blob: 87afdabb6b32968252011b95aff671ae59ca77b7 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Christian Heimes969fe572008-01-25 11:23:10 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000063/*
64 sin(pi*x), giving accurate results for all finite x (especially x
65 integral or close to an integer). This is here for use in the
66 reflection formula for the gamma function. It conforms to IEEE
67 754-2008 for finite arguments, but not for infinities or nans.
68*/
Tim Petersa40c7932001-09-05 22:36:56 +000069
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000070static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson45f992a2009-12-19 11:20:49 +000071static const double sqrtpi = 1.772453850905516027298167483341145182798;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000072
73static double
74sinpi(double x)
75{
76 double y, r;
77 int n;
78 /* this function should only ever be called for finite arguments */
79 assert(Py_IS_FINITE(x));
80 y = fmod(fabs(x), 2.0);
81 n = (int)round(2.0*y);
82 assert(0 <= n && n <= 4);
83 switch (n) {
84 case 0:
85 r = sin(pi*y);
86 break;
87 case 1:
88 r = cos(pi*(y-0.5));
89 break;
90 case 2:
91 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
92 -0.0 instead of 0.0 when y == 1.0. */
93 r = sin(pi*(1.0-y));
94 break;
95 case 3:
96 r = -cos(pi*(y-1.5));
97 break;
98 case 4:
99 r = sin(pi*(y-2.0));
100 break;
101 default:
102 assert(0); /* should never get here */
103 r = -1.23e200; /* silence gcc warning */
Tim Peters1d120612000-10-12 06:10:25 +0000104 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000105 return copysign(1.0, x)*r;
106}
107
108/* Implementation of the real gamma function. In extensive but non-exhaustive
109 random tests, this function proved accurate to within <= 10 ulps across the
110 entire float domain. Note that accuracy may depend on the quality of the
111 system math functions, the pow function in particular. Special cases
112 follow C99 annex F. The parameters and method are tailored to platforms
113 whose double format is the IEEE 754 binary64 format.
114
115 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
116 and g=6.024680040776729583740234375; these parameters are amongst those
117 used by the Boost library. Following Boost (again), we re-express the
118 Lanczos sum as a rational function, and compute it that way. The
119 coefficients below were computed independently using MPFR, and have been
120 double-checked against the coefficients in the Boost source code.
121
122 For x < 0.0 we use the reflection formula.
123
124 There's one minor tweak that deserves explanation: Lanczos' formula for
125 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
126 values, x+g-0.5 can be represented exactly. However, in cases where it
127 can't be represented exactly the small error in x+g-0.5 can be magnified
128 significantly by the pow and exp calls, especially for large x. A cheap
129 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
130 involved in the computation of x+g-0.5 (that is, e = computed value of
131 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
132
133 Correction factor
134 -----------------
135 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
136 double, and e is tiny. Then:
137
138 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
139 = pow(y, x-0.5)/exp(y) * C,
140
141 where the correction_factor C is given by
142
143 C = pow(1-e/y, x-0.5) * exp(e)
144
145 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
146
147 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
148
149 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
150
151 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
152
153 Note that for accuracy, when computing r*C it's better to do
154
155 r + e*g/y*r;
156
157 than
158
159 r * (1 + e*g/y);
160
161 since the addition in the latter throws away most of the bits of
162 information in e*g/y.
163*/
164
165#define LANCZOS_N 13
166static const double lanczos_g = 6.024680040776729583740234375;
167static const double lanczos_g_minus_half = 5.524680040776729583740234375;
168static const double lanczos_num_coeffs[LANCZOS_N] = {
169 23531376880.410759688572007674451636754734846804940,
170 42919803642.649098768957899047001988850926355848959,
171 35711959237.355668049440185451547166705960488635843,
172 17921034426.037209699919755754458931112671403265390,
173 6039542586.3520280050642916443072979210699388420708,
174 1439720407.3117216736632230727949123939715485786772,
175 248874557.86205415651146038641322942321632125127801,
176 31426415.585400194380614231628318205362874684987640,
177 2876370.6289353724412254090516208496135991145378768,
178 186056.26539522349504029498971604569928220784236328,
179 8071.6720023658162106380029022722506138218516325024,
180 210.82427775157934587250973392071336271166969580291,
181 2.5066282746310002701649081771338373386264310793408
182};
183
184/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
185static const double lanczos_den_coeffs[LANCZOS_N] = {
186 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
187 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
188
189/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
190#define NGAMMA_INTEGRAL 23
191static const double gamma_integral[NGAMMA_INTEGRAL] = {
192 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
193 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
194 1307674368000.0, 20922789888000.0, 355687428096000.0,
195 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
196 51090942171709440000.0, 1124000727777607680000.0,
197};
198
199/* Lanczos' sum L_g(x), for positive x */
200
201static double
202lanczos_sum(double x)
203{
204 double num = 0.0, den = 0.0;
205 int i;
206 assert(x > 0.0);
207 /* evaluate the rational function lanczos_sum(x). For large
208 x, the obvious algorithm risks overflow, so we instead
209 rescale the denominator and numerator of the rational
210 function by x**(1-LANCZOS_N) and treat this as a
211 rational function in 1/x. This also reduces the error for
212 larger x values. The choice of cutoff point (5.0 below) is
213 somewhat arbitrary; in tests, smaller cutoff values than
214 this resulted in lower accuracy. */
215 if (x < 5.0) {
216 for (i = LANCZOS_N; --i >= 0; ) {
217 num = num * x + lanczos_num_coeffs[i];
218 den = den * x + lanczos_den_coeffs[i];
219 }
220 }
221 else {
222 for (i = 0; i < LANCZOS_N; i++) {
223 num = num / x + lanczos_num_coeffs[i];
224 den = den / x + lanczos_den_coeffs[i];
225 }
226 }
227 return num/den;
228}
229
230static double
231m_tgamma(double x)
232{
233 double absx, r, y, z, sqrtpow;
234
235 /* special cases */
236 if (!Py_IS_FINITE(x)) {
237 if (Py_IS_NAN(x) || x > 0.0)
238 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
239 else {
240 errno = EDOM;
241 return Py_NAN; /* tgamma(-inf) = nan, invalid */
242 }
243 }
244 if (x == 0.0) {
245 errno = EDOM;
246 return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
247 }
248
249 /* integer arguments */
250 if (x == floor(x)) {
251 if (x < 0.0) {
252 errno = EDOM; /* tgamma(n) = nan, invalid for */
253 return Py_NAN; /* negative integers n */
254 }
255 if (x <= NGAMMA_INTEGRAL)
256 return gamma_integral[(int)x - 1];
257 }
258 absx = fabs(x);
259
260 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
261 if (absx < 1e-20) {
262 r = 1.0/x;
263 if (Py_IS_INFINITY(r))
264 errno = ERANGE;
265 return r;
266 }
267
268 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
269 x > 200, and underflows to +-0.0 for x < -200, not a negative
270 integer. */
271 if (absx > 200.0) {
272 if (x < 0.0) {
273 return 0.0/sinpi(x);
274 }
275 else {
276 errno = ERANGE;
277 return Py_HUGE_VAL;
278 }
279 }
280
281 y = absx + lanczos_g_minus_half;
282 /* compute error in sum */
283 if (absx > lanczos_g_minus_half) {
284 /* note: the correction can be foiled by an optimizing
285 compiler that (incorrectly) thinks that an expression like
286 a + b - a - b can be optimized to 0.0. This shouldn't
287 happen in a standards-conforming compiler. */
288 double q = y - absx;
289 z = q - lanczos_g_minus_half;
290 }
291 else {
292 double q = y - lanczos_g_minus_half;
293 z = q - absx;
294 }
295 z = z * lanczos_g / y;
296 if (x < 0.0) {
297 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
298 r -= z * r;
299 if (absx < 140.0) {
300 r /= pow(y, absx - 0.5);
301 }
302 else {
303 sqrtpow = pow(y, absx / 2.0 - 0.25);
304 r /= sqrtpow;
305 r /= sqrtpow;
306 }
307 }
308 else {
309 r = lanczos_sum(absx) / exp(y);
310 r += z * r;
311 if (absx < 140.0) {
312 r *= pow(y, absx - 0.5);
313 }
314 else {
315 sqrtpow = pow(y, absx / 2.0 - 0.25);
316 r *= sqrtpow;
317 r *= sqrtpow;
318 }
319 }
320 if (Py_IS_INFINITY(r))
321 errno = ERANGE;
322 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000323}
324
Christian Heimes53876d92008-04-19 00:31:39 +0000325/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000326 lgamma: natural log of the absolute value of the Gamma function.
327 For large arguments, Lanczos' formula works extremely well here.
328*/
329
330static double
331m_lgamma(double x)
332{
333 double r, absx;
334
335 /* special cases */
336 if (!Py_IS_FINITE(x)) {
337 if (Py_IS_NAN(x))
338 return x; /* lgamma(nan) = nan */
339 else
340 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
341 }
342
343 /* integer arguments */
344 if (x == floor(x) && x <= 2.0) {
345 if (x <= 0.0) {
346 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
347 return Py_HUGE_VAL; /* integers n <= 0 */
348 }
349 else {
350 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
351 }
352 }
353
354 absx = fabs(x);
355 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
356 if (absx < 1e-20)
357 return -log(absx);
358
359 /* Lanczos' formula */
360 if (x > 0.0) {
361 /* we could save a fraction of a ulp in accuracy by having a
362 second set of numerator coefficients for lanczos_sum that
363 absorbed the exp(-lanczos_g) term, and throwing out the
364 lanczos_g subtraction below; it's probably not worth it. */
365 r = log(lanczos_sum(x)) - lanczos_g +
366 (x-0.5)*(log(x+lanczos_g-0.5)-1);
367 }
368 else {
369 r = log(pi) - log(fabs(sinpi(absx))) - log(absx) -
370 (log(lanczos_sum(absx)) - lanczos_g +
371 (absx-0.5)*(log(absx+lanczos_g-0.5)-1));
372 }
373 if (Py_IS_INFINITY(r))
374 errno = ERANGE;
375 return r;
376}
377
Mark Dickinson45f992a2009-12-19 11:20:49 +0000378/*
379 Implementations of the error function erf(x) and the complementary error
380 function erfc(x).
381
382 Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
383 Cambridge University Press), we use a series approximation for erf for
384 small x, and a continued fraction approximation for erfc(x) for larger x;
385 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
386 this gives us erf(x) and erfc(x) for all x.
387
388 The series expansion used is:
389
390 erf(x) = x*exp(-x*x)/sqrt(pi) * [
391 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
392
393 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
394 This series converges well for smallish x, but slowly for larger x.
395
396 The continued fraction expansion used is:
397
398 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
399 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
400
401 after the first term, the general term has the form:
402
403 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
404
405 This expansion converges fast for larger x, but convergence becomes
406 infinitely slow as x approaches 0.0. The (somewhat naive) continued
407 fraction evaluation algorithm used below also risks overflow for large x;
408 but for large x, erfc(x) == 0.0 to within machine precision. (For
409 example, erfc(30.0) is approximately 2.56e-393).
410
411 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
412 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
413 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
414 numbers of terms to use for the relevant expansions. */
415
416#define ERF_SERIES_CUTOFF 1.5
417#define ERF_SERIES_TERMS 25
418#define ERFC_CONTFRAC_CUTOFF 30.0
419#define ERFC_CONTFRAC_TERMS 50
420
421/*
422 Error function, via power series.
423
424 Given a finite float x, return an approximation to erf(x).
425 Converges reasonably fast for small x.
426*/
427
428static double
429m_erf_series(double x)
430{
431 double x2, acc, fk;
432 int i;
433
434 x2 = x * x;
435 acc = 0.0;
436 fk = (double)ERF_SERIES_TERMS + 0.5;
437 for (i = 0; i < ERF_SERIES_TERMS; i++) {
438 acc = 2.0 + x2 * acc / fk;
439 fk -= 1.0;
440 }
441 return acc * x * exp(-x2) / sqrtpi;
442}
443
444/*
445 Complementary error function, via continued fraction expansion.
446
447 Given a positive float x, return an approximation to erfc(x). Converges
448 reasonably fast for x large (say, x > 2.0), and should be safe from
449 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
450 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
451 than the smallest representable nonzero float. */
452
453static double
454m_erfc_contfrac(double x)
455{
456 double x2, a, da, p, p_last, q, q_last, b;
457 int i;
458
459 if (x >= ERFC_CONTFRAC_CUTOFF)
460 return 0.0;
461
462 x2 = x*x;
463 a = 0.0;
464 da = 0.5;
465 p = 1.0; p_last = 0.0;
466 q = da + x2; q_last = 1.0;
467 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
468 double temp;
469 a += da;
470 da += 2.0;
471 b = da + x2;
472 temp = p; p = b*p - a*p_last; p_last = temp;
473 temp = q; q = b*q - a*q_last; q_last = temp;
474 }
475 return p / q * x * exp(-x2) / sqrtpi;
476}
477
478/* Error function erf(x), for general x */
479
480static double
481m_erf(double x)
482{
483 double absx, cf;
484
485 if (Py_IS_NAN(x))
486 return x;
487 absx = fabs(x);
488 if (absx < ERF_SERIES_CUTOFF)
489 return m_erf_series(x);
490 else {
491 cf = m_erfc_contfrac(absx);
492 return x > 0.0 ? 1.0 - cf : cf - 1.0;
493 }
494}
495
496/* Complementary error function erfc(x), for general x. */
497
498static double
499m_erfc(double x)
500{
501 double absx, cf;
502
503 if (Py_IS_NAN(x))
504 return x;
505 absx = fabs(x);
506 if (absx < ERF_SERIES_CUTOFF)
507 return 1.0 - m_erf_series(x);
508 else {
509 cf = m_erfc_contfrac(absx);
510 return x > 0.0 ? cf : 2.0 - cf;
511 }
512}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000513
514/*
Christian Heimese57950f2008-04-21 13:08:03 +0000515 wrapper for atan2 that deals directly with special cases before
516 delegating to the platform libm for the remaining cases. This
517 is necessary to get consistent behaviour across platforms.
518 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
519 always follow C99.
520*/
521
522static double
523m_atan2(double y, double x)
524{
525 if (Py_IS_NAN(x) || Py_IS_NAN(y))
526 return Py_NAN;
527 if (Py_IS_INFINITY(y)) {
528 if (Py_IS_INFINITY(x)) {
529 if (copysign(1., x) == 1.)
530 /* atan2(+-inf, +inf) == +-pi/4 */
531 return copysign(0.25*Py_MATH_PI, y);
532 else
533 /* atan2(+-inf, -inf) == +-pi*3/4 */
534 return copysign(0.75*Py_MATH_PI, y);
535 }
536 /* atan2(+-inf, x) == +-pi/2 for finite x */
537 return copysign(0.5*Py_MATH_PI, y);
538 }
539 if (Py_IS_INFINITY(x) || y == 0.) {
540 if (copysign(1., x) == 1.)
541 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
542 return copysign(0., y);
543 else
544 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
545 return copysign(Py_MATH_PI, y);
546 }
547 return atan2(y, x);
548}
549
550/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000551 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
552 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
553 special values directly, passing positive non-special values through to
554 the system log/log10.
555 */
556
557static double
558m_log(double x)
559{
560 if (Py_IS_FINITE(x)) {
561 if (x > 0.0)
562 return log(x);
563 errno = EDOM;
564 if (x == 0.0)
565 return -Py_HUGE_VAL; /* log(0) = -inf */
566 else
567 return Py_NAN; /* log(-ve) = nan */
568 }
569 else if (Py_IS_NAN(x))
570 return x; /* log(nan) = nan */
571 else if (x > 0.0)
572 return x; /* log(inf) = inf */
573 else {
574 errno = EDOM;
575 return Py_NAN; /* log(-inf) = nan */
576 }
577}
578
579static double
580m_log10(double x)
581{
582 if (Py_IS_FINITE(x)) {
583 if (x > 0.0)
584 return log10(x);
585 errno = EDOM;
586 if (x == 0.0)
587 return -Py_HUGE_VAL; /* log10(0) = -inf */
588 else
589 return Py_NAN; /* log10(-ve) = nan */
590 }
591 else if (Py_IS_NAN(x))
592 return x; /* log10(nan) = nan */
593 else if (x > 0.0)
594 return x; /* log10(inf) = inf */
595 else {
596 errno = EDOM;
597 return Py_NAN; /* log10(-inf) = nan */
598 }
599}
600
601
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000602/* Call is_error when errno != 0, and where x is the result libm
603 * returned. is_error will usually set up an exception and return
604 * true (1), but may return false (0) without setting up an exception.
605 */
606static int
607is_error(double x)
608{
609 int result = 1; /* presumption of guilt */
610 assert(errno); /* non-zero errno is a precondition for calling */
611 if (errno == EDOM)
612 PyErr_SetString(PyExc_ValueError, "math domain error");
613
614 else if (errno == ERANGE) {
615 /* ANSI C generally requires libm functions to set ERANGE
616 * on overflow, but also generally *allows* them to set
617 * ERANGE on underflow too. There's no consistency about
618 * the latter across platforms.
619 * Alas, C99 never requires that errno be set.
620 * Here we suppress the underflow errors (libm functions
621 * should return a zero on underflow, and +- HUGE_VAL on
622 * overflow, so testing the result for zero suffices to
623 * distinguish the cases).
624 *
625 * On some platforms (Ubuntu/ia64) it seems that errno can be
626 * set to ERANGE for subnormal results that do *not* underflow
627 * to zero. So to be safe, we'll ignore ERANGE whenever the
628 * function result is less than one in absolute value.
629 */
630 if (fabs(x) < 1.0)
631 result = 0;
632 else
633 PyErr_SetString(PyExc_OverflowError,
634 "math range error");
635 }
636 else
637 /* Unexpected math error */
638 PyErr_SetFromErrno(PyExc_ValueError);
639 return result;
640}
641
Mark Dickinsone675f082008-12-11 21:56:00 +0000642/*
Christian Heimes53876d92008-04-19 00:31:39 +0000643 math_1 is used to wrap a libm function f that takes a double
644 arguments and returns a double.
645
646 The error reporting follows these rules, which are designed to do
647 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
648 platforms.
649
650 - a NaN result from non-NaN inputs causes ValueError to be raised
651 - an infinite result from finite inputs causes OverflowError to be
652 raised if can_overflow is 1, or raises ValueError if can_overflow
653 is 0.
654 - if the result is finite and errno == EDOM then ValueError is
655 raised
656 - if the result is finite and nonzero and errno == ERANGE then
657 OverflowError is raised
658
659 The last rule is used to catch overflow on platforms which follow
660 C89 but for which HUGE_VAL is not an infinity.
661
662 For the majority of one-argument functions these rules are enough
663 to ensure that Python's functions behave as specified in 'Annex F'
664 of the C99 standard, with the 'invalid' and 'divide-by-zero'
665 floating-point exceptions mapping to Python's ValueError and the
666 'overflow' floating-point exception mapping to OverflowError.
667 math_1 only works for functions that don't have singularities *and*
668 the possibility of overflow; fortunately, that covers everything we
669 care about right now.
670*/
671
Barry Warsaw8b43b191996-12-09 22:32:36 +0000672static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000673math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000674 PyObject *(*from_double_func) (double),
675 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000676{
Christian Heimes53876d92008-04-19 00:31:39 +0000677 double x, r;
678 x = PyFloat_AsDouble(arg);
Thomas Wouters89f507f2006-12-13 04:49:30 +0000679 if (x == -1.0 && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000680 return NULL;
681 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000682 PyFPE_START_PROTECT("in math_1", return 0);
683 r = (*func)(x);
684 PyFPE_END_PROTECT(r);
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000685 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
686 PyErr_SetString(PyExc_ValueError,
Mark Dickinson66bada52008-06-18 10:04:31 +0000687 "math domain error"); /* invalid arg */
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000688 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000689 }
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000690 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
691 if (can_overflow)
692 PyErr_SetString(PyExc_OverflowError,
Mark Dickinson66bada52008-06-18 10:04:31 +0000693 "math range error"); /* overflow */
Mark Dickinsonb63aff12008-05-09 14:10:27 +0000694 else
695 PyErr_SetString(PyExc_ValueError,
Mark Dickinson66bada52008-06-18 10:04:31 +0000696 "math domain error"); /* singularity */
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000697 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000698 }
Mark Dickinsonde429622008-05-01 00:19:23 +0000699 if (Py_IS_FINITE(r) && errno && is_error(r))
700 /* this branch unnecessary on most platforms */
Tim Peters1d120612000-10-12 06:10:25 +0000701 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000702
703 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000704}
705
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000706/* variant of math_1, to be used when the function being wrapped is known to
707 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
708 errno = ERANGE for overflow). */
709
710static PyObject *
711math_1a(PyObject *arg, double (*func) (double))
712{
713 double x, r;
714 x = PyFloat_AsDouble(arg);
715 if (x == -1.0 && PyErr_Occurred())
716 return NULL;
717 errno = 0;
718 PyFPE_START_PROTECT("in math_1a", return 0);
719 r = (*func)(x);
720 PyFPE_END_PROTECT(r);
721 if (errno && is_error(r))
722 return NULL;
723 return PyFloat_FromDouble(r);
724}
725
Christian Heimes53876d92008-04-19 00:31:39 +0000726/*
727 math_2 is used to wrap a libm function f that takes two double
728 arguments and returns a double.
729
730 The error reporting follows these rules, which are designed to do
731 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
732 platforms.
733
734 - a NaN result from non-NaN inputs causes ValueError to be raised
735 - an infinite result from finite inputs causes OverflowError to be
736 raised.
737 - if the result is finite and errno == EDOM then ValueError is
738 raised
739 - if the result is finite and nonzero and errno == ERANGE then
740 OverflowError is raised
741
742 The last rule is used to catch overflow on platforms which follow
743 C89 but for which HUGE_VAL is not an infinity.
744
745 For most two-argument functions (copysign, fmod, hypot, atan2)
746 these rules are enough to ensure that Python's functions behave as
747 specified in 'Annex F' of the C99 standard, with the 'invalid' and
748 'divide-by-zero' floating-point exceptions mapping to Python's
749 ValueError and the 'overflow' floating-point exception mapping to
750 OverflowError.
751*/
752
753static PyObject *
754math_1(PyObject *arg, double (*func) (double), int can_overflow)
755{
756 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000757}
758
759static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +0000760math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000761{
Christian Heimes53876d92008-04-19 00:31:39 +0000762 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000763}
764
Barry Warsaw8b43b191996-12-09 22:32:36 +0000765static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000766math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000767{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000768 PyObject *ox, *oy;
Christian Heimes53876d92008-04-19 00:31:39 +0000769 double x, y, r;
Thomas Wouters89f507f2006-12-13 04:49:30 +0000770 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
771 return NULL;
772 x = PyFloat_AsDouble(ox);
773 y = PyFloat_AsDouble(oy);
774 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000775 return NULL;
776 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000777 PyFPE_START_PROTECT("in math_2", return 0);
778 r = (*func)(x, y);
779 PyFPE_END_PROTECT(r);
780 if (Py_IS_NAN(r)) {
781 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
782 errno = EDOM;
783 else
784 errno = 0;
785 }
786 else if (Py_IS_INFINITY(r)) {
787 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
788 errno = ERANGE;
789 else
790 errno = 0;
791 }
792 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000793 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000794 else
Christian Heimes53876d92008-04-19 00:31:39 +0000795 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000796}
797
Christian Heimes53876d92008-04-19 00:31:39 +0000798#define FUNC1(funcname, func, can_overflow, docstring) \
Fred Drake40c48682000-07-03 18:11:56 +0000799 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Christian Heimes53876d92008-04-19 00:31:39 +0000800 return math_1(args, func, can_overflow); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000801 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000802 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000803
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000804#define FUNC1A(funcname, func, docstring) \
805 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
806 return math_1a(args, func); \
807 }\
808 PyDoc_STRVAR(math_##funcname##_doc, docstring);
809
Fred Drake40c48682000-07-03 18:11:56 +0000810#define FUNC2(funcname, func, docstring) \
811 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Thomas Wouters89f507f2006-12-13 04:49:30 +0000812 return math_2(args, func, #funcname); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000813 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000814 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000815
Christian Heimes53876d92008-04-19 00:31:39 +0000816FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000817 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000818FUNC1(acosh, m_acosh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000819 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
820FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000821 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000822FUNC1(asinh, m_asinh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000823 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
824FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000825 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +0000826FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000827 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
828 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000829FUNC1(atanh, m_atanh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000830 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000831
832static PyObject * math_ceil(PyObject *self, PyObject *number) {
833 static PyObject *ceil_str = NULL;
834 PyObject *method;
835
836 if (ceil_str == NULL) {
Christian Heimesfe82e772008-01-28 02:38:20 +0000837 ceil_str = PyUnicode_InternFromString("__ceil__");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000838 if (ceil_str == NULL)
839 return NULL;
840 }
841
Christian Heimes90aa7642007-12-19 02:45:37 +0000842 method = _PyType_Lookup(Py_TYPE(number), ceil_str);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000843 if (method == NULL)
Christian Heimes53876d92008-04-19 00:31:39 +0000844 return math_1_to_int(number, ceil, 0);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000845 else
846 return PyObject_CallFunction(method, "O", number);
847}
848
849PyDoc_STRVAR(math_ceil_doc,
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000850 "ceil(x)\n\nReturn the ceiling of x as an int.\n"
Guido van Rossum13e05de2007-08-23 22:56:55 +0000851 "This is the smallest integral value >= x.");
852
Christian Heimes072c0f12008-01-03 23:01:04 +0000853FUNC2(copysign, copysign,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000854 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes53876d92008-04-19 00:31:39 +0000855FUNC1(cos, cos, 0,
856 "cos(x)\n\nReturn the cosine of x (measured in radians).")
857FUNC1(cosh, cosh, 1,
858 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +0000859FUNC1A(erf, m_erf,
860 "erf(x)\n\nError function at x.")
861FUNC1A(erfc, m_erfc,
862 "erfc(x)\n\nComplementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000863FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000864 "exp(x)\n\nReturn e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +0000865FUNC1(expm1, m_expm1, 1,
866 "expm1(x)\n\nReturn exp(x)-1.\n"
867 "This function avoids the loss of precision involved in the direct "
868 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000869FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000870 "fabs(x)\n\nReturn the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000871
872static PyObject * math_floor(PyObject *self, PyObject *number) {
873 static PyObject *floor_str = NULL;
874 PyObject *method;
875
876 if (floor_str == NULL) {
Christian Heimesfe82e772008-01-28 02:38:20 +0000877 floor_str = PyUnicode_InternFromString("__floor__");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000878 if (floor_str == NULL)
879 return NULL;
880 }
881
Christian Heimes90aa7642007-12-19 02:45:37 +0000882 method = _PyType_Lookup(Py_TYPE(number), floor_str);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000883 if (method == NULL)
Christian Heimes53876d92008-04-19 00:31:39 +0000884 return math_1_to_int(number, floor, 0);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000885 else
886 return PyObject_CallFunction(method, "O", number);
887}
888
889PyDoc_STRVAR(math_floor_doc,
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000890 "floor(x)\n\nReturn the floor of x as an int.\n"
Guido van Rossum13e05de2007-08-23 22:56:55 +0000891 "This is the largest integral value <= x.");
892
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000893FUNC1A(gamma, m_tgamma,
894 "gamma(x)\n\nGamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +0000895FUNC1A(lgamma, m_lgamma,
896 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000897FUNC1(log1p, m_log1p, 1,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000898 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
899 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes53876d92008-04-19 00:31:39 +0000900FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000901 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000902FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000903 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000904FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000905 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000906FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000907 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000908FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000909 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000910
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000911/* Precision summation function as msum() by Raymond Hettinger in
912 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
913 enhanced with the exact partials sum and roundoff from Mark
914 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
915 See those links for more details, proofs and other references.
916
917 Note 1: IEEE 754R floating point semantics are assumed,
918 but the current implementation does not re-establish special
919 value semantics across iterations (i.e. handling -Inf + Inf).
920
921 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000922 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000923 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
924 overflow of the first partial sum.
925
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000926 Note 3: The intermediate values lo, yr, and hi are declared volatile so
927 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +0000928 Also, the volatile declaration forces the values to be stored in memory as
929 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000930 prevents double rounding because any addition or subtraction of two doubles
Georg Brandlf78e02b2008-06-10 17:40:04 +0000931 can be resolved exactly into double-sized hi and lo values. As long as the
932 hi value gets forced into a double before yr and lo are computed, the extra
933 bits in downstream extended precision operations (x87 for example) will be
934 exactly zero and therefore can be losslessly stored back into a double,
935 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000936
937 Note 4: A similar implementation is in Modules/cmathmodule.c.
938 Be sure to update both when making changes.
939
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000940 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000941 because the start argument doesn't make sense in the context of
942 accurate summation. Since the partials table is collapsed before
943 returning a result, sum(seq2, start=sum(seq1)) may not equal the
944 accurate result returned by sum(itertools.chain(seq1, seq2)).
945*/
946
947#define NUM_PARTIALS 32 /* initial partials array size, on stack */
948
949/* Extend the partials array p[] by doubling its size. */
950static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000951_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000952 double *ps, Py_ssize_t *m_ptr)
953{
954 void *v = NULL;
955 Py_ssize_t m = *m_ptr;
956
957 m += m; /* double */
958 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
959 double *p = *p_ptr;
960 if (p == ps) {
961 v = PyMem_Malloc(sizeof(double) * m);
962 if (v != NULL)
963 memcpy(v, ps, sizeof(double) * n);
964 }
965 else
966 v = PyMem_Realloc(p, sizeof(double) * m);
967 }
968 if (v == NULL) { /* size overflow or no memory */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000969 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000970 return 1;
971 }
972 *p_ptr = (double*) v;
973 *m_ptr = m;
974 return 0;
975}
976
977/* Full precision summation of a sequence of floats.
978
979 def msum(iterable):
980 partials = [] # sorted, non-overlapping partial sums
981 for x in iterable:
982 i = 0
983 for y in partials:
984 if abs(x) < abs(y):
985 x, y = y, x
986 hi = x + y
987 lo = y - (hi - x)
988 if lo:
989 partials[i] = lo
990 i += 1
991 x = hi
992 partials[i:] = [x]
993 return sum_exact(partials)
994
995 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
996 are exactly equal to x+y. The inner loop applies hi/lo summation to each
997 partial so that the list of partial sums remains exact.
998
999 Sum_exact() adds the partial sums exactly and correctly rounds the final
1000 result (using the round-half-to-even rule). The items in partials remain
1001 non-zero, non-special, non-overlapping and strictly increasing in
1002 magnitude, but possibly not all having the same sign.
1003
1004 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1005*/
1006
1007static PyObject*
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001008math_fsum(PyObject *self, PyObject *seq)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001009{
1010 PyObject *item, *iter, *sum = NULL;
1011 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001012 double x, y, t, ps[NUM_PARTIALS], *p = ps;
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001013 double xsave, special_sum = 0.0, inf_sum = 0.0;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001014 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001015
1016 iter = PyObject_GetIter(seq);
1017 if (iter == NULL)
1018 return NULL;
1019
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001020 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001021
1022 for(;;) { /* for x in iterable */
1023 assert(0 <= n && n <= m);
1024 assert((m == NUM_PARTIALS && p == ps) ||
1025 (m > NUM_PARTIALS && p != NULL));
1026
1027 item = PyIter_Next(iter);
1028 if (item == NULL) {
1029 if (PyErr_Occurred())
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001030 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001031 break;
1032 }
1033 x = PyFloat_AsDouble(item);
1034 Py_DECREF(item);
1035 if (PyErr_Occurred())
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001036 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001037
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001038 xsave = x;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001039 for (i = j = 0; j < n; j++) { /* for y in partials */
1040 y = p[j];
Georg Brandlf78e02b2008-06-10 17:40:04 +00001041 if (fabs(x) < fabs(y)) {
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001042 t = x; x = y; y = t;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001043 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001044 hi = x + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +00001045 yr = hi - x;
1046 lo = y - yr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001047 if (lo != 0.0)
1048 p[i++] = lo;
1049 x = hi;
1050 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001051
1052 n = i; /* ps[i:] = [x] */
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001053 if (x != 0.0) {
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001054 if (! Py_IS_FINITE(x)) {
1055 /* a nonfinite x could arise either as
1056 a result of intermediate overflow, or
1057 as a result of a nan or inf in the
1058 summands */
1059 if (Py_IS_FINITE(xsave)) {
1060 PyErr_SetString(PyExc_OverflowError,
1061 "intermediate overflow in fsum");
1062 goto _fsum_error;
1063 }
1064 if (Py_IS_INFINITY(xsave))
1065 inf_sum += xsave;
1066 special_sum += xsave;
1067 /* reset partials */
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001068 n = 0;
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001069 }
1070 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1071 goto _fsum_error;
1072 else
1073 p[n++] = x;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001074 }
1075 }
1076
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001077 if (special_sum != 0.0) {
1078 if (Py_IS_NAN(inf_sum))
1079 PyErr_SetString(PyExc_ValueError,
1080 "-inf + inf in fsum");
1081 else
1082 sum = PyFloat_FromDouble(special_sum);
1083 goto _fsum_error;
1084 }
1085
Georg Brandlf78e02b2008-06-10 17:40:04 +00001086 hi = 0.0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001087 if (n > 0) {
1088 hi = p[--n];
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001089 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1090 inexact. */
1091 while (n > 0) {
1092 x = hi;
1093 y = p[--n];
1094 assert(fabs(y) < fabs(x));
1095 hi = x + y;
1096 yr = hi - x;
1097 lo = y - yr;
1098 if (lo != 0.0)
1099 break;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001100 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001101 /* Make half-even rounding work across multiple partials.
1102 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1103 digit to two instead of down to zero (the 1e-16 makes the 1
1104 slightly closer to two). With a potential 1 ULP rounding
1105 error fixed-up, math.fsum() can guarantee commutativity. */
1106 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1107 (lo > 0.0 && p[n-1] > 0.0))) {
1108 y = lo * 2.0;
1109 x = hi + y;
1110 yr = x - hi;
1111 if (y == yr)
1112 hi = x;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001113 }
1114 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001115 sum = PyFloat_FromDouble(hi);
1116
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001117_fsum_error:
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001118 PyFPE_END_PROTECT(hi)
1119 Py_DECREF(iter);
1120 if (p != ps)
1121 PyMem_Free(p);
1122 return sum;
1123}
1124
1125#undef NUM_PARTIALS
1126
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001127PyDoc_STRVAR(math_fsum_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001128"fsum(iterable)\n\n\
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001129Return an accurate floating point sum of values in the iterable.\n\
1130Assumes IEEE-754 floating point arithmetic.");
1131
Barry Warsaw8b43b191996-12-09 22:32:36 +00001132static PyObject *
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001133math_factorial(PyObject *self, PyObject *arg)
1134{
1135 long i, x;
1136 PyObject *result, *iobj, *newresult;
1137
1138 if (PyFloat_Check(arg)) {
Mark Dickinsonda39dbf2009-12-20 14:07:47 +00001139 PyObject *lx;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001140 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
Mark Dickinsonda39dbf2009-12-20 14:07:47 +00001141 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001142 PyErr_SetString(PyExc_ValueError,
1143 "factorial() only accepts integral values");
1144 return NULL;
1145 }
Mark Dickinsonda39dbf2009-12-20 14:07:47 +00001146 lx = PyLong_FromDouble(dx);
1147 if (lx == NULL)
1148 return NULL;
1149 x = PyLong_AsLong(lx);
1150 Py_DECREF(lx);
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001151 }
Mark Dickinsonda39dbf2009-12-20 14:07:47 +00001152 else
1153 x = PyLong_AsLong(arg);
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001154
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001155 if (x == -1 && PyErr_Occurred())
1156 return NULL;
1157 if (x < 0) {
1158 PyErr_SetString(PyExc_ValueError,
1159 "factorial() not defined for negative values");
1160 return NULL;
1161 }
1162
1163 result = (PyObject *)PyLong_FromLong(1);
1164 if (result == NULL)
1165 return NULL;
1166 for (i=1 ; i<=x ; i++) {
1167 iobj = (PyObject *)PyLong_FromLong(i);
1168 if (iobj == NULL)
1169 goto error;
1170 newresult = PyNumber_Multiply(result, iobj);
1171 Py_DECREF(iobj);
1172 if (newresult == NULL)
1173 goto error;
1174 Py_DECREF(result);
1175 result = newresult;
1176 }
1177 return result;
1178
1179error:
1180 Py_DECREF(result);
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001181 return NULL;
1182}
1183
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001184PyDoc_STRVAR(math_factorial_doc,
1185"factorial(x) -> Integral\n"
1186"\n"
1187"Find x!. Raise a ValueError if x is negative or non-integral.");
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001188
1189static PyObject *
Christian Heimes400adb02008-02-01 08:12:03 +00001190math_trunc(PyObject *self, PyObject *number)
1191{
1192 static PyObject *trunc_str = NULL;
1193 PyObject *trunc;
1194
1195 if (Py_TYPE(number)->tp_dict == NULL) {
1196 if (PyType_Ready(Py_TYPE(number)) < 0)
1197 return NULL;
1198 }
1199
1200 if (trunc_str == NULL) {
1201 trunc_str = PyUnicode_InternFromString("__trunc__");
1202 if (trunc_str == NULL)
1203 return NULL;
1204 }
1205
1206 trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
1207 if (trunc == NULL) {
1208 PyErr_Format(PyExc_TypeError,
1209 "type %.100s doesn't define __trunc__ method",
1210 Py_TYPE(number)->tp_name);
1211 return NULL;
1212 }
1213 return PyObject_CallFunctionObjArgs(trunc, number, NULL);
1214}
1215
1216PyDoc_STRVAR(math_trunc_doc,
1217"trunc(x:Real) -> Integral\n"
1218"\n"
Christian Heimes292d3512008-02-03 16:51:08 +00001219"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Christian Heimes400adb02008-02-01 08:12:03 +00001220
1221static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001222math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001223{
Guido van Rossumd18ad581991-10-24 14:57:21 +00001224 int i;
Thomas Wouters89f507f2006-12-13 04:49:30 +00001225 double x = PyFloat_AsDouble(arg);
1226 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001227 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +00001228 /* deal with special cases directly, to sidestep platform
1229 differences */
1230 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
1231 i = 0;
1232 }
1233 else {
1234 PyFPE_START_PROTECT("in math_frexp", return 0);
1235 x = frexp(x, &i);
1236 PyFPE_END_PROTECT(x);
1237 }
1238 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001239}
1240
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001241PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001242"frexp(x)\n"
1243"\n"
1244"Return the mantissa and exponent of x, as pair (m, e).\n"
1245"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001246"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001247
Barry Warsaw8b43b191996-12-09 22:32:36 +00001248static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +00001249math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001250{
Christian Heimes53876d92008-04-19 00:31:39 +00001251 double x, r;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001252 PyObject *oexp;
1253 long exp;
Mark Dickinsonfbbb9bd2010-01-03 12:16:06 +00001254 int overflow;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001255 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
Guido van Rossumd18ad581991-10-24 14:57:21 +00001256 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001257
1258 if (PyLong_Check(oexp)) {
1259 /* on overflow, replace exponent with either LONG_MAX
1260 or LONG_MIN, depending on the sign. */
Mark Dickinsonfbbb9bd2010-01-03 12:16:06 +00001261 exp = PyLong_AsLongAndOverflow(oexp, &overflow);
1262 if (exp == -1 && PyErr_Occurred())
1263 return NULL;
1264 if (overflow)
1265 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001266 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001267 else {
1268 PyErr_SetString(PyExc_TypeError,
1269 "Expected an int or long as second argument "
1270 "to ldexp.");
1271 return NULL;
1272 }
1273
1274 if (x == 0. || !Py_IS_FINITE(x)) {
1275 /* NaNs, zeros and infinities are returned unchanged */
1276 r = x;
Christian Heimes53876d92008-04-19 00:31:39 +00001277 errno = 0;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001278 } else if (exp > INT_MAX) {
1279 /* overflow */
1280 r = copysign(Py_HUGE_VAL, x);
1281 errno = ERANGE;
1282 } else if (exp < INT_MIN) {
1283 /* underflow to +-0 */
1284 r = copysign(0., x);
1285 errno = 0;
1286 } else {
1287 errno = 0;
1288 PyFPE_START_PROTECT("in math_ldexp", return 0);
1289 r = ldexp(x, (int)exp);
1290 PyFPE_END_PROTECT(r);
1291 if (Py_IS_INFINITY(r))
1292 errno = ERANGE;
1293 }
1294
Christian Heimes53876d92008-04-19 00:31:39 +00001295 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +00001296 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001297 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001298}
1299
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001300PyDoc_STRVAR(math_ldexp_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001301"ldexp(x, i)\n\n\
1302Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001303
Barry Warsaw8b43b191996-12-09 22:32:36 +00001304static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001305math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001306{
Thomas Wouters89f507f2006-12-13 04:49:30 +00001307 double y, x = PyFloat_AsDouble(arg);
1308 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001309 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +00001310 /* some platforms don't do the right thing for NaNs and
1311 infinities, so we take care of special cases directly. */
1312 if (!Py_IS_FINITE(x)) {
1313 if (Py_IS_INFINITY(x))
1314 return Py_BuildValue("(dd)", copysign(0., x), x);
1315 else if (Py_IS_NAN(x))
1316 return Py_BuildValue("(dd)", x, x);
1317 }
1318
Guido van Rossumd18ad581991-10-24 14:57:21 +00001319 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +00001320 PyFPE_START_PROTECT("in math_modf", return 0);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001321 x = modf(x, &y);
Christian Heimes53876d92008-04-19 00:31:39 +00001322 PyFPE_END_PROTECT(x);
1323 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001324}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001325
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001326PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001327"modf(x)\n"
1328"\n"
1329"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001330"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001331
Tim Peters78526162001-09-05 00:53:45 +00001332/* A decent logarithm is easy to compute even for huge longs, but libm can't
1333 do that by itself -- loghelper can. func is log or log10, and name is
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001334 "log" or "log10". Note that overflow of the result isn't possible: a long
1335 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
1336 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00001337 small enough to fit in an IEEE single. log and log10 are even smaller.
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001338 However, intermediate overflow is possible for a long if the number of bits
1339 in that long is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00001340
1341static PyObject*
Thomas Wouters89f507f2006-12-13 04:49:30 +00001342loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001343{
Tim Peters78526162001-09-05 00:53:45 +00001344 /* If it is long, do it ourselves. */
1345 if (PyLong_Check(arg)) {
1346 double x;
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001347 Py_ssize_t e;
1348 x = _PyLong_Frexp((PyLongObject *)arg, &e);
1349 if (x == -1.0 && PyErr_Occurred())
1350 return NULL;
Tim Peters78526162001-09-05 00:53:45 +00001351 if (x <= 0.0) {
1352 PyErr_SetString(PyExc_ValueError,
1353 "math domain error");
1354 return NULL;
1355 }
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001356 /* Special case for log(1), to make sure we get an
1357 exact result there. */
1358 if (e == 1 && x == 0.5)
1359 return PyFloat_FromDouble(0.0);
1360 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
1361 x = func(x) + func(2.0) * e;
Tim Peters78526162001-09-05 00:53:45 +00001362 return PyFloat_FromDouble(x);
1363 }
1364
1365 /* Else let libm handle it by itself. */
Christian Heimes53876d92008-04-19 00:31:39 +00001366 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001367}
1368
1369static PyObject *
1370math_log(PyObject *self, PyObject *args)
1371{
Raymond Hettinger866964c2002-12-14 19:51:34 +00001372 PyObject *arg;
1373 PyObject *base = NULL;
1374 PyObject *num, *den;
1375 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001376
Raymond Hettingerea3fdf42002-12-29 16:33:45 +00001377 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
Raymond Hettinger866964c2002-12-14 19:51:34 +00001378 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001379
Mark Dickinsone675f082008-12-11 21:56:00 +00001380 num = loghelper(arg, m_log, "log");
Thomas Wouters89f507f2006-12-13 04:49:30 +00001381 if (num == NULL || base == NULL)
1382 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001383
Mark Dickinsone675f082008-12-11 21:56:00 +00001384 den = loghelper(base, m_log, "log");
Raymond Hettinger866964c2002-12-14 19:51:34 +00001385 if (den == NULL) {
1386 Py_DECREF(num);
1387 return NULL;
1388 }
1389
Neal Norwitzbcc0db82006-03-24 08:14:36 +00001390 ans = PyNumber_TrueDivide(num, den);
Raymond Hettinger866964c2002-12-14 19:51:34 +00001391 Py_DECREF(num);
1392 Py_DECREF(den);
1393 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001394}
1395
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001396PyDoc_STRVAR(math_log_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001397"log(x[, base])\n\n\
1398Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +00001399If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001400
1401static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001402math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001403{
Mark Dickinsone675f082008-12-11 21:56:00 +00001404 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001405}
1406
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001407PyDoc_STRVAR(math_log10_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001408"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001409
Christian Heimes53876d92008-04-19 00:31:39 +00001410static PyObject *
1411math_fmod(PyObject *self, PyObject *args)
1412{
1413 PyObject *ox, *oy;
1414 double r, x, y;
1415 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1416 return NULL;
1417 x = PyFloat_AsDouble(ox);
1418 y = PyFloat_AsDouble(oy);
1419 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1420 return NULL;
1421 /* fmod(x, +/-Inf) returns x for finite x. */
1422 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1423 return PyFloat_FromDouble(x);
1424 errno = 0;
1425 PyFPE_START_PROTECT("in math_fmod", return 0);
1426 r = fmod(x, y);
1427 PyFPE_END_PROTECT(r);
1428 if (Py_IS_NAN(r)) {
1429 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1430 errno = EDOM;
1431 else
1432 errno = 0;
1433 }
1434 if (errno && is_error(r))
1435 return NULL;
1436 else
1437 return PyFloat_FromDouble(r);
1438}
1439
1440PyDoc_STRVAR(math_fmod_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001441"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes53876d92008-04-19 00:31:39 +00001442" x % y may differ.");
1443
1444static PyObject *
1445math_hypot(PyObject *self, PyObject *args)
1446{
1447 PyObject *ox, *oy;
1448 double r, x, y;
1449 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1450 return NULL;
1451 x = PyFloat_AsDouble(ox);
1452 y = PyFloat_AsDouble(oy);
1453 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1454 return NULL;
1455 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1456 if (Py_IS_INFINITY(x))
1457 return PyFloat_FromDouble(fabs(x));
1458 if (Py_IS_INFINITY(y))
1459 return PyFloat_FromDouble(fabs(y));
1460 errno = 0;
1461 PyFPE_START_PROTECT("in math_hypot", return 0);
1462 r = hypot(x, y);
1463 PyFPE_END_PROTECT(r);
1464 if (Py_IS_NAN(r)) {
1465 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1466 errno = EDOM;
1467 else
1468 errno = 0;
1469 }
1470 else if (Py_IS_INFINITY(r)) {
1471 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1472 errno = ERANGE;
1473 else
1474 errno = 0;
1475 }
1476 if (errno && is_error(r))
1477 return NULL;
1478 else
1479 return PyFloat_FromDouble(r);
1480}
1481
1482PyDoc_STRVAR(math_hypot_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001483"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001484
1485/* pow can't use math_2, but needs its own wrapper: the problem is
1486 that an infinite result can arise either as a result of overflow
1487 (in which case OverflowError should be raised) or as a result of
1488 e.g. 0.**-5. (for which ValueError needs to be raised.)
1489*/
1490
1491static PyObject *
1492math_pow(PyObject *self, PyObject *args)
1493{
1494 PyObject *ox, *oy;
1495 double r, x, y;
Christian Heimesa342c012008-04-20 21:01:16 +00001496 int odd_y;
Christian Heimes53876d92008-04-19 00:31:39 +00001497
1498 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1499 return NULL;
1500 x = PyFloat_AsDouble(ox);
1501 y = PyFloat_AsDouble(oy);
1502 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1503 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +00001504
1505 /* deal directly with IEEE specials, to cope with problems on various
1506 platforms whose semantics don't exactly match C99 */
Christian Heimes81ee3ef2008-05-04 22:42:01 +00001507 r = 0.; /* silence compiler warning */
Christian Heimesa342c012008-04-20 21:01:16 +00001508 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1509 errno = 0;
1510 if (Py_IS_NAN(x))
1511 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1512 else if (Py_IS_NAN(y))
1513 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1514 else if (Py_IS_INFINITY(x)) {
1515 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1516 if (y > 0.)
1517 r = odd_y ? x : fabs(x);
1518 else if (y == 0.)
1519 r = 1.;
1520 else /* y < 0. */
1521 r = odd_y ? copysign(0., x) : 0.;
1522 }
1523 else if (Py_IS_INFINITY(y)) {
1524 if (fabs(x) == 1.0)
1525 r = 1.;
1526 else if (y > 0. && fabs(x) > 1.0)
1527 r = y;
1528 else if (y < 0. && fabs(x) < 1.0) {
1529 r = -y; /* result is +inf */
1530 if (x == 0.) /* 0**-inf: divide-by-zero */
1531 errno = EDOM;
1532 }
1533 else
1534 r = 0.;
1535 }
Christian Heimes53876d92008-04-19 00:31:39 +00001536 }
Christian Heimesa342c012008-04-20 21:01:16 +00001537 else {
1538 /* let libm handle finite**finite */
1539 errno = 0;
1540 PyFPE_START_PROTECT("in math_pow", return 0);
1541 r = pow(x, y);
1542 PyFPE_END_PROTECT(r);
1543 /* a NaN result should arise only from (-ve)**(finite
1544 non-integer); in this case we want to raise ValueError. */
1545 if (!Py_IS_FINITE(r)) {
1546 if (Py_IS_NAN(r)) {
1547 errno = EDOM;
1548 }
1549 /*
1550 an infinite result here arises either from:
1551 (A) (+/-0.)**negative (-> divide-by-zero)
1552 (B) overflow of x**y with x and y finite
1553 */
1554 else if (Py_IS_INFINITY(r)) {
1555 if (x == 0.)
1556 errno = EDOM;
1557 else
1558 errno = ERANGE;
1559 }
1560 }
Christian Heimes53876d92008-04-19 00:31:39 +00001561 }
1562
1563 if (errno && is_error(r))
1564 return NULL;
1565 else
1566 return PyFloat_FromDouble(r);
1567}
1568
1569PyDoc_STRVAR(math_pow_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001570"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001571
Christian Heimes072c0f12008-01-03 23:01:04 +00001572static const double degToRad = Py_MATH_PI / 180.0;
1573static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001574
1575static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001576math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001577{
Thomas Wouters89f507f2006-12-13 04:49:30 +00001578 double x = PyFloat_AsDouble(arg);
1579 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001580 return NULL;
Christian Heimes072c0f12008-01-03 23:01:04 +00001581 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001582}
1583
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001584PyDoc_STRVAR(math_degrees_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001585"degrees(x)\n\n\
1586Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001587
1588static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001589math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001590{
Thomas Wouters89f507f2006-12-13 04:49:30 +00001591 double x = PyFloat_AsDouble(arg);
1592 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001593 return NULL;
1594 return PyFloat_FromDouble(x * degToRad);
1595}
1596
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001597PyDoc_STRVAR(math_radians_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001598"radians(x)\n\n\
1599Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001600
Christian Heimes072c0f12008-01-03 23:01:04 +00001601static PyObject *
1602math_isnan(PyObject *self, PyObject *arg)
1603{
1604 double x = PyFloat_AsDouble(arg);
1605 if (x == -1.0 && PyErr_Occurred())
1606 return NULL;
1607 return PyBool_FromLong((long)Py_IS_NAN(x));
1608}
1609
1610PyDoc_STRVAR(math_isnan_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001611"isnan(x) -> bool\n\n\
1612Check if float x is not a number (NaN).");
Christian Heimes072c0f12008-01-03 23:01:04 +00001613
1614static PyObject *
1615math_isinf(PyObject *self, PyObject *arg)
1616{
1617 double x = PyFloat_AsDouble(arg);
1618 if (x == -1.0 && PyErr_Occurred())
1619 return NULL;
1620 return PyBool_FromLong((long)Py_IS_INFINITY(x));
1621}
1622
1623PyDoc_STRVAR(math_isinf_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001624"isinf(x) -> bool\n\n\
1625Check if float x is infinite (positive or negative).");
Christian Heimes072c0f12008-01-03 23:01:04 +00001626
Barry Warsaw8b43b191996-12-09 22:32:36 +00001627static PyMethodDef math_methods[] = {
Thomas Wouters89f507f2006-12-13 04:49:30 +00001628 {"acos", math_acos, METH_O, math_acos_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001629 {"acosh", math_acosh, METH_O, math_acosh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001630 {"asin", math_asin, METH_O, math_asin_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001631 {"asinh", math_asinh, METH_O, math_asinh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001632 {"atan", math_atan, METH_O, math_atan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001633 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001634 {"atanh", math_atanh, METH_O, math_atanh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001635 {"ceil", math_ceil, METH_O, math_ceil_doc},
Christian Heimes072c0f12008-01-03 23:01:04 +00001636 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001637 {"cos", math_cos, METH_O, math_cos_doc},
1638 {"cosh", math_cosh, METH_O, math_cosh_doc},
1639 {"degrees", math_degrees, METH_O, math_degrees_doc},
Mark Dickinson45f992a2009-12-19 11:20:49 +00001640 {"erf", math_erf, METH_O, math_erf_doc},
1641 {"erfc", math_erfc, METH_O, math_erfc_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001642 {"exp", math_exp, METH_O, math_exp_doc},
Mark Dickinson664b5112009-12-16 20:23:42 +00001643 {"expm1", math_expm1, METH_O, math_expm1_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001644 {"fabs", math_fabs, METH_O, math_fabs_doc},
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001645 {"factorial", math_factorial, METH_O, math_factorial_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001646 {"floor", math_floor, METH_O, math_floor_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001647 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001648 {"frexp", math_frexp, METH_O, math_frexp_doc},
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001649 {"fsum", math_fsum, METH_O, math_fsum_doc},
Mark Dickinson12c4bdb2009-09-28 19:21:11 +00001650 {"gamma", math_gamma, METH_O, math_gamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001651 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Christian Heimes072c0f12008-01-03 23:01:04 +00001652 {"isinf", math_isinf, METH_O, math_isinf_doc},
1653 {"isnan", math_isnan, METH_O, math_isnan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001654 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
Mark Dickinson05d2e082009-12-11 20:17:17 +00001655 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001656 {"log", math_log, METH_VARARGS, math_log_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001657 {"log1p", math_log1p, METH_O, math_log1p_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001658 {"log10", math_log10, METH_O, math_log10_doc},
1659 {"modf", math_modf, METH_O, math_modf_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001660 {"pow", math_pow, METH_VARARGS, math_pow_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001661 {"radians", math_radians, METH_O, math_radians_doc},
1662 {"sin", math_sin, METH_O, math_sin_doc},
1663 {"sinh", math_sinh, METH_O, math_sinh_doc},
1664 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1665 {"tan", math_tan, METH_O, math_tan_doc},
1666 {"tanh", math_tanh, METH_O, math_tanh_doc},
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001667 {"trunc", math_trunc, METH_O, math_trunc_doc},
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001668 {NULL, NULL} /* sentinel */
1669};
1670
Guido van Rossumc6e22901998-12-04 19:26:43 +00001671
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001672PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001673"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001674"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001675
Martin v. Löwis1a214512008-06-11 05:26:20 +00001676
1677static struct PyModuleDef mathmodule = {
1678 PyModuleDef_HEAD_INIT,
1679 "math",
1680 module_doc,
1681 -1,
1682 math_methods,
1683 NULL,
1684 NULL,
1685 NULL,
1686 NULL
1687};
1688
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001689PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001690PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001691{
Christian Heimes53876d92008-04-19 00:31:39 +00001692 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001693
Martin v. Löwis1a214512008-06-11 05:26:20 +00001694 m = PyModule_Create(&mathmodule);
Neal Norwitz1ac754f2006-01-19 06:09:39 +00001695 if (m == NULL)
1696 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001697
Christian Heimes53876d92008-04-19 00:31:39 +00001698 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1699 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001700
Christian Heimes53876d92008-04-19 00:31:39 +00001701 finally:
Martin v. Löwis1a214512008-06-11 05:26:20 +00001702 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001703}