blob: a0571ad6bc6b176c9a370f9a7064dd8e5b15e99a [file] [log] [blame]
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import textwrap
import pretend
import pytest
from .utils import (
load_nist_vectors, load_vectors_from_file, load_cryptrec_vectors,
load_openssl_vectors, load_hash_vectors, check_for_iface,
check_backend_support, select_backends, load_pkcs1_vectors
)
class FakeInterface(object):
pass
def test_select_one_backend():
b1 = pretend.stub(name="b1")
b2 = pretend.stub(name="b2")
b3 = pretend.stub(name="b3")
backends = [b1, b2, b3]
name = "b2"
selected_backends = select_backends(name, backends)
assert len(selected_backends) == 1
assert selected_backends[0] == b2
def test_select_no_backend():
b1 = pretend.stub(name="b1")
b2 = pretend.stub(name="b2")
b3 = pretend.stub(name="b3")
backends = [b1, b2, b3]
name = "back!"
with pytest.raises(ValueError):
select_backends(name, backends)
def test_select_backends_none():
b1 = pretend.stub(name="b1")
b2 = pretend.stub(name="b2")
b3 = pretend.stub(name="b3")
backends = [b1, b2, b3]
name = None
selected_backends = select_backends(name, backends)
assert len(selected_backends) == 3
def test_select_two_backends():
b1 = pretend.stub(name="b1")
b2 = pretend.stub(name="b2")
b3 = pretend.stub(name="b3")
backends = [b1, b2, b3]
name = "b2 ,b1 "
selected_backends = select_backends(name, backends)
assert len(selected_backends) == 2
assert selected_backends == [b1, b2]
def test_check_for_iface():
item = pretend.stub(keywords=["fake_name"], funcargs={"backend": True})
with pytest.raises(pytest.skip.Exception) as exc_info:
check_for_iface("fake_name", FakeInterface, item)
assert exc_info.value.args[0] == "True backend does not support fake_name"
item = pretend.stub(
keywords=["fake_name"],
funcargs={"backend": FakeInterface()}
)
check_for_iface("fake_name", FakeInterface, item)
def test_check_backend_support_skip():
supported = pretend.stub(
kwargs={"only_if": lambda backend: False, "skip_message": "Nope"}
)
item = pretend.stub(keywords={"supported": supported},
funcargs={"backend": True})
with pytest.raises(pytest.skip.Exception) as exc_info:
check_backend_support(item)
assert exc_info.value.args[0] == "Nope (True)"
def test_check_backend_support_no_skip():
supported = pretend.stub(
kwargs={"only_if": lambda backend: True, "skip_message": "Nope"}
)
item = pretend.stub(keywords={"supported": supported},
funcargs={"backend": True})
assert check_backend_support(item) is None
def test_check_backend_support_no_backend():
supported = pretend.stub(
kwargs={"only_if": "notalambda", "skip_message": "Nope"}
)
item = pretend.stub(keywords={"supported": supported},
funcargs={})
with pytest.raises(ValueError):
check_backend_support(item)
def test_load_nist_vectors():
vector_data = textwrap.dedent("""
# CAVS 11.1
# Config info for aes_values
# AESVS GFSbox test data for CBC
# State : Encrypt and Decrypt
# Key Length : 128
# Generated on Fri Apr 22 15:11:33 2011
[ENCRYPT]
COUNT = 0
KEY = 00000000000000000000000000000000
IV = 00000000000000000000000000000000
PLAINTEXT = f34481ec3cc627bacd5dc3fb08f273e6
CIPHERTEXT = 0336763e966d92595a567cc9ce537f5e
COUNT = 1
KEY = 00000000000000000000000000000000
IV = 00000000000000000000000000000000
PLAINTEXT = 9798c4640bad75c7c3227db910174e72
CIPHERTEXT = a9a1631bf4996954ebc093957b234589
[DECRYPT]
COUNT = 0
KEY = 00000000000000000000000000000000
IV = 00000000000000000000000000000000
CIPHERTEXT = 0336763e966d92595a567cc9ce537f5e
PLAINTEXT = f34481ec3cc627bacd5dc3fb08f273e6
COUNT = 1
KEY = 00000000000000000000000000000000
IV = 00000000000000000000000000000000
CIPHERTEXT = a9a1631bf4996954ebc093957b234589
PLAINTEXT = 9798c4640bad75c7c3227db910174e72
""").splitlines()
assert load_nist_vectors(vector_data) == [
{
"key": b"00000000000000000000000000000000",
"iv": b"00000000000000000000000000000000",
"plaintext": b"f34481ec3cc627bacd5dc3fb08f273e6",
"ciphertext": b"0336763e966d92595a567cc9ce537f5e",
},
{
"key": b"00000000000000000000000000000000",
"iv": b"00000000000000000000000000000000",
"plaintext": b"9798c4640bad75c7c3227db910174e72",
"ciphertext": b"a9a1631bf4996954ebc093957b234589",
},
{
"key": b"00000000000000000000000000000000",
"iv": b"00000000000000000000000000000000",
"plaintext": b"f34481ec3cc627bacd5dc3fb08f273e6",
"ciphertext": b"0336763e966d92595a567cc9ce537f5e",
},
{
"key": b"00000000000000000000000000000000",
"iv": b"00000000000000000000000000000000",
"plaintext": b"9798c4640bad75c7c3227db910174e72",
"ciphertext": b"a9a1631bf4996954ebc093957b234589",
},
]
def test_load_nist_vectors_with_null_chars():
vector_data = textwrap.dedent("""
COUNT = 0
KEY = thing\\0withnulls
COUNT = 1
KEY = 00000000000000000000000000000000
""").splitlines()
assert load_nist_vectors(vector_data) == [
{
"key": b"thing\x00withnulls",
},
{
"key": b"00000000000000000000000000000000",
},
]
def test_load_cryptrec_vectors():
vector_data = textwrap.dedent("""
# Vectors taken from http://info.isl.ntt.co.jp/crypt/eng/camellia/
# Download is t_camelia.txt
# Camellia with 128-bit key
K No.001 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P No.001 : 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C No.001 : 07 92 3A 39 EB 0A 81 7D 1C 4D 87 BD B8 2D 1F 1C
P No.002 : 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C No.002 : 48 CD 64 19 80 96 72 D2 34 92 60 D8 9A 08 D3 D3
K No.002 : 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P No.001 : 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C No.001 : 07 92 3A 39 EB 0A 81 7D 1C 4D 87 BD B8 2D 1F 1C
""").splitlines()
assert load_cryptrec_vectors(vector_data) == [
{
"key": b"00000000000000000000000000000000",
"plaintext": b"80000000000000000000000000000000",
"ciphertext": b"07923A39EB0A817D1C4D87BDB82D1F1C",
},
{
"key": b"00000000000000000000000000000000",
"plaintext": b"40000000000000000000000000000000",
"ciphertext": b"48CD6419809672D2349260D89A08D3D3",
},
{
"key": b"10000000000000000000000000000000",
"plaintext": b"80000000000000000000000000000000",
"ciphertext": b"07923A39EB0A817D1C4D87BDB82D1F1C",
},
]
def test_load_cryptrec_vectors_invalid():
vector_data = textwrap.dedent("""
# Vectors taken from http://info.isl.ntt.co.jp/crypt/eng/camellia/
# Download is t_camelia.txt
# Camellia with 128-bit key
E No.001 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
""").splitlines()
with pytest.raises(ValueError):
load_cryptrec_vectors(vector_data)
def test_load_openssl_vectors():
vector_data = textwrap.dedent(
"""
# We don't support CFB{1,8}-CAMELLIAxxx.{En,De}crypt
# For all CFB128 encrypts and decrypts, the transformed sequence is
# CAMELLIA-bits-CFB:key:IV/ciphertext':plaintext:ciphertext:encdec
# CFB128-CAMELLIA128.Encrypt
"""
"CAMELLIA-128-CFB:2B7E151628AED2A6ABF7158809CF4F3C:"
"000102030405060708090A0B0C0D0E0F:6BC1BEE22E409F96E93D7E117393172A:"
"14F7646187817EB586599146B82BD719:1\n"
"CAMELLIA-128-CFB:2B7E151628AED2A6ABF7158809CF4F3C:"
"14F7646187817EB586599146B82BD719:AE2D8A571E03AC9C9EB76FAC45AF8E51:"
"A53D28BB82DF741103EA4F921A44880B:1\n\n"
"# CFB128-CAMELLIA128.Decrypt\n"
"CAMELLIA-128-CFB:2B7E151628AED2A6ABF7158809CF4F3C:"
"000102030405060708090A0B0C0D0E0F:6BC1BEE22E409F96E93D7E117393172A:"
"14F7646187817EB586599146B82BD719:0\n"
"CAMELLIA-128-CFB:2B7E151628AED2A6ABF7158809CF4F3C:"
"14F7646187817EB586599146B82BD719:AE2D8A571E03AC9C9EB76FAC45AF8E51:"
"A53D28BB82DF741103EA4F921A44880B:0"
).splitlines()
assert load_openssl_vectors(vector_data) == [
{
"key": b"2B7E151628AED2A6ABF7158809CF4F3C",
"iv": b"000102030405060708090A0B0C0D0E0F",
"plaintext": b"6BC1BEE22E409F96E93D7E117393172A",
"ciphertext": b"14F7646187817EB586599146B82BD719",
},
{
"key": b"2B7E151628AED2A6ABF7158809CF4F3C",
"iv": b"14F7646187817EB586599146B82BD719",
"plaintext": b"AE2D8A571E03AC9C9EB76FAC45AF8E51",
"ciphertext": b"A53D28BB82DF741103EA4F921A44880B",
},
{
"key": b"2B7E151628AED2A6ABF7158809CF4F3C",
"iv": b"000102030405060708090A0B0C0D0E0F",
"plaintext": b"6BC1BEE22E409F96E93D7E117393172A",
"ciphertext": b"14F7646187817EB586599146B82BD719",
},
{
"key": b"2B7E151628AED2A6ABF7158809CF4F3C",
"iv": b"14F7646187817EB586599146B82BD719",
"plaintext": b"AE2D8A571E03AC9C9EB76FAC45AF8E51",
"ciphertext": b"A53D28BB82DF741103EA4F921A44880B",
},
]
def test_load_hash_vectors():
vector_data = textwrap.dedent("""
# http://tools.ietf.org/html/rfc1321
[irrelevant]
Len = 0
Msg = 00
MD = d41d8cd98f00b204e9800998ecf8427e
Len = 8
Msg = 61
MD = 0cc175b9c0f1b6a831c399e269772661
Len = 24
Msg = 616263
MD = 900150983cd24fb0d6963f7d28e17f72
Len = 112
Msg = 6d65737361676520646967657374
MD = f96b697d7cb7938d525a2f31aaf161d0
""").splitlines()
assert load_hash_vectors(vector_data) == [
(b"", "d41d8cd98f00b204e9800998ecf8427e"),
(b"61", "0cc175b9c0f1b6a831c399e269772661"),
(b"616263", "900150983cd24fb0d6963f7d28e17f72"),
(b"6d65737361676520646967657374", "f96b697d7cb7938d525a2f31aaf161d0"),
]
def test_load_hmac_vectors():
vector_data = textwrap.dedent("""
Len = 224
# "Jefe"
Key = 4a656665
# "what do ya want for nothing?"
Msg = 7768617420646f2079612077616e7420666f72206e6f7468696e673f
MD = 750c783e6ab0b503eaa86e310a5db738
""").splitlines()
assert load_hash_vectors(vector_data) == [
(b"7768617420646f2079612077616e7420666f72206e6f7468696e673f",
"750c783e6ab0b503eaa86e310a5db738",
b"4a656665"),
]
def test_load_hash_vectors_bad_data():
vector_data = textwrap.dedent("""
# http://tools.ietf.org/html/rfc1321
Len = 0
Msg = 00
UNKNOWN=Hello World
""").splitlines()
with pytest.raises(ValueError):
load_hash_vectors(vector_data)
def test_load_vectors_from_file():
vectors = load_vectors_from_file(
os.path.join("ciphers", "Blowfish", "bf-cfb.txt"),
load_nist_vectors,
)
assert vectors == [
{
"key": b"0123456789ABCDEFF0E1D2C3B4A59687",
"iv": b"FEDCBA9876543210",
"plaintext": (
b"37363534333231204E6F77206973207468652074696D6520666F722000"
),
"ciphertext": (
b"E73214A2822139CAF26ECF6D2EB9E76E3DA3DE04D1517200519D57A6C3"
),
}
]
def test_load_nist_gcm_vectors():
vector_data = textwrap.dedent("""
[Keylen = 128]
[IVlen = 96]
[PTlen = 0]
[AADlen = 0]
[Taglen = 128]
Count = 0
Key = 11754cd72aec309bf52f7687212e8957
IV = 3c819d9a9bed087615030b65
PT =
AAD =
CT =
Tag = 250327c674aaf477aef2675748cf6971
Count = 1
Key = 272f16edb81a7abbea887357a58c1917
IV = 794ec588176c703d3d2a7a07
PT =
AAD =
CT =
Tag = b6e6f197168f5049aeda32dafbdaeb
Count = 2
Key = a49a5e26a2f8cb63d05546c2a62f5343
IV = 907763b19b9b4ab6bd4f0281
CT =
AAD =
Tag = a2be08210d8c470a8df6e8fbd79ec5cf
FAIL
Count = 3
Key = 5c1155084cc0ede76b3bc22e9f7574ef
IV = 9549e4ba69a61cad7856efc1
PT = d1448fa852b84408e2dad8381f363de7
AAD = e98e9d9c618e46fef32660976f854ee3
CT = f78b60ca125218493bea1c50a2e12ef4
Tag = d72da7f5c6cf0bca7242c71835809449
[Keylen = 128]
[IVlen = 96]
[PTlen = 0]
[AADlen = 0]
[Taglen = 120]
Count = 0
Key = eac258e99c55e6ae8ef1da26640613d7
IV = 4e8df20faaf2c8eebe922902
CT =
AAD =
Tag = e39aeaebe86aa309a4d062d6274339
PT =
Count = 1
Key = 3726cf02fcc6b8639a5497652c94350d
IV = 55fef82cde693ce76efcc193
CT =
AAD =
Tag = 3d68111a81ed22d2ef5bccac4fc27f
FAIL
Count = 2
Key = f202299d5fd74f03b12d2119a6c4c038
IV = eec51e7958c3f20a1bb71815
CT =
AAD =
Tag = a81886b3fb26e51fca87b267e1e157
FAIL
Count = 3
Key = fd52925f39546b4c55ffb6b20c59898c
IV = f5cf3227444afd905a5f6dba
CT =
AAD =
Tag = 1665b0f1a0b456e1664cfd3de08ccd
PT =
[Keylen = 128]
[IVlen = 8]
[PTlen = 104]
[AADlen = 0]
[Taglen = 128]
Count = 0
Key = 58fab7632bcf10d2bcee58520bf37414
IV = 3c
CT = 15c4db4cbb451211179d57017f
AAD =
Tag = eae841d4355feeb3f786bc86625f1e5b
FAIL
""").splitlines()
assert load_nist_vectors(vector_data) == [
{'aad': b'',
'pt': b'',
'iv': b'3c819d9a9bed087615030b65',
'tag': b'250327c674aaf477aef2675748cf6971',
'key': b'11754cd72aec309bf52f7687212e8957',
'ct': b''},
{'aad': b'',
'pt': b'',
'iv': b'794ec588176c703d3d2a7a07',
'tag': b'b6e6f197168f5049aeda32dafbdaeb',
'key': b'272f16edb81a7abbea887357a58c1917',
'ct': b''},
{'aad': b'',
'iv': b'907763b19b9b4ab6bd4f0281',
'tag': b'a2be08210d8c470a8df6e8fbd79ec5cf',
'key': b'a49a5e26a2f8cb63d05546c2a62f5343',
'ct': b'',
'fail': True},
{'aad': b'e98e9d9c618e46fef32660976f854ee3',
'pt': b'd1448fa852b84408e2dad8381f363de7',
'iv': b'9549e4ba69a61cad7856efc1',
'tag': b'd72da7f5c6cf0bca7242c71835809449',
'key': b'5c1155084cc0ede76b3bc22e9f7574ef',
'ct': b'f78b60ca125218493bea1c50a2e12ef4'},
{'aad': b'',
'pt': b'',
'iv': b'4e8df20faaf2c8eebe922902',
'tag': b'e39aeaebe86aa309a4d062d6274339',
'key': b'eac258e99c55e6ae8ef1da26640613d7',
'ct': b''},
{'aad': b'',
'iv': b'55fef82cde693ce76efcc193',
'tag': b'3d68111a81ed22d2ef5bccac4fc27f',
'key': b'3726cf02fcc6b8639a5497652c94350d',
'ct': b'',
'fail': True},
{'aad': b'',
'iv': b'eec51e7958c3f20a1bb71815',
'tag': b'a81886b3fb26e51fca87b267e1e157',
'key': b'f202299d5fd74f03b12d2119a6c4c038',
'ct': b'',
'fail': True},
{'aad': b'',
'pt': b'',
'iv': b'f5cf3227444afd905a5f6dba',
'tag': b'1665b0f1a0b456e1664cfd3de08ccd',
'key': b'fd52925f39546b4c55ffb6b20c59898c',
'ct': b''},
{'aad': b'',
'iv': b'3c',
'tag': b'eae841d4355feeb3f786bc86625f1e5b',
'key': b'58fab7632bcf10d2bcee58520bf37414',
'ct': b'15c4db4cbb451211179d57017f',
'fail': True},
]
def test_load_pkcs1_vectors():
vector_data = textwrap.dedent("""
Test vectors for RSA-PSS
========================
This file contains an extract of the original pss-vect.txt
Key lengths:
Key 8: 1031 bits
Key 9: 1536 bits
===========================================================================
<snip>
# Example 8: A 1031-bit RSA key pair
# -----------------------------------
# Public key
# ----------
# Modulus:
49 53 70 a1 fb 18 54 3c 16 d3 63 1e 31 63 25 5d
f6 2b e6 ee e8 90 d5 f2 55 09 e4 f7 78 a8 ea 6f
bb bc df 85 df f6 4e 0d 97 20 03 ab 36 81 fb ba
6d d4 1f d5 41 82 9b 2e 58 2d e9 f2 a4 a4 e0 a2
d0 90 0b ef 47 53 db 3c ee 0e e0 6c 7d fa e8 b1
d5 3b 59 53 21 8f 9c ce ea 69 5b 08 66 8e de aa
dc ed 94 63 b1 d7 90 d5 eb f2 7e 91 15 b4 6c ad
4d 9a 2b 8e fa b0 56 1b 08 10 34 47 39 ad a0 73
3f
# Exponent:
01 00 01
# Private key
# -----------
# Modulus:
49 53 70 a1 fb 18 54 3c 16 d3 63 1e 31 63 25 5d
f6 2b e6 ee e8 90 d5 f2 55 09 e4 f7 78 a8 ea 6f
bb bc df 85 df f6 4e 0d 97 20 03 ab 36 81 fb ba
6d d4 1f d5 41 82 9b 2e 58 2d e9 f2 a4 a4 e0 a2
d0 90 0b ef 47 53 db 3c ee 0e e0 6c 7d fa e8 b1
d5 3b 59 53 21 8f 9c ce ea 69 5b 08 66 8e de aa
dc ed 94 63 b1 d7 90 d5 eb f2 7e 91 15 b4 6c ad
4d 9a 2b 8e fa b0 56 1b 08 10 34 47 39 ad a0 73
3f
# Public exponent:
01 00 01
# Exponent:
6c 66 ff e9 89 80 c3 8f cd ea b5 15 98 98 83 61
65 f4 b4 b8 17 c4 f6 a8 d4 86 ee 4e a9 13 0f e9
b9 09 2b d1 36 d1 84 f9 5f 50 4a 60 7e ac 56 58
46 d2 fd d6 59 7a 89 67 c7 39 6e f9 5a 6e ee bb
45 78 a6 43 96 6d ca 4d 8e e3 de 84 2d e6 32 79
c6 18 15 9c 1a b5 4a 89 43 7b 6a 61 20 e4 93 0a
fb 52 a4 ba 6c ed 8a 49 47 ac 64 b3 0a 34 97 cb
e7 01 c2 d6 26 6d 51 72 19 ad 0e c6 d3 47 db e9
# Prime 1:
08 da d7 f1 13 63 fa a6 23 d5 d6 d5 e8 a3 19 32
8d 82 19 0d 71 27 d2 84 6c 43 9b 0a b7 26 19 b0
a4 3a 95 32 0e 4e c3 4f c3 a9 ce a8 76 42 23 05
bd 76 c5 ba 7b e9 e2 f4 10 c8 06 06 45 a1 d2 9e
db
# Prime 2:
08 47 e7 32 37 6f c7 90 0f 89 8e a8 2e b2 b0 fc
41 85 65 fd ae 62 f7 d9 ec 4c e2 21 7b 97 99 0d
d2 72 db 15 7f 99 f6 3c 0d cb b9 fb ac db d4 c4
da db 6d f6 77 56 35 8c a4 17 48 25 b4 8f 49 70
6d
# Prime exponent 1:
05 c2 a8 3c 12 4b 36 21 a2 aa 57 ea 2c 3e fe 03
5e ff 45 60 f3 3d de bb 7a da b8 1f ce 69 a0 c8
c2 ed c1 65 20 dd a8 3d 59 a2 3b e8 67 96 3a c6
5f 2c c7 10 bb cf b9 6e e1 03 de b7 71 d1 05 fd
85
# Prime exponent 2:
04 ca e8 aa 0d 9f aa 16 5c 87 b6 82 ec 14 0b 8e
d3 b5 0b 24 59 4b 7a 3b 2c 22 0b 36 69 bb 81 9f
98 4f 55 31 0a 1a e7 82 36 51 d4 a0 2e 99 44 79
72 59 51 39 36 34 34 e5 e3 0a 7e 7d 24 15 51 e1
b9
# Coefficient:
07 d3 e4 7b f6 86 60 0b 11 ac 28 3c e8 8d bb 3f
60 51 e8 ef d0 46 80 e4 4c 17 1e f5 31 b8 0b 2b
7c 39 fc 76 63 20 e2 cf 15 d8 d9 98 20 e9 6f f3
0d c6 96 91 83 9c 4b 40 d7 b0 6e 45 30 7d c9 1f
3f
# RSA-PSS signing of 6 random messages with random salts
# -------------------------------------------------------
<snip>
# =============================================
# Example 9: A 1536-bit RSA key pair
# -----------------------------------
# Public key
# ----------
# Modulus:
e6 bd 69 2a c9 66 45 79 04 03 fd d0 f5 be b8 b9
bf 92 ed 10 00 7f c3 65 04 64 19 dd 06 c0 5c 5b
5b 2f 48 ec f9 89 e4 ce 26 91 09 97 9c bb 40 b4
a0 ad 24 d2 24 83 d1 ee 31 5a d4 cc b1 53 42 68
35 26 91 c5 24 f6 dd 8e 6c 29 d2 24 cf 24 69 73
ae c8 6c 5b f6 b1 40 1a 85 0d 1b 9a d1 bb 8c bc
ec 47 b0 6f 0f 8c 7f 45 d3 fc 8f 31 92 99 c5 43
3d db c2 b3 05 3b 47 de d2 ec d4 a4 ca ef d6 14
83 3d c8 bb 62 2f 31 7e d0 76 b8 05 7f e8 de 3f
84 48 0a d5 e8 3e 4a 61 90 4a 4f 24 8f b3 97 02
73 57 e1 d3 0e 46 31 39 81 5c 6f d4 fd 5a c5 b8
17 2a 45 23 0e cb 63 18 a0 4f 14 55 d8 4e 5a 8b
# Exponent:
01 00 01
# Private key
# -----------
# Modulus:
e6 bd 69 2a c9 66 45 79 04 03 fd d0 f5 be b8 b9
bf 92 ed 10 00 7f c3 65 04 64 19 dd 06 c0 5c 5b
5b 2f 48 ec f9 89 e4 ce 26 91 09 97 9c bb 40 b4
a0 ad 24 d2 24 83 d1 ee 31 5a d4 cc b1 53 42 68
35 26 91 c5 24 f6 dd 8e 6c 29 d2 24 cf 24 69 73
ae c8 6c 5b f6 b1 40 1a 85 0d 1b 9a d1 bb 8c bc
ec 47 b0 6f 0f 8c 7f 45 d3 fc 8f 31 92 99 c5 43
3d db c2 b3 05 3b 47 de d2 ec d4 a4 ca ef d6 14
83 3d c8 bb 62 2f 31 7e d0 76 b8 05 7f e8 de 3f
84 48 0a d5 e8 3e 4a 61 90 4a 4f 24 8f b3 97 02
73 57 e1 d3 0e 46 31 39 81 5c 6f d4 fd 5a c5 b8
17 2a 45 23 0e cb 63 18 a0 4f 14 55 d8 4e 5a 8b
# Public exponent:
01 00 01
# Exponent:
6a 7f d8 4f b8 5f ad 07 3b 34 40 6d b7 4f 8d 61
a6 ab c1 21 96 a9 61 dd 79 56 5e 9d a6 e5 18 7b
ce 2d 98 02 50 f7 35 95 75 35 92 70 d9 15 90 bb
0e 42 7c 71 46 0b 55 d5 14 10 b1 91 bc f3 09 fe
a1 31 a9 2c 8e 70 27 38 fa 71 9f 1e 00 41 f5 2e
40 e9 1f 22 9f 4d 96 a1 e6 f1 72 e1 55 96 b4 51
0a 6d ae c2 61 05 f2 be bc 53 31 6b 87 bd f2 13
11 66 60 70 e8 df ee 69 d5 2c 71 a9 76 ca ae 79
c7 2b 68 d2 85 80 dc 68 6d 9f 51 29 d2 25 f8 2b
3d 61 55 13 a8 82 b3 db 91 41 6b 48 ce 08 88 82
13 e3 7e eb 9a f8 00 d8 1c ab 32 8c e4 20 68 99
03 c0 0c 7b 5f d3 1b 75 50 3a 6d 41 96 84 d6 29
# Prime 1:
f8 eb 97 e9 8d f1 26 64 ee fd b7 61 59 6a 69 dd
cd 0e 76 da ec e6 ed 4b f5 a1 b5 0a c0 86 f7 92
8a 4d 2f 87 26 a7 7e 51 5b 74 da 41 98 8f 22 0b
1c c8 7a a1 fc 81 0c e9 9a 82 f2 d1 ce 82 1e dc
ed 79 4c 69 41 f4 2c 7a 1a 0b 8c 4d 28 c7 5e c6
0b 65 22 79 f6 15 4a 76 2a ed 16 5d 47 de e3 67
# Prime 2:
ed 4d 71 d0 a6 e2 4b 93 c2 e5 f6 b4 bb e0 5f 5f
b0 af a0 42 d2 04 fe 33 78 d3 65 c2 f2 88 b6 a8
da d7 ef e4 5d 15 3e ef 40 ca cc 7b 81 ff 93 40
02 d1 08 99 4b 94 a5 e4 72 8c d9 c9 63 37 5a e4
99 65 bd a5 5c bf 0e fe d8 d6 55 3b 40 27 f2 d8
62 08 a6 e6 b4 89 c1 76 12 80 92 d6 29 e4 9d 3d
# Prime exponent 1:
2b b6 8b dd fb 0c 4f 56 c8 55 8b ff af 89 2d 80
43 03 78 41 e7 fa 81 cf a6 1a 38 c5 e3 9b 90 1c
8e e7 11 22 a5 da 22 27 bd 6c de eb 48 14 52 c1
2a d3 d6 1d 5e 4f 77 6a 0a b5 56 59 1b ef e3 e5
9e 5a 7f dd b8 34 5e 1f 2f 35 b9 f4 ce e5 7c 32
41 4c 08 6a ec 99 3e 93 53 e4 80 d9 ee c6 28 9f
# Prime exponent 2:
4f f8 97 70 9f ad 07 97 46 49 45 78 e7 0f d8 54
61 30 ee ab 56 27 c4 9b 08 0f 05 ee 4a d9 f3 e4
b7 cb a9 d6 a5 df f1 13 a4 1c 34 09 33 68 33 f1
90 81 6d 8a 6b c4 2e 9b ec 56 b7 56 7d 0f 3c 9c
69 6d b6 19 b2 45 d9 01 dd 85 6d b7 c8 09 2e 77
e9 a1 cc cd 56 ee 4d ba 42 c5 fd b6 1a ec 26 69
# Coefficient:
77 b9 d1 13 7b 50 40 4a 98 27 29 31 6e fa fc 7d
fe 66 d3 4e 5a 18 26 00 d5 f3 0a 0a 85 12 05 1c
56 0d 08 1d 4d 0a 18 35 ec 3d 25 a6 0f 4e 4d 6a
a9 48 b2 bf 3d bb 5b 12 4c bb c3 48 92 55 a3 a9
48 37 2f 69 78 49 67 45 f9 43 e1 db 4f 18 38 2c
ea a5 05 df c6 57 57 bb 3f 85 7a 58 dc e5 21 56
# RSA-PSS signing of 6 random messages with random salts
# -------------------------------------------------------
<snip>
# =============================================
<snip>
""").splitlines()
vectors = tuple(load_pkcs1_vectors(vector_data))
expected = (
(
{
'modulus': int(
'495370a1fb18543c16d3631e3163255df62be6eee890d5f25509e4f77'
'8a8ea6fbbbcdf85dff64e0d972003ab3681fbba6dd41fd541829b2e58'
'2de9f2a4a4e0a2d0900bef4753db3cee0ee06c7dfae8b1d53b5953218'
'f9cceea695b08668edeaadced9463b1d790d5ebf27e9115b46cad4d9a'
'2b8efab0561b0810344739ada0733f', 16),
'public_exponent': int('10001', 16),
'private_exponent': int(
'6c66ffe98980c38fcdeab5159898836165f4b4b817c4f6a8d486ee4ea'
'9130fe9b9092bd136d184f95f504a607eac565846d2fdd6597a8967c7'
'396ef95a6eeebb4578a643966dca4d8ee3de842de63279c618159c1ab'
'54a89437b6a6120e4930afb52a4ba6ced8a4947ac64b30a3497cbe701'
'c2d6266d517219ad0ec6d347dbe9', 16),
'p': int(
'8dad7f11363faa623d5d6d5e8a319328d82190d7127d2846c439b0ab7'
'2619b0a43a95320e4ec34fc3a9cea876422305bd76c5ba7be9e2f410c'
'8060645a1d29edb', 16),
'q': int(
'847e732376fc7900f898ea82eb2b0fc418565fdae62f7d9ec4ce2217b'
'97990dd272db157f99f63c0dcbb9fbacdbd4c4dadb6df67756358ca41'
'74825b48f49706d', 16)
},
{
'modulus': int(
'495370a1fb18543c16d3631e3163255df62be6eee890d5f25509e4f77'
'8a8ea6fbbbcdf85dff64e0d972003ab3681fbba6dd41fd541829b2e58'
'2de9f2a4a4e0a2d0900bef4753db3cee0ee06c7dfae8b1d53b5953218'
'f9cceea695b08668edeaadced9463b1d790d5ebf27e9115b46cad4d9a'
'2b8efab0561b0810344739ada0733f', 16),
'public_exponent': int('10001', 16)
}
),
(
{
'modulus': int(
'e6bd692ac96645790403fdd0f5beb8b9bf92ed10007fc365046419dd0'
'6c05c5b5b2f48ecf989e4ce269109979cbb40b4a0ad24d22483d1ee31'
'5ad4ccb1534268352691c524f6dd8e6c29d224cf246973aec86c5bf6b'
'1401a850d1b9ad1bb8cbcec47b06f0f8c7f45d3fc8f319299c5433ddb'
'c2b3053b47ded2ecd4a4caefd614833dc8bb622f317ed076b8057fe8d'
'e3f84480ad5e83e4a61904a4f248fb397027357e1d30e463139815c6f'
'd4fd5ac5b8172a45230ecb6318a04f1455d84e5a8b', 16),
'public_exponent': int('10001', 16),
'private_exponent': int(
'6a7fd84fb85fad073b34406db74f8d61a6abc12196a961dd79565e9da'
'6e5187bce2d980250f7359575359270d91590bb0e427c71460b55d514'
'10b191bcf309fea131a92c8e702738fa719f1e0041f52e40e91f229f4'
'd96a1e6f172e15596b4510a6daec26105f2bebc53316b87bdf2131166'
'6070e8dfee69d52c71a976caae79c72b68d28580dc686d9f5129d225f'
'82b3d615513a882b3db91416b48ce08888213e37eeb9af800d81cab32'
'8ce420689903c00c7b5fd31b75503a6d419684d629', 16),
'p': int(
'f8eb97e98df12664eefdb761596a69ddcd0e76daece6ed4bf5a1b50ac'
'086f7928a4d2f8726a77e515b74da41988f220b1cc87aa1fc810ce99a'
'82f2d1ce821edced794c6941f42c7a1a0b8c4d28c75ec60b652279f61'
'54a762aed165d47dee367', 16),
'q': int(
'ed4d71d0a6e24b93c2e5f6b4bbe05f5fb0afa042d204fe3378d365c2f'
'288b6a8dad7efe45d153eef40cacc7b81ff934002d108994b94a5e472'
'8cd9c963375ae49965bda55cbf0efed8d6553b4027f2d86208a6e6b48'
'9c176128092d629e49d3d', 16)
},
{
'modulus': int(
'e6bd692ac96645790403fdd0f5beb8b9bf92ed10007fc365046419dd0'
'6c05c5b5b2f48ecf989e4ce269109979cbb40b4a0ad24d22483d1ee31'
'5ad4ccb1534268352691c524f6dd8e6c29d224cf246973aec86c5bf6b'
'1401a850d1b9ad1bb8cbcec47b06f0f8c7f45d3fc8f319299c5433ddb'
'c2b3053b47ded2ecd4a4caefd614833dc8bb622f317ed076b8057fe8d'
'e3f84480ad5e83e4a61904a4f248fb397027357e1d30e463139815c6f'
'd4fd5ac5b8172a45230ecb6318a04f1455d84e5a8b', 16),
'public_exponent': int('10001', 16)
}
)
)
assert vectors == expected
def test_load_hotp_vectors():
vector_data = textwrap.dedent("""
# HOTP Test Vectors
# RFC 4226 Appendix D
COUNT = 0
COUNTER = 0
INTERMEDIATE = cc93cf18508d94934c64b65d8ba7667fb7cde4b0
TRUNCATED = 4c93cf18
HOTP = 755224
SECRET = 12345678901234567890
COUNT = 1
COUNTER = 1
INTERMEDIATE = 75a48a19d4cbe100644e8ac1397eea747a2d33ab
TRUNCATED = 41397eea
HOTP = 287082
SECRET = 12345678901234567890
COUNT = 2
COUNTER = 2
INTERMEDIATE = 0bacb7fa082fef30782211938bc1c5e70416ff44
TRUNCATED = 82fef30
HOTP = 359152
SECRET = 12345678901234567890
COUNT = 3
COUNTER = 3
INTERMEDIATE = 66c28227d03a2d5529262ff016a1e6ef76557ece
TRUNCATED = 66ef7655
HOTP = 969429
SECRET = 12345678901234567890
""").splitlines()
assert load_nist_vectors(vector_data) == [
{
"counter": b"0",
"intermediate": b"cc93cf18508d94934c64b65d8ba7667fb7cde4b0",
"truncated": b"4c93cf18",
"hotp": b"755224",
"secret": b"12345678901234567890",
},
{
"counter": b"1",
"intermediate": b"75a48a19d4cbe100644e8ac1397eea747a2d33ab",
"truncated": b"41397eea",
"hotp": b"287082",
"secret": b"12345678901234567890",
},
{
"counter": b"2",
"intermediate": b"0bacb7fa082fef30782211938bc1c5e70416ff44",
"truncated": b"82fef30",
"hotp": b"359152",
"secret": b"12345678901234567890",
},
{
"counter": b"3",
"intermediate": b"66c28227d03a2d5529262ff016a1e6ef76557ece",
"truncated": b"66ef7655",
"hotp": b"969429",
"secret": b"12345678901234567890",
},
]
def test_load_totp_vectors():
vector_data = textwrap.dedent("""
# TOTP Test Vectors
# RFC 6238 Appendix B
COUNT = 0
TIME = 59
TOTP = 94287082
MODE = SHA1
SECRET = 12345678901234567890
COUNT = 1
TIME = 59
TOTP = 46119246
MODE = SHA256
SECRET = 12345678901234567890
COUNT = 2
TIME = 59
TOTP = 90693936
MODE = SHA512
SECRET = 12345678901234567890
""").splitlines()
assert load_nist_vectors(vector_data) == [
{
"time": b"59",
"totp": b"94287082",
"mode": b"SHA1",
"secret": b"12345678901234567890",
},
{
"time": b"59",
"totp": b"46119246",
"mode": b"SHA256",
"secret": b"12345678901234567890",
},
{
"time": b"59",
"totp": b"90693936",
"mode": b"SHA512",
"secret": b"12345678901234567890",
},
]