blob: 43149d53384ba5335088211201e94febbc83a2e2 [file] [log] [blame]
Neil Schemenauera35c6882001-02-27 04:45:05 +00001/* An object allocator for Python.
2
3 Here is an introduction to the layers of the Python memory architecture,
4 showing where the object allocator is actually used (layer +2), It is
5 called for every object allocation and deallocation (PyObject_New/Del),
6 unless the object-specific allocators implement a proprietary allocation
7 scheme (ex.: ints use a simple free list). This is also the place where
8 the cyclic garbage collector operates selectively on container objects.
9
10
11 Object-specific allocators
12 _____ ______ ______ ________
13 [ int ] [ dict ] [ list ] ... [ string ] Python core |
14+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
15 _______________________________ | |
16 [ Python's object allocator ] | |
17+2 | ####### Object memory ####### | <------ Internal buffers ------> |
18 ______________________________________________________________ |
19 [ Python's raw memory allocator (PyMem_ API) ] |
20+1 | <----- Python memory (under PyMem manager's control) ------> | |
21 __________________________________________________________________
22 [ Underlying general-purpose allocator (ex: C library malloc) ]
23 0 | <------ Virtual memory allocated for the python process -------> |
24
25 =========================================================================
26 _______________________________________________________________________
27 [ OS-specific Virtual Memory Manager (VMM) ]
28-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
29 __________________________________ __________________________________
30 [ ] [ ]
31-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
32
33*/
34/*==========================================================================*/
35
36/* A fast, special-purpose memory allocator for small blocks, to be used
37 on top of a general-purpose malloc -- heavily based on previous art. */
38
39/* Vladimir Marangozov -- August 2000 */
40
41/*
42 * "Memory management is where the rubber meets the road -- if we do the wrong
43 * thing at any level, the results will not be good. And if we don't make the
44 * levels work well together, we are in serious trouble." (1)
45 *
46 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
47 * "Dynamic Storage Allocation: A Survey and Critical Review",
48 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
49 */
50
51/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
52#define WITH_MALLOC_HOOKS /* for profiling & debugging */
53
54/*==========================================================================*/
55
56/*
Neil Schemenauera35c6882001-02-27 04:45:05 +000057 * Allocation strategy abstract:
58 *
59 * For small requests, the allocator sub-allocates <Big> blocks of memory.
60 * Requests greater than 256 bytes are routed to the system's allocator.
61 *
62 * Small requests are grouped in size classes spaced 8 bytes apart, due
63 * to the required valid alignment of the returned address. Requests of
64 * a particular size are serviced from memory pools of 4K (one VMM page).
65 * Pools are fragmented on demand and contain free lists of blocks of one
66 * particular size class. In other words, there is a fixed-size allocator
67 * for each size class. Free pools are shared by the different allocators
68 * thus minimizing the space reserved for a particular size class.
69 *
70 * This allocation strategy is a variant of what is known as "simple
71 * segregated storage based on array of free lists". The main drawback of
72 * simple segregated storage is that we might end up with lot of reserved
73 * memory for the different free lists, which degenerate in time. To avoid
74 * this, we partition each free list in pools and we share dynamically the
75 * reserved space between all free lists. This technique is quite efficient
76 * for memory intensive programs which allocate mainly small-sized blocks.
77 *
78 * For small requests we have the following table:
79 *
80 * Request in bytes Size of allocated block Size class idx
81 * ----------------------------------------------------------------
82 * 1-8 8 0
83 * 9-16 16 1
84 * 17-24 24 2
85 * 25-32 32 3
86 * 33-40 40 4
87 * 41-48 48 5
88 * 49-56 56 6
89 * 57-64 64 7
90 * 65-72 72 8
91 * ... ... ...
92 * 241-248 248 30
93 * 249-256 256 31
94 *
95 * 0, 257 and up: routed to the underlying allocator.
96 */
97
98/*==========================================================================*/
99
100/*
101 * -- Main tunable settings section --
102 */
103
104/*
105 * Alignment of addresses returned to the user. 8-bytes alignment works
106 * on most current architectures (with 32-bit or 64-bit address busses).
107 * The alignment value is also used for grouping small requests in size
108 * classes spaced ALIGNMENT bytes apart.
109 *
110 * You shouldn't change this unless you know what you are doing.
111 */
112
113#define ALIGNMENT 8 /* must be 2^N */
114#define ALIGNMENT_SHIFT 3
115#define ALIGNMENT_MASK (ALIGNMENT - 1)
116
117/*
118 * Max size threshold below which malloc requests are considered to be
119 * small enough in order to use preallocated memory pools. You can tune
120 * this value according to your application behaviour and memory needs.
121 *
122 * The following invariants must hold:
123 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
124 * 2) SMALL_REQUEST_THRESHOLD == N * ALIGNMENT
125 *
126 * Although not required, for better performance and space efficiency,
127 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
128 */
129
130/*
131 * For Python compiled on systems with 32 bit pointers and integers,
132 * a value of 64 (= 8 * 8) is a reasonable speed/space tradeoff for
133 * the object allocator. To adjust automatically this threshold for
134 * systems with 64 bit pointers, we make this setting depend on a
135 * Python-specific slot size unit = sizeof(long) + sizeof(void *),
136 * which is expected to be 8, 12 or 16 bytes.
137 */
138
139#define _PYOBJECT_THRESHOLD ((SIZEOF_LONG + SIZEOF_VOID_P) * ALIGNMENT)
140
141#define SMALL_REQUEST_THRESHOLD _PYOBJECT_THRESHOLD /* must be N * ALIGNMENT */
142
143#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
144
145/*
146 * The system's VMM page size can be obtained on most unices with a
147 * getpagesize() call or deduced from various header files. To make
148 * things simpler, we assume that it is 4K, which is OK for most systems.
149 * It is probably better if this is the native page size, but it doesn't
150 * have to be.
151 */
152
153#define SYSTEM_PAGE_SIZE (4 * 1024)
154#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
155
156/*
157 * Maximum amount of memory managed by the allocator for small requests.
158 */
159
160#ifdef WITH_MEMORY_LIMITS
161#ifndef SMALL_MEMORY_LIMIT
162#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
163#endif
164#endif
165
166/*
167 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
168 * on a page boundary. This is a reserved virtual address space for the
169 * current process (obtained through a malloc call). In no way this means
170 * that the memory arenas will be used entirely. A malloc(<Big>) is usually
171 * an address range reservation for <Big> bytes, unless all pages within this
172 * space are referenced subsequently. So malloc'ing big blocks and not using
173 * them does not mean "wasting memory". It's an addressable range wastage...
174 *
175 * Therefore, allocating arenas with malloc is not optimal, because there is
176 * some address space wastage, but this is the most portable way to request
177 * memory from the system accross various platforms.
178 */
179
180#define ARENA_SIZE (256 * 1024 - SYSTEM_PAGE_SIZE) /* 256k - 1p */
181
182#ifdef WITH_MEMORY_LIMITS
183#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
184#endif
185
186/*
187 * Size of the pools used for small blocks. Should be a power of 2,
188 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k, eventually 8k.
189 */
190
191#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
192#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
193#define POOL_MAGIC 0x74D3A651 /* authentication id */
194
195#define ARENA_NB_POOLS (ARENA_SIZE / POOL_SIZE)
196#define ARENA_NB_PAGES (ARENA_SIZE / SYSTEM_PAGE_SIZE)
197
198/*
199 * -- End of tunable settings section --
200 */
201
202/*==========================================================================*/
203
204/*
205 * Locking
206 *
207 * To reduce lock contention, it would probably be better to refine the
208 * crude function locking with per size class locking. I'm not positive
209 * however, whether it's worth switching to such locking policy because
210 * of the performance penalty it might introduce.
211 *
212 * The following macros describe the simplest (should also be the fastest)
213 * lock object on a particular platform and the init/fini/lock/unlock
214 * operations on it. The locks defined here are not expected to be recursive
215 * because it is assumed that they will always be called in the order:
216 * INIT, [LOCK, UNLOCK]*, FINI.
217 */
218
219/*
220 * Python's threads are serialized, so object malloc locking is disabled.
221 */
222#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
223#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
224#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
225#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
226#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
227
228/*
229 * Basic types
230 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
231 */
232
233#undef uchar
234#define uchar unsigned char /* assuming == 8 bits */
235
236#undef ushort
237#define ushort unsigned short /* assuming >= 16 bits */
238
239#undef uint
240#define uint unsigned int /* assuming >= 16 bits */
241
242#undef ulong
243#define ulong unsigned long /* assuming >= 32 bits */
244
245#undef off_t
246#define off_t uint /* 16 bits <= off_t <= 64 bits */
247
248/* When you say memory, my mind reasons in terms of (pointers to) blocks */
249typedef uchar block;
250
251/* Pool for small blocks */
252struct pool_header {
Tim Petersb2336522001-03-11 18:36:13 +0000253 union { block *_padding;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000254 uint count; } ref; /* number of allocated blocks */
255 block *freeblock; /* pool's free list head */
256 struct pool_header *nextpool; /* next pool of this size class */
257 struct pool_header *prevpool; /* previous pool "" */
258 struct pool_header *pooladdr; /* pool address (always aligned) */
259 uint magic; /* pool magic number */
260 uint szidx; /* block size class index */
261 uint capacity; /* pool capacity in # of blocks */
262};
263
264typedef struct pool_header *poolp;
265
266#undef ROUNDUP
267#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
268#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
269
270#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
271
272/*==========================================================================*/
273
274/*
275 * This malloc lock
276 */
Tim Petersb2336522001-03-11 18:36:13 +0000277SIMPLELOCK_DECL(_malloc_lock);
278#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
279#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
280#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
281#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000282
283/*
284 * Pool table -- doubly linked lists of partially used pools
285 */
286#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
287#define PT(x) PTA(x), PTA(x)
288
289static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
290 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
291#if NB_SMALL_SIZE_CLASSES > 8
292 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
293#if NB_SMALL_SIZE_CLASSES > 16
294 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
295#if NB_SMALL_SIZE_CLASSES > 24
296 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
297#if NB_SMALL_SIZE_CLASSES > 32
298 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
299#if NB_SMALL_SIZE_CLASSES > 40
300 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
301#if NB_SMALL_SIZE_CLASSES > 48
302 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
303#if NB_SMALL_SIZE_CLASSES > 56
304 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
305#endif /* NB_SMALL_SIZE_CLASSES > 56 */
306#endif /* NB_SMALL_SIZE_CLASSES > 48 */
307#endif /* NB_SMALL_SIZE_CLASSES > 40 */
308#endif /* NB_SMALL_SIZE_CLASSES > 32 */
309#endif /* NB_SMALL_SIZE_CLASSES > 24 */
310#endif /* NB_SMALL_SIZE_CLASSES > 16 */
311#endif /* NB_SMALL_SIZE_CLASSES > 8 */
312};
313
314/*
315 * Free (cached) pools
316 */
317static poolp freepools = NULL; /* free list for cached pools */
318
319/*
320 * Arenas
321 */
322static uint arenacnt = 0; /* number of allocated arenas */
323static uint watermark = ARENA_NB_POOLS; /* number of pools allocated from
324 the current arena */
325static block *arenalist = NULL; /* list of allocated arenas */
326static block *arenabase = NULL; /* free space start address in
327 current arena */
328
329/*
330 * Hooks
331 */
332#ifdef WITH_MALLOC_HOOKS
333static void *(*malloc_hook)(size_t) = NULL;
334static void *(*calloc_hook)(size_t, size_t) = NULL;
335static void *(*realloc_hook)(void *, size_t) = NULL;
336static void (*free_hook)(void *) = NULL;
337#endif /* !WITH_MALLOC_HOOKS */
338
339/*==========================================================================*/
340
341/* malloc */
342
343/*
344 * The basic blocks are ordered by decreasing execution frequency,
345 * which minimizes the number of jumps in the most common cases,
346 * improves branching prediction and instruction scheduling (small
347 * block allocations typically result in a couple of instructions).
348 * Unless the optimizer reorders everything, being too smart...
349 */
350
351void *
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000352_PyMalloc_Malloc(size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000353{
354 block *bp;
355 poolp pool;
356 poolp next;
357 uint size;
358
359#ifdef WITH_MALLOC_HOOKS
360 if (malloc_hook != NULL)
361 return (*malloc_hook)(nbytes);
362#endif
363
364 /*
365 * This implicitly redirects malloc(0)
366 */
367 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
368 LOCK();
369 /*
370 * Most frequent paths first
371 */
372 size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT;
373 pool = usedpools[size + size];
374 if (pool != pool->nextpool) {
375 /*
376 * There is a used pool for this size class.
377 * Pick up the head block of its free list.
378 */
379 ++pool->ref.count;
380 bp = pool->freeblock;
381 if ((pool->freeblock = *(block **)bp) != NULL) {
382 UNLOCK();
383 return (void *)bp;
384 }
385 /*
386 * Reached the end of the free list, try to extend it
387 */
388 if (pool->ref.count < pool->capacity) {
389 /*
390 * There is room for another block
391 */
392 size++;
393 size <<= ALIGNMENT_SHIFT; /* block size */
394 pool->freeblock = (block *)pool + \
395 POOL_OVERHEAD + \
396 pool->ref.count * size;
397 *(block **)(pool->freeblock) = NULL;
398 UNLOCK();
399 return (void *)bp;
400 }
401 /*
402 * Pool is full, unlink from used pools
403 */
404 next = pool->nextpool;
405 pool = pool->prevpool;
406 next->prevpool = pool;
407 pool->nextpool = next;
408 UNLOCK();
409 return (void *)bp;
410 }
411 /*
412 * Try to get a cached free pool
413 */
414 pool = freepools;
415 if (pool != NULL) {
416 /*
417 * Unlink from cached pools
418 */
419 freepools = pool->nextpool;
420 init_pool:
421 /*
422 * Frontlink to used pools
423 */
424 next = usedpools[size + size]; /* == prev */
425 pool->nextpool = next;
426 pool->prevpool = next;
427 next->nextpool = pool;
428 next->prevpool = pool;
429 pool->ref.count = 1;
430 if (pool->szidx == size) {
431 /*
432 * Luckily, this pool last contained blocks
433 * of the same size class, so its header
434 * and free list are already initialized.
435 */
436 bp = pool->freeblock;
437 pool->freeblock = *(block **)bp;
438 UNLOCK();
439 return (void *)bp;
440 }
441 /*
442 * Initialize the pool header and free list
443 * then return the first block.
444 */
445 pool->szidx = size;
446 size++;
447 size <<= ALIGNMENT_SHIFT; /* block size */
448 bp = (block *)pool + POOL_OVERHEAD;
449 pool->freeblock = bp + size;
450 *(block **)(pool->freeblock) = NULL;
451 pool->capacity = (POOL_SIZE - POOL_OVERHEAD) / size;
452 UNLOCK();
453 return (void *)bp;
454 }
455 /*
456 * Allocate new pool
457 */
458 if (watermark < ARENA_NB_POOLS) {
459 /* commit malloc(POOL_SIZE) from the current arena */
460 commit_pool:
461 watermark++;
462 pool = (poolp )arenabase;
463 arenabase += POOL_SIZE;
464 pool->pooladdr = pool;
465 pool->magic = (uint )POOL_MAGIC;
466 pool->szidx = DUMMY_SIZE_IDX;
467 goto init_pool;
468 }
469 /*
470 * Allocate new arena
471 */
472#ifdef WITH_MEMORY_LIMITS
473 if (!(arenacnt < MAX_ARENAS)) {
474 UNLOCK();
475 goto redirect;
476 }
477#endif
478 /*
479 * With malloc, we can't avoid loosing one page address space
480 * per arena due to the required alignment on page boundaries.
481 */
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000482 bp = (block *)PyMem_MALLOC(ARENA_SIZE + SYSTEM_PAGE_SIZE);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000483 if (bp == NULL) {
484 UNLOCK();
485 goto redirect;
486 }
487 /*
488 * Keep a reference in the list of allocated arenas. We might
489 * want to release (some of) them in the future. The first
490 * word is never used, no matter whether the returned address
491 * is page-aligned or not, so we safely store a pointer in it.
492 */
493 *(block **)bp = arenalist;
494 arenalist = bp;
495 arenacnt++;
496 watermark = 0;
497 /* Page-round up */
498 arenabase = bp + (SYSTEM_PAGE_SIZE -
499 ((off_t )bp & SYSTEM_PAGE_SIZE_MASK));
500 goto commit_pool;
501 }
502
503 /* The small block allocator ends here. */
504
505 redirect:
506
507 /*
508 * Redirect the original request to the underlying (libc) allocator.
509 * We jump here on bigger requests, on error in the code above (as a
510 * last chance to serve the request) or when the max memory limit
511 * has been reached.
512 */
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000513 return (void *)PyMem_MALLOC(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000514}
515
516/* free */
517
518void
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000519_PyMalloc_Free(void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000520{
521 poolp pool;
522 poolp next, prev;
523 uint size;
524 off_t offset;
525
526#ifdef WITH_MALLOC_HOOKS
527 if (free_hook != NULL) {
528 (*free_hook)(p);
529 return;
530 }
531#endif
532
533 if (p == NULL) /* free(NULL) has no effect */
534 return;
535
536 offset = (off_t )p & POOL_SIZE_MASK;
537 pool = (poolp )((block *)p - offset);
538 if (pool->pooladdr != pool || pool->magic != (uint )POOL_MAGIC) {
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000539 PyMem_FREE(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000540 return;
541 }
542
543 LOCK();
544 /*
545 * At this point, the pool is not empty
546 */
547 if ((*(block **)p = pool->freeblock) == NULL) {
548 /*
549 * Pool was full
550 */
551 pool->freeblock = (block *)p;
552 --pool->ref.count;
553 /*
554 * Frontlink to used pools
555 * This mimics LRU pool usage for new allocations and
556 * targets optimal filling when several pools contain
557 * blocks of the same size class.
558 */
559 size = pool->szidx;
560 next = usedpools[size + size];
561 prev = next->prevpool;
562 pool->nextpool = next;
563 pool->prevpool = prev;
564 next->prevpool = pool;
565 prev->nextpool = pool;
566 UNLOCK();
567 return;
568 }
569 /*
570 * Pool was not full
571 */
572 pool->freeblock = (block *)p;
573 if (--pool->ref.count != 0) {
574 UNLOCK();
575 return;
576 }
577 /*
578 * Pool is now empty, unlink from used pools
579 */
580 next = pool->nextpool;
581 prev = pool->prevpool;
582 next->prevpool = prev;
583 prev->nextpool = next;
584 /*
585 * Frontlink to free pools
586 * This ensures that previously freed pools will be allocated
587 * later (being not referenced, they are perhaps paged out).
588 */
589 pool->nextpool = freepools;
590 freepools = pool;
591 UNLOCK();
592 return;
593}
594
595/* realloc */
596
597void *
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000598_PyMalloc_Realloc(void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000599{
600 block *bp;
601 poolp pool;
602 uint size;
603
604#ifdef WITH_MALLOC_HOOKS
605 if (realloc_hook != NULL)
606 return (*realloc_hook)(p, nbytes);
607#endif
608
609 if (p == NULL)
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000610 return _PyMalloc_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000611
612 /* realloc(p, 0) on big blocks is redirected. */
613 pool = (poolp )((block *)p - ((off_t )p & POOL_SIZE_MASK));
614 if (pool->pooladdr != pool || pool->magic != (uint )POOL_MAGIC) {
615 /* We haven't allocated this block */
616 if (!(nbytes > SMALL_REQUEST_THRESHOLD) && nbytes) {
617 /* small request */
618 size = nbytes;
619 goto malloc_copy_free;
620 }
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000621 bp = (block *)PyMem_REALLOC(p, nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000622 }
623 else {
624 /* We're in charge of this block */
625 size = (pool->szidx + 1) << ALIGNMENT_SHIFT; /* block size */
626 if (size >= nbytes) {
627 /* Don't bother if a smaller size was requested
628 except for realloc(p, 0) == free(p), ret NULL */
629 if (nbytes == 0) {
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000630 _PyMalloc_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000631 bp = NULL;
632 }
633 else
634 bp = (block *)p;
635 }
636 else {
637
638 malloc_copy_free:
639
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000640 bp = (block *)_PyMalloc_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000641 if (bp != NULL) {
642 memcpy(bp, p, size);
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000643 _PyMalloc_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000644 }
645 }
646 }
647 return (void *)bp;
648}
649
650/* calloc */
651
652/* -- unused --
653void *
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000654_PyMalloc_Calloc(size_t nbel, size_t elsz)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000655{
656 void *p;
657 size_t nbytes;
658
659#ifdef WITH_MALLOC_HOOKS
660 if (calloc_hook != NULL)
661 return (*calloc_hook)(nbel, elsz);
662#endif
663
664 nbytes = nbel * elsz;
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000665 p = _PyMalloc_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000666 if (p != NULL)
667 memset(p, 0, nbytes);
668 return p;
669}
670*/
671
672/*==========================================================================*/
673
674/*
675 * Hooks
676 */
677
678#ifdef WITH_MALLOC_HOOKS
679
680void
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000681_PyMalloc_SetHooks( void *(*malloc_func)(size_t),
682 void *(*calloc_func)(size_t, size_t),
683 void *(*realloc_func)(void *, size_t),
684 void (*free_func)(void *) )
Neil Schemenauera35c6882001-02-27 04:45:05 +0000685{
686 LOCK();
687 malloc_hook = malloc_func;
688 calloc_hook = calloc_func;
689 realloc_hook = realloc_func;
690 free_hook = free_func;
691 UNLOCK();
692}
693
694void
Neil Schemenauer25f3dc22002-03-18 21:06:21 +0000695_PyMalloc_FetchHooks( void *(**malloc_funcp)(size_t),
696 void *(**calloc_funcp)(size_t, size_t),
697 void *(**realloc_funcp)(void *, size_t),
698 void (**free_funcp)(void *) )
Neil Schemenauera35c6882001-02-27 04:45:05 +0000699{
700 LOCK();
701 *malloc_funcp = malloc_hook;
702 *calloc_funcp = calloc_hook;
703 *realloc_funcp = realloc_hook;
704 *free_funcp = free_hook;
705 UNLOCK();
706}
707#endif /* !WITH_MALLOC_HOOKS */