode < 2 || leftright) |
| 2386 | ) { |
| 2387 | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
| 2388 | && word0(&u) & (Exp_mask & ~Exp_msk1) |
| 2389 | ) { |
| 2390 | /* The special case */ |
| 2391 | b2 += Log2P; |
| 2392 | s2 += Log2P; |
| 2393 | spec_case = 1; |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | /* Arrange for convenient computation of quotients: |
| 2398 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 2399 | * |
| 2400 | * Perhaps we should just compute leading 28 bits of S once |
| 2401 | * and for all and pass them and a shift to quorem, so it |
| 2402 | * can do shifts and ors to compute the numerator for q. |
| 2403 | */ |
| 2404 | if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) |
| 2405 | i = 32 - i; |
| 2406 | #define iInc 28 |
| 2407 | i = dshift(S, s2); |
| 2408 | b2 += i; |
| 2409 | m2 += i; |
| 2410 | s2 += i; |
| 2411 | if (b2 > 0) { |
| 2412 | b = lshift(b, b2); |
| 2413 | if (b == NULL) |
| 2414 | goto failed_malloc; |
| 2415 | } |
| 2416 | if (s2 > 0) { |
| 2417 | S = lshift(S, s2); |
| 2418 | if (S == NULL) |
| 2419 | goto failed_malloc; |
| 2420 | } |
| 2421 | if (k_check) { |
| 2422 | if (cmp(b,S) < 0) { |
| 2423 | k--; |
| 2424 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
| 2425 | if (b == NULL) |
| 2426 | goto failed_malloc; |
| 2427 | if (leftright) { |
| 2428 | mhi = multadd(mhi, 10, 0); |
| 2429 | if (mhi == NULL) |
| 2430 | goto failed_malloc; |
| 2431 | } |
| 2432 | ilim = ilim1; |
| 2433 | } |
| 2434 | } |
| 2435 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
| 2436 | if (ilim < 0) { |
| 2437 | /* no digits, fcvt style */ |
| 2438 | no_digits: |
| 2439 | k = -1 - ndigits; |
| 2440 | goto ret; |
| 2441 | } |
| 2442 | else { |
| 2443 | S = multadd(S, 5, 0); |
| 2444 | if (S == NULL) |
| 2445 | goto failed_malloc; |
| 2446 | if (cmp(b, S) <= 0) |
| 2447 | goto no_digits; |
| 2448 | } |
| 2449 | one_digit: |
| 2450 | *s++ = '1'; |
| 2451 | k++; |
| 2452 | goto ret; |
| 2453 | } |
| 2454 | if (leftright) { |
| 2455 | if (m2 > 0) { |
| 2456 | mhi = lshift(mhi, m2); |
| 2457 | if (mhi == NULL) |
| 2458 | goto failed_malloc; |
| 2459 | } |
| 2460 | |
| 2461 | /* Compute mlo -- check for special case |
| 2462 | * that d is a normalized power of 2. |
| 2463 | */ |
| 2464 | |
| 2465 | mlo = mhi; |
| 2466 | if (spec_case) { |
| 2467 | mhi = Balloc(mhi->k); |
| 2468 | if (mhi == NULL) |
| 2469 | goto failed_malloc; |
| 2470 | Bcopy(mhi, mlo); |
| 2471 | mhi = lshift(mhi, Log2P); |
| 2472 | if (mhi == NULL) |
| 2473 | goto failed_malloc; |
| 2474 | } |
| 2475 | |
| 2476 | for(i = 1;;i++) { |
| 2477 | dig = quorem(b,S) + '0'; |
| 2478 | /* Do we yet have the shortest decimal string |
| 2479 | * that will round to d? |
| 2480 | */ |
| 2481 | j = cmp(b, mlo); |
| 2482 | delta = diff(S, mhi); |
| 2483 | if (delta == NULL) |
| 2484 | goto failed_malloc; |
| 2485 | j1 = delta->sign ? 1 : cmp(b, delta); |
| 2486 | Bfree(delta); |
| 2487 | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
| 2488 | ) { |
| 2489 | if (dig == '9') |
| 2490 | goto round_9_up; |
| 2491 | if (j > 0) |
| 2492 | dig++; |
| 2493 | *s++ = dig; |
| 2494 | goto ret; |
| 2495 | } |
| 2496 | if (j < 0 || (j == 0 && mode != 1 |
| 2497 | && !(word1(&u) & 1) |
| 2498 | )) { |
| 2499 | if (!b->x[0] && b->wds <= 1) { |
| 2500 | goto accept_dig; |
| 2501 | } |
| 2502 | if (j1 > 0) { |
| 2503 | b = lshift(b, 1); |
| 2504 | if (b == NULL) |
| 2505 | goto failed_malloc; |
| 2506 | j1 = cmp(b, S); |
| 2507 | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
| 2508 | && dig++ == '9') |
| 2509 | goto round_9_up; |
| 2510 | } |
| 2511 | accept_dig: |
| 2512 | *s++ = dig; |
| 2513 | goto ret; |
| 2514 | } |
| 2515 | if (j1 > 0) { |
| 2516 | if (dig == '9') { /* possible if i == 1 */ |
| 2517 | round_9_up: |
| 2518 | *s++ = '9'; |
| 2519 | goto roundoff; |
| 2520 | } |
| 2521 | *s++ = dig + 1; |
| 2522 | goto ret; |
| 2523 | } |
| 2524 | *s++ = dig; |
| 2525 | if (i == ilim) |
| 2526 | break; |
| 2527 | b = multadd(b, 10, 0); |
| 2528 | if (b == NULL) |
| 2529 | goto failed_malloc; |
| 2530 | if (mlo == mhi) { |
| 2531 | mlo = mhi = multadd(mhi, 10, 0); |
| 2532 | if (mlo == NULL) |
| 2533 | goto failed_malloc; |
| 2534 | } |
| 2535 | else { |
| 2536 | mlo = multadd(mlo, 10, 0); |
| 2537 | if (mlo == NULL) |
| 2538 | goto failed_malloc; |
| 2539 | mhi = multadd(mhi, 10, 0); |
| 2540 | if (mhi == NULL) |
| 2541 | goto failed_malloc; |
| 2542 | } |
| 2543 | } |
| 2544 | } |
| 2545 | else |
| 2546 | for(i = 1;; i++) { |
| 2547 | *s++ = dig = quorem(b,S) + '0'; |
| 2548 | if (!b->x[0] && b->wds <= 1) { |
| 2549 | goto ret; |
| 2550 | } |
| 2551 | if (i >= ilim) |
| 2552 | break; |
| 2553 | b = multadd(b, 10, 0); |
| 2554 | if (b == NULL) |
| 2555 | goto failed_malloc; |
| 2556 | } |
| 2557 | |
| 2558 | /* Round off last digit */ |
| 2559 | |
| 2560 | b = lshift(b, 1); |
| 2561 | if (b == NULL) |
| 2562 | goto failed_malloc; |
| 2563 | j = cmp(b, S); |
| 2564 | if (j > 0 || (j == 0 && dig & 1)) { |
| 2565 | roundoff: |
| 2566 | while(*--s == '9') |
| 2567 | if (s == s0) { |
| 2568 | k++; |
| 2569 | *s++ = '1'; |
| 2570 | goto ret; |
| 2571 | } |
| 2572 | ++*s++; |
| 2573 | } |
| 2574 | else { |
| 2575 | while(*--s == '0'); |
| 2576 | s++; |
| 2577 | } |
| 2578 | ret: |
| 2579 | Bfree(S); |
| 2580 | if (mhi) { |
| 2581 | if (mlo && mlo != mhi) |
| 2582 | Bfree(mlo); |
| 2583 | Bfree(mhi); |
| 2584 | } |
| 2585 | ret1: |
| 2586 | Bfree(b); |
| 2587 | *s = 0; |
| 2588 | *decpt = k + 1; |
| 2589 | if (rve) |
| 2590 | *rve = s; |
| 2591 | return s0; |
| 2592 | failed_malloc: |
| 2593 | if (S) |
| 2594 | Bfree(S); |
| 2595 | if (mlo && mlo != mhi) |
| 2596 | Bfree(mlo); |
| 2597 | if (mhi) |
| 2598 | Bfree(mhi); |
| 2599 | if (b) |
| 2600 | Bfree(b); |
| 2601 | if (s0) |
| 2602 | _Py_dg_freedtoa(s0); |
| 2603 | return NULL; |
| 2604 | } |
| 2605 | #ifdef __cplusplus |
| 2606 | } |
| 2607 | #endif |
| 2608 | |
| 2609 | #endif /* PY_NO_SHORT_FLOAT_REPR */ |