blob: c85862a866aefc797ba858e502da66e9c5e3a07c [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
Georg Brandl8ec7f652007-08-15 14:28:01 +000024
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +000025Number-theoretic and representation functions
26---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
28.. function:: ceil(x)
29
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000030 Return the ceiling of *x* as a float, the smallest integer value greater than or
31 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000032
33
Christian Heimeseebb79c2008-01-03 22:32:26 +000034.. function:: copysign(x, y)
35
Mark Dickinson02c36ef2010-04-06 19:52:05 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimeseebb79c2008-01-03 22:32:26 +000038
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000039 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000040
41
Georg Brandl8ec7f652007-08-15 14:28:01 +000042.. function:: fabs(x)
43
44 Return the absolute value of *x*.
45
Georg Brandl5da652e2008-06-18 09:28:22 +000046
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000047.. function:: factorial(x)
48
Mark Dickinsonf88f7392008-06-18 09:20:17 +000049 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000051
Georg Brandl5da652e2008-06-18 09:28:22 +000052 .. versionadded:: 2.6
53
54
Georg Brandl8ec7f652007-08-15 14:28:01 +000055.. function:: floor(x)
56
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000057 Return the floor of *x* as a float, the largest integer value less than or equal
58 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
Georg Brandl9749e152008-01-05 19:28:16 +000060 .. versionchanged:: 2.6
61 Added :meth:`__floor__` delegation.
62
Georg Brandl8ec7f652007-08-15 14:28:01 +000063
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonfef6b132008-07-30 16:20:10 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7f48c102009-02-19 05:53:22 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000091
Raymond Hettinger7f48c102009-02-19 05:53:22 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
93 0.99999999999999989
94 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000096
Raymond Hettinger7f48c102009-02-19 05:53:22 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +0000102
Raymond Hettingerb2d41212009-02-19 06:57:23 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
105 <http://code.activestate.com/recipes/393090/>`_\.
106
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000107 .. versionadded:: 2.6
108
109
Christian Heimese2ca4242008-01-03 20:23:15 +0000110.. function:: isinf(x)
111
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000112 Check if the float *x* is positive or negative infinity.
Christian Heimese2ca4242008-01-03 20:23:15 +0000113
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000114 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000115
116
117.. function:: isnan(x)
118
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000119 Check if the float *x* is a NaN (not a number). For more information
120 on NaNs, see the IEEE 754 standards.
Christian Heimese2ca4242008-01-03 20:23:15 +0000121
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000122 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000123
124
Georg Brandl8ec7f652007-08-15 14:28:01 +0000125.. function:: ldexp(x, i)
126
127 Return ``x * (2**i)``. This is essentially the inverse of function
128 :func:`frexp`.
129
130
131.. function:: modf(x)
132
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000133 Return the fractional and integer parts of *x*. Both results carry the sign
134 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000135
Georg Brandl5da652e2008-06-18 09:28:22 +0000136
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000137.. function:: trunc(x)
138
139 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
140 a long integer). Delegates to ``x.__trunc__()``.
141
142 .. versionadded:: 2.6
143
Georg Brandl5da652e2008-06-18 09:28:22 +0000144
Georg Brandl8ec7f652007-08-15 14:28:01 +0000145Note that :func:`frexp` and :func:`modf` have a different call/return pattern
146than their C equivalents: they take a single argument and return a pair of
147values, rather than returning their second return value through an 'output
148parameter' (there is no such thing in Python).
149
150For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
151floating-point numbers of sufficiently large magnitude are exact integers.
152Python floats typically carry no more than 53 bits of precision (the same as the
153platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
154necessarily has no fractional bits.
155
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000156
157Power and logarithmic functions
158-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000159
Georg Brandl8ec7f652007-08-15 14:28:01 +0000160.. function:: exp(x)
161
162 Return ``e**x``.
163
164
165.. function:: log(x[, base])
166
Georg Brandl5be70d42009-10-27 14:50:20 +0000167 With one argument, return the natural logarithm of *x* (to base *e*).
168
169 With two arguments, return the logarithm of *x* to the given *base*,
170 calculated as ``log(x)/log(base)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000171
172 .. versionchanged:: 2.3
173 *base* argument added.
174
175
Christian Heimes6f341092008-04-18 23:13:07 +0000176.. function:: log1p(x)
177
178 Return the natural logarithm of *1+x* (base *e*). The
179 result is calculated in a way which is accurate for *x* near zero.
180
181 .. versionadded:: 2.6
182
183
Georg Brandl8ec7f652007-08-15 14:28:01 +0000184.. function:: log10(x)
185
Georg Brandl5be70d42009-10-27 14:50:20 +0000186 Return the base-10 logarithm of *x*. This is usually more accurate
187 than ``log(x, 10)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000188
189
190.. function:: pow(x, y)
191
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000192 Return ``x`` raised to the power ``y``. Exceptional cases follow
193 Annex 'F' of the C99 standard as far as possible. In particular,
194 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
195 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
196 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
197 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000198
199 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000200 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000201
202
203.. function:: sqrt(x)
204
205 Return the square root of *x*.
206
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000208Trigonometric functions
209-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000210
211.. function:: acos(x)
212
213 Return the arc cosine of *x*, in radians.
214
215
216.. function:: asin(x)
217
218 Return the arc sine of *x*, in radians.
219
220
221.. function:: atan(x)
222
223 Return the arc tangent of *x*, in radians.
224
225
226.. function:: atan2(y, x)
227
228 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
229 The vector in the plane from the origin to point ``(x, y)`` makes this angle
230 with the positive X axis. The point of :func:`atan2` is that the signs of both
231 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000232 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl8ec7f652007-08-15 14:28:01 +0000233 -1)`` is ``-3*pi/4``.
234
235
236.. function:: cos(x)
237
238 Return the cosine of *x* radians.
239
240
241.. function:: hypot(x, y)
242
243 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
244 from the origin to point ``(x, y)``.
245
246
247.. function:: sin(x)
248
249 Return the sine of *x* radians.
250
251
252.. function:: tan(x)
253
254 Return the tangent of *x* radians.
255
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000257Angular conversion
258------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000259
260.. function:: degrees(x)
261
262 Converts angle *x* from radians to degrees.
263
264
265.. function:: radians(x)
266
267 Converts angle *x* from degrees to radians.
268
Georg Brandl8ec7f652007-08-15 14:28:01 +0000269
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000270Hyperbolic functions
271--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000272
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000273.. function:: acosh(x)
274
275 Return the inverse hyperbolic cosine of *x*.
276
277 .. versionadded:: 2.6
278
279
280.. function:: asinh(x)
281
282 Return the inverse hyperbolic sine of *x*.
283
284 .. versionadded:: 2.6
285
286
287.. function:: atanh(x)
288
289 Return the inverse hyperbolic tangent of *x*.
290
291 .. versionadded:: 2.6
292
293
Georg Brandl8ec7f652007-08-15 14:28:01 +0000294.. function:: cosh(x)
295
296 Return the hyperbolic cosine of *x*.
297
298
299.. function:: sinh(x)
300
301 Return the hyperbolic sine of *x*.
302
303
304.. function:: tanh(x)
305
306 Return the hyperbolic tangent of *x*.
307
Christian Heimes6f341092008-04-18 23:13:07 +0000308
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000309Constants
310---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000311
Georg Brandl8ec7f652007-08-15 14:28:01 +0000312.. data:: pi
313
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000314 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000315
316
317.. data:: e
318
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000319 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000320
Christian Heimes6f341092008-04-18 23:13:07 +0000321
Georg Brandl5d2eb342009-10-27 15:08:27 +0000322.. impl-detail::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000323
324 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000325 math library functions. Behavior in exceptional cases follows Annex F of
326 the C99 standard where appropriate. The current implementation will raise
327 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
328 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
329 and :exc:`OverflowError` for results that overflow (for example,
Mark Dickinsonb30da122010-04-12 18:43:56 +0000330 ``exp(1000.0)``). A NaN will not be returned from any of the functions
331 above unless one or more of the input arguments was a NaN; in that case,
332 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000333 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
334 ``hypot(float('nan'), float('inf'))``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000335
Mark Dickinson80080382010-04-06 22:11:54 +0000336 Note that Python makes no effort to distinguish signaling NaNs from
337 quiet NaNs, and behavior for signaling NaNs remains unspecified.
338 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes6f341092008-04-18 23:13:07 +0000339
Georg Brandl173b7392008-05-12 17:43:13 +0000340 .. versionchanged:: 2.6
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000341 Behavior in special cases now aims to follow C99 Annex F. In earlier
342 versions of Python the behavior in special cases was loosely specified.
Christian Heimes6f341092008-04-18 23:13:07 +0000343
Georg Brandl8ec7f652007-08-15 14:28:01 +0000344
345.. seealso::
346
347 Module :mod:`cmath`
348 Complex number versions of many of these functions.