Joe Gregorio | 11690e0 | 2011-10-14 11:05:35 -0400 | [diff] [blame] | 1 | #!/usr/bin/python2.4 |
| 2 | # -*- coding: utf-8 -*- |
| 3 | # |
| 4 | # Copyright (C) 2010 Google Inc. |
| 5 | # |
| 6 | # Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | # you may not use this file except in compliance with the License. |
| 8 | # You may obtain a copy of the License at |
| 9 | # |
| 10 | # http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | # |
| 12 | # Unless required by applicable law or agreed to in writing, software |
| 13 | # distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | # See the License for the specific language governing permissions and |
| 16 | # limitations under the License. |
| 17 | |
| 18 | """Simple command-line sample for the Google Prediction API |
| 19 | |
| 20 | Command-line application that trains on your input data. This sample does |
| 21 | the same thing as the Hello Prediction! example. You might want to run |
| 22 | the setup.sh script to load both the sample data and the pmml file to |
| 23 | Google Storage. |
| 24 | |
| 25 | Usage: |
| 26 | $ python prediction_number.py --model_id="foo" |
| 27 | --data_file="data_bucket/data_object" --pmml_file="pmml_bucket/pmml_object" |
| 28 | |
| 29 | You can also get help on all the command-line flags the program understands |
| 30 | by running: |
| 31 | |
| 32 | $ python prediction_number.py --help |
| 33 | |
| 34 | To get detailed log output run: |
| 35 | |
| 36 | $ python prediction_number.py --logging_level=DEBUG |
| 37 | """ |
| 38 | |
| 39 | __author__ = 'jcgregorio@google.com (Joe Gregorio)' |
| 40 | |
| 41 | from apiclient.discovery import build_from_document |
| 42 | |
| 43 | import apiclient.errors |
| 44 | import gflags |
| 45 | import httplib2 |
| 46 | import logging |
| 47 | import os |
| 48 | import pprint |
| 49 | import sys |
| 50 | |
| 51 | from apiclient.discovery import build |
| 52 | from oauth2client.file import Storage |
| 53 | from oauth2client.client import AccessTokenRefreshError |
| 54 | from oauth2client.client import flow_from_clientsecrets |
| 55 | from oauth2client.tools import run |
| 56 | |
| 57 | FLAGS = gflags.FLAGS |
| 58 | |
| 59 | # CLIENT_SECRETS, name of a file containing the OAuth 2.0 information for this |
| 60 | # application, including client_id and client_secret, which are found |
| 61 | # on the API Access tab on the Google APIs |
| 62 | # Console <http://code.google.com/apis/console> |
| 63 | CLIENT_SECRETS = 'client_secrets.json' |
| 64 | |
| 65 | # Helpful message to display in the browser if the CLIENT_SECRETS file |
| 66 | # is missing. |
| 67 | MISSING_CLIENT_SECRETS_MESSAGE = """ |
| 68 | WARNING: Please configure OAuth 2.0 |
| 69 | |
| 70 | To make this sample run you will need to populate the client_secrets.json file |
| 71 | found at: |
| 72 | |
| 73 | %s |
| 74 | |
| 75 | with information from the APIs Console <https://code.google.com/apis/console>. |
| 76 | |
| 77 | """ % os.path.join(os.path.dirname(__file__), CLIENT_SECRETS) |
| 78 | |
| 79 | # Set up a Flow object to be used if we need to authenticate. |
| 80 | FLOW = flow_from_clientsecrets(CLIENT_SECRETS, |
| 81 | scope='https://www.googleapis.com/auth/prediction', |
| 82 | message=MISSING_CLIENT_SECRETS_MESSAGE) |
| 83 | |
| 84 | # The gflags module makes defining command-line options easy for |
| 85 | # applications. Run this program with the '--help' argument to see |
| 86 | # all the flags that it understands. |
| 87 | gflags.DEFINE_enum('logging_level', 'ERROR', |
| 88 | ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], |
| 89 | 'Set the level of logging detail.') |
| 90 | |
| 91 | gflags.DEFINE_string('model_id', |
| 92 | None, |
| 93 | 'The unique name for the predictive model (ex foo)') |
| 94 | |
| 95 | gflags.DEFINE_string('data_file', |
| 96 | None, |
| 97 | 'Full Google Storage path of csv data (ex bucket/object)') |
| 98 | |
| 99 | gflags.DEFINE_string('pmml_file', |
| 100 | None, |
| 101 | 'Full Google Storage path of pmml for ' |
| 102 | 'preprocessing (ex bucket/object)') |
| 103 | |
| 104 | gflags.MarkFlagAsRequired('model_id') |
| 105 | gflags.MarkFlagAsRequired('data_file') |
| 106 | gflags.MarkFlagAsRequired('pmml_file') |
| 107 | |
| 108 | def main(argv): |
| 109 | # Let the gflags module process the command-line arguments |
| 110 | try: |
| 111 | argv = FLAGS(argv) |
| 112 | except gflags.FlagsError, e: |
| 113 | print '%s\\nUsage: %s ARGS\\n%s' % (e, argv[0], FLAGS) |
| 114 | sys.exit(1) |
| 115 | |
| 116 | # Set the logging according to the command-line flag |
| 117 | logging.getLogger().setLevel(getattr(logging, FLAGS.logging_level)) |
| 118 | |
| 119 | # If the Credentials don't exist or are invalid run through the native client |
| 120 | # flow. The Storage object will ensure that if successful the good |
| 121 | # Credentials will get written back to a file. |
| 122 | storage = Storage('prediction.dat') |
| 123 | credentials = storage.get() |
| 124 | if credentials is None or credentials.invalid: |
| 125 | credentials = run(FLOW, storage) |
| 126 | |
| 127 | # Create an httplib2.Http object to handle our HTTP requests and authorize it |
| 128 | # with our good Credentials. |
| 129 | http = httplib2.Http() |
| 130 | http = credentials.authorize(http) |
| 131 | |
| 132 | service = build("prediction", "v1.4", http=http) |
| 133 | |
| 134 | try: |
| 135 | |
| 136 | # Start training on a data set |
| 137 | train = service.trainedmodels() |
| 138 | body = {'id': FLAGS.model_id, 'storageDataLocation': FLAGS.data_file, |
| 139 | 'storagePMMLLocation': FLAGS.pmml_file} |
| 140 | start = train.insert(body=body).execute() |
| 141 | |
| 142 | print 'Started training' |
| 143 | pprint.pprint(start) |
| 144 | |
| 145 | import time |
| 146 | # Wait for the training to complete |
| 147 | while True: |
| 148 | try: |
| 149 | # We check the training job is completed. If it is not it will return |
| 150 | # an error code. |
| 151 | status = train.get(id=FLAGS.model_id).execute() |
| 152 | # Job has completed. |
| 153 | pprint.pprint(status) |
| 154 | break |
| 155 | except apiclient.errors.HttpError as error: |
| 156 | # Training job not yet completed. |
| 157 | print 'Waiting for training to complete.' |
| 158 | time.sleep(10) |
| 159 | |
| 160 | print 'Training is complete' |
| 161 | |
| 162 | # Now make a prediction using that training |
| 163 | body = {'input': {'csvInstance': [ 5 ]}} |
| 164 | prediction = train.predict(body=body, id=FLAGS.model_id).execute() |
| 165 | print 'The prediction is:' |
| 166 | pprint.pprint(prediction) |
| 167 | |
| 168 | |
| 169 | except AccessTokenRefreshError: |
| 170 | print ("The credentials have been revoked or expired, please re-run" |
| 171 | "the application to re-authorize") |
| 172 | |
| 173 | if __name__ == '__main__': |
| 174 | main(sys.argv) |
| 175 | |