blob: abbb92d0d526a1c69745507d5f2d49afcd771f12 [file] [log] [blame]
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -04001<html><body>
2<style>
3
4body, h1, h2, h3, div, span, p, pre, a {
5 margin: 0;
6 padding: 0;
7 border: 0;
8 font-weight: inherit;
9 font-style: inherit;
10 font-size: 100%;
11 font-family: inherit;
12 vertical-align: baseline;
13}
14
15body {
16 font-size: 13px;
17 padding: 1em;
18}
19
20h1 {
21 font-size: 26px;
22 margin-bottom: 1em;
23}
24
25h2 {
26 font-size: 24px;
27 margin-bottom: 1em;
28}
29
30h3 {
31 font-size: 20px;
32 margin-bottom: 1em;
33 margin-top: 1em;
34}
35
36pre, code {
37 line-height: 1.5;
38 font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
39}
40
41pre {
42 margin-top: 0.5em;
43}
44
45h1, h2, h3, p {
46 font-family: Arial, sans serif;
47}
48
49h1, h2, h3 {
50 border-bottom: solid #CCC 1px;
51}
52
53.toc_element {
54 margin-top: 0.5em;
55}
56
57.firstline {
58 margin-left: 2 em;
59}
60
61.method {
62 margin-top: 1em;
63 border: solid 1px #CCC;
64 padding: 1em;
65 background: #EEE;
66}
67
68.details {
69 font-weight: bold;
70 font-size: 14px;
71}
72
73</style>
74
75<h1><a href="ml_v1.html">Google Cloud Machine Learning Engine</a> . <a href="ml_v1.projects.html">projects</a> . <a href="ml_v1.projects.jobs.html">jobs</a></h1>
76<h2>Instance Methods</h2>
77<p class="toc_element">
Thomas Coffee2f245372017-03-27 10:39:26 -070078 <code><a href="#cancel">cancel(name, body, x__xgafv=None)</a></code></p>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -040079<p class="firstline">Cancels a running job.</p>
80<p class="toc_element">
Thomas Coffee2f245372017-03-27 10:39:26 -070081 <code><a href="#create">create(parent, body, x__xgafv=None)</a></code></p>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -040082<p class="firstline">Creates a training or a batch prediction job.</p>
83<p class="toc_element">
Thomas Coffee2f245372017-03-27 10:39:26 -070084 <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -040085<p class="firstline">Describes a job.</p>
86<p class="toc_element">
Thomas Coffee2f245372017-03-27 10:39:26 -070087 <code><a href="#list">list(parent, pageSize=None, filter=None, pageToken=None, x__xgafv=None)</a></code></p>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -040088<p class="firstline">Lists the jobs in the project.</p>
89<p class="toc_element">
90 <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p>
91<p class="firstline">Retrieves the next page of results.</p>
92<h3>Method Details</h3>
93<div class="method">
Thomas Coffee2f245372017-03-27 10:39:26 -070094 <code class="details" id="cancel">cancel(name, body, x__xgafv=None)</code>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -040095 <pre>Cancels a running job.
96
97Args:
98 name: string, Required. The name of the job to cancel.
99
100Authorization: requires `Editor` role on the parent project. (required)
101 body: object, The request body. (required)
102 The object takes the form of:
103
104{ # Request message for the CancelJob method.
105 }
106
107 x__xgafv: string, V1 error format.
108 Allowed values
109 1 - v1 error format
110 2 - v2 error format
111
112Returns:
113 An object of the form:
114
115 { # A generic empty message that you can re-use to avoid defining duplicated
116 # empty messages in your APIs. A typical example is to use it as the request
117 # or the response type of an API method. For instance:
118 #
119 # service Foo {
120 # rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
121 # }
122 #
123 # The JSON representation for `Empty` is empty JSON object `{}`.
124 }</pre>
125</div>
126
127<div class="method">
Thomas Coffee2f245372017-03-27 10:39:26 -0700128 <code class="details" id="create">create(parent, body, x__xgafv=None)</code>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400129 <pre>Creates a training or a batch prediction job.
130
131Args:
132 parent: string, Required. The project name.
133
134Authorization: requires `Editor` role on the specified project. (required)
135 body: object, The request body. (required)
136 The object takes the form of:
137
138{ # Represents a training or prediction job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400139 "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
Thomas Coffee2f245372017-03-27 10:39:26 -0700140 "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
141 "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400142 "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
143 # Only set for hyperparameter tuning jobs.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400144 "trials": [ # Results for individual Hyperparameter trials.
145 # Only set for hyperparameter tuning jobs.
146 { # Represents the result of a single hyperparameter tuning trial from a
147 # training job. The TrainingOutput object that is returned on successful
148 # completion of a training job with hyperparameter tuning includes a list
149 # of HyperparameterOutput objects, one for each successful trial.
150 "hyperparameters": { # The hyperparameters given to this trial.
151 "a_key": "A String",
152 },
153 "trialId": "A String", # The trial id for these results.
154 "allMetrics": [ # All recorded object metrics for this trial.
155 { # An observed value of a metric.
156 "trainingStep": "A String", # The global training step for this metric.
157 "objectiveValue": 3.14, # The objective value at this training step.
158 },
159 ],
160 "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial.
161 "trainingStep": "A String", # The global training step for this metric.
162 "objectiveValue": 3.14, # The objective value at this training step.
163 },
164 },
165 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400166 },
Thomas Coffee2f245372017-03-27 10:39:26 -0700167 "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
168 "modelName": "A String", # Use this field if you want to use the default version for the specified
169 # model. The string must use the following format:
170 #
171 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"`
172 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch
173 # prediction. If not set, Google Cloud ML will pick the runtime version used
174 # during the CreateVersion request for this model version, or choose the
175 # latest stable version when model version information is not available
176 # such as when the model is specified by uri.
177 "inputPaths": [ # Required. The Google Cloud Storage location of the input data files.
178 # May contain wildcards.
179 "A String",
180 ],
181 "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing.
182 # Defaults to 10 if not specified.
183 "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for
184 # the model to use.
185 "outputPath": "A String", # Required. The output Google Cloud Storage location.
186 "dataFormat": "A String", # Required. The format of the input data files.
187 "versionName": "A String", # Use this field if you want to specify a version of the model to use. The
188 # string is formatted the same way as `model_version`, with the addition
189 # of the version information:
190 #
191 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"`
192 "region": "A String", # Required. The Google Compute Engine region to run the prediction job in.
193 },
194 "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
195 "jobId": "A String", # Required. The user-specified id of the job.
196 "state": "A String", # Output only. The detailed state of a job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400197 "startTime": "A String", # Output only. When the job processing was started.
198 "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
199 "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
200 # job's worker nodes.
201 #
202 # The supported values are the same as those described in the entry for
203 # `masterType`.
204 #
205 # This value must be present when `scaleTier` is set to `CUSTOM` and
206 # `workerCount` is greater than zero.
207 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not
208 # set, Google Cloud ML will choose the latest stable version.
209 "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers
210 # and parameter servers.
211 "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training
212 # job's master worker.
213 #
214 # The following types are supported:
215 #
216 # <dl>
217 # <dt>standard</dt>
218 # <dd>
219 # A basic machine configuration suitable for training simple models with
220 # small to moderate datasets.
221 # </dd>
222 # <dt>large_model</dt>
223 # <dd>
224 # A machine with a lot of memory, specially suited for parameter servers
225 # when your model is large (having many hidden layers or layers with very
226 # large numbers of nodes).
227 # </dd>
228 # <dt>complex_model_s</dt>
229 # <dd>
230 # A machine suitable for the master and workers of the cluster when your
231 # model requires more computation than the standard machine can handle
232 # satisfactorily.
233 # </dd>
234 # <dt>complex_model_m</dt>
235 # <dd>
236 # A machine with roughly twice the number of cores and roughly double the
237 # memory of <code suppresswarning="true">complex_model_s</code>.
238 # </dd>
239 # <dt>complex_model_l</dt>
240 # <dd>
241 # A machine with roughly twice the number of cores and roughly double the
242 # memory of <code suppresswarning="true">complex_model_m</code>.
243 # </dd>
244 # <dt>standard_gpu</dt>
245 # <dd>
246 # A machine equivalent to <code suppresswarning="true">standard</code> that
247 # also includes a
Sai Cheemalapatie833b792017-03-24 15:06:46 -0700248 # <a href="/ml-engine/docs/how-tos/using-gpus">
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400249 # GPU that you can use in your trainer</a>.
250 # </dd>
251 # <dt>complex_model_m_gpu</dt>
252 # <dd>
253 # A machine equivalent to
254 # <code suppresswarning="true">coplex_model_m</code> that also includes
255 # four GPUs.
256 # </dd>
257 # </dl>
258 #
259 # You must set this value when `scaleTier` is set to `CUSTOM`.
260 "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune.
261 "maxTrials": 42, # Optional. How many training trials should be attempted to optimize
262 # the specified hyperparameters.
263 #
264 # Defaults to one.
265 "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For
266 # current versions of Tensorflow, this tag name should exactly match what is
267 # shown in Tensorboard, including all scopes. For versions of Tensorflow
268 # prior to 0.12, this should be only the tag passed to tf.Summary.
269 # By default, "training/hptuning/metric" will be used.
270 "params": [ # Required. The set of parameters to tune.
271 { # Represents a single hyperparameter to optimize.
272 "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
273 # should be unset if type is `CATEGORICAL`. This value should be integers if
274 # type is `INTEGER`.
Thomas Coffee2f245372017-03-27 10:39:26 -0700275 "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
276 # should be unset if type is `CATEGORICAL`. This value should be integers if
277 # type is INTEGER.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400278 "discreteValues": [ # Required if type is `DISCRETE`.
279 # A list of feasible points.
280 # The list should be in strictly increasing order. For instance, this
281 # parameter might have possible settings of 1.5, 2.5, and 4.0. This list
282 # should not contain more than 1,000 values.
283 3.14,
284 ],
285 "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
286 # a HyperparameterSpec message. E.g., "learning_rate".
Thomas Coffee2f245372017-03-27 10:39:26 -0700287 "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
288 "A String",
289 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400290 "type": "A String", # Required. The type of the parameter.
291 "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
292 # Leave unset for categorical parameters.
293 # Some kind of scaling is strongly recommended for real or integral
294 # parameters (e.g., `UNIT_LINEAR_SCALE`).
295 },
296 ],
297 "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently.
298 # You can reduce the time it takes to perform hyperparameter tuning by adding
299 # trials in parallel. However, each trail only benefits from the information
300 # gained in completed trials. That means that a trial does not get access to
301 # the results of trials running at the same time, which could reduce the
302 # quality of the overall optimization.
303 #
304 # Each trial will use the same scale tier and machine types.
305 #
306 # Defaults to one.
307 "goal": "A String", # Required. The type of goal to use for tuning. Available types are
308 # `MAXIMIZE` and `MINIMIZE`.
309 #
310 # Defaults to `MAXIMIZE`.
311 },
312 "region": "A String", # Required. The Google Compute Engine region to run the training job in.
313 "args": [ # Optional. Command line arguments to pass to the program.
314 "A String",
315 ],
316 "pythonModule": "A String", # Required. The Python module name to run after installing the packages.
317 "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs
318 # and other data needed for training. This path is passed to your TensorFlow
319 # program as the 'job_dir' command-line argument. The benefit of specifying
320 # this field is that Cloud ML validates the path for use in training.
321 "packageUris": [ # Required. The Google Cloud Storage location of the packages with
322 # the training program and any additional dependencies.
323 "A String",
324 ],
325 "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
326 # replica in the cluster will be of the type specified in `worker_type`.
327 #
328 # This value can only be used when `scale_tier` is set to `CUSTOM`. If you
329 # set this value, you must also set `worker_type`.
330 "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
331 # job's parameter server.
332 #
333 # The supported values are the same as those described in the entry for
334 # `master_type`.
335 #
336 # This value must be present when `scaleTier` is set to `CUSTOM` and
337 # `parameter_server_count` is greater than zero.
338 "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training
339 # job. Each replica in the cluster will be of the type specified in
340 # `parameter_server_type`.
341 #
342 # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
343 # set this value, you must also set `parameter_server_type`.
344 },
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400345 "endTime": "A String", # Output only. When the job processing was completed.
346 "predictionOutput": { # Represents results of a prediction job. # The current prediction job result.
347 "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time.
348 "nodeHours": 3.14, # Node hours used by the batch prediction job.
349 "predictionCount": "A String", # The number of generated predictions.
350 "errorCount": "A String", # The number of data instances which resulted in errors.
351 },
352 "createTime": "A String", # Output only. When the job was created.
353 }
354
355 x__xgafv: string, V1 error format.
356 Allowed values
357 1 - v1 error format
358 2 - v2 error format
359
360Returns:
361 An object of the form:
362
363 { # Represents a training or prediction job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400364 "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
Thomas Coffee2f245372017-03-27 10:39:26 -0700365 "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
366 "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400367 "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
368 # Only set for hyperparameter tuning jobs.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400369 "trials": [ # Results for individual Hyperparameter trials.
370 # Only set for hyperparameter tuning jobs.
371 { # Represents the result of a single hyperparameter tuning trial from a
372 # training job. The TrainingOutput object that is returned on successful
373 # completion of a training job with hyperparameter tuning includes a list
374 # of HyperparameterOutput objects, one for each successful trial.
375 "hyperparameters": { # The hyperparameters given to this trial.
376 "a_key": "A String",
377 },
378 "trialId": "A String", # The trial id for these results.
379 "allMetrics": [ # All recorded object metrics for this trial.
380 { # An observed value of a metric.
381 "trainingStep": "A String", # The global training step for this metric.
382 "objectiveValue": 3.14, # The objective value at this training step.
383 },
384 ],
385 "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial.
386 "trainingStep": "A String", # The global training step for this metric.
387 "objectiveValue": 3.14, # The objective value at this training step.
388 },
389 },
390 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400391 },
Thomas Coffee2f245372017-03-27 10:39:26 -0700392 "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
393 "modelName": "A String", # Use this field if you want to use the default version for the specified
394 # model. The string must use the following format:
395 #
396 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"`
397 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch
398 # prediction. If not set, Google Cloud ML will pick the runtime version used
399 # during the CreateVersion request for this model version, or choose the
400 # latest stable version when model version information is not available
401 # such as when the model is specified by uri.
402 "inputPaths": [ # Required. The Google Cloud Storage location of the input data files.
403 # May contain wildcards.
404 "A String",
405 ],
406 "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing.
407 # Defaults to 10 if not specified.
408 "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for
409 # the model to use.
410 "outputPath": "A String", # Required. The output Google Cloud Storage location.
411 "dataFormat": "A String", # Required. The format of the input data files.
412 "versionName": "A String", # Use this field if you want to specify a version of the model to use. The
413 # string is formatted the same way as `model_version`, with the addition
414 # of the version information:
415 #
416 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"`
417 "region": "A String", # Required. The Google Compute Engine region to run the prediction job in.
418 },
419 "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
420 "jobId": "A String", # Required. The user-specified id of the job.
421 "state": "A String", # Output only. The detailed state of a job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400422 "startTime": "A String", # Output only. When the job processing was started.
423 "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
424 "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
425 # job's worker nodes.
426 #
427 # The supported values are the same as those described in the entry for
428 # `masterType`.
429 #
430 # This value must be present when `scaleTier` is set to `CUSTOM` and
431 # `workerCount` is greater than zero.
432 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not
433 # set, Google Cloud ML will choose the latest stable version.
434 "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers
435 # and parameter servers.
436 "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training
437 # job's master worker.
438 #
439 # The following types are supported:
440 #
441 # <dl>
442 # <dt>standard</dt>
443 # <dd>
444 # A basic machine configuration suitable for training simple models with
445 # small to moderate datasets.
446 # </dd>
447 # <dt>large_model</dt>
448 # <dd>
449 # A machine with a lot of memory, specially suited for parameter servers
450 # when your model is large (having many hidden layers or layers with very
451 # large numbers of nodes).
452 # </dd>
453 # <dt>complex_model_s</dt>
454 # <dd>
455 # A machine suitable for the master and workers of the cluster when your
456 # model requires more computation than the standard machine can handle
457 # satisfactorily.
458 # </dd>
459 # <dt>complex_model_m</dt>
460 # <dd>
461 # A machine with roughly twice the number of cores and roughly double the
462 # memory of <code suppresswarning="true">complex_model_s</code>.
463 # </dd>
464 # <dt>complex_model_l</dt>
465 # <dd>
466 # A machine with roughly twice the number of cores and roughly double the
467 # memory of <code suppresswarning="true">complex_model_m</code>.
468 # </dd>
469 # <dt>standard_gpu</dt>
470 # <dd>
471 # A machine equivalent to <code suppresswarning="true">standard</code> that
472 # also includes a
Sai Cheemalapatie833b792017-03-24 15:06:46 -0700473 # <a href="/ml-engine/docs/how-tos/using-gpus">
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400474 # GPU that you can use in your trainer</a>.
475 # </dd>
476 # <dt>complex_model_m_gpu</dt>
477 # <dd>
478 # A machine equivalent to
479 # <code suppresswarning="true">coplex_model_m</code> that also includes
480 # four GPUs.
481 # </dd>
482 # </dl>
483 #
484 # You must set this value when `scaleTier` is set to `CUSTOM`.
485 "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune.
486 "maxTrials": 42, # Optional. How many training trials should be attempted to optimize
487 # the specified hyperparameters.
488 #
489 # Defaults to one.
490 "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For
491 # current versions of Tensorflow, this tag name should exactly match what is
492 # shown in Tensorboard, including all scopes. For versions of Tensorflow
493 # prior to 0.12, this should be only the tag passed to tf.Summary.
494 # By default, "training/hptuning/metric" will be used.
495 "params": [ # Required. The set of parameters to tune.
496 { # Represents a single hyperparameter to optimize.
497 "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
498 # should be unset if type is `CATEGORICAL`. This value should be integers if
499 # type is `INTEGER`.
Thomas Coffee2f245372017-03-27 10:39:26 -0700500 "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
501 # should be unset if type is `CATEGORICAL`. This value should be integers if
502 # type is INTEGER.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400503 "discreteValues": [ # Required if type is `DISCRETE`.
504 # A list of feasible points.
505 # The list should be in strictly increasing order. For instance, this
506 # parameter might have possible settings of 1.5, 2.5, and 4.0. This list
507 # should not contain more than 1,000 values.
508 3.14,
509 ],
510 "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
511 # a HyperparameterSpec message. E.g., "learning_rate".
Thomas Coffee2f245372017-03-27 10:39:26 -0700512 "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
513 "A String",
514 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400515 "type": "A String", # Required. The type of the parameter.
516 "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
517 # Leave unset for categorical parameters.
518 # Some kind of scaling is strongly recommended for real or integral
519 # parameters (e.g., `UNIT_LINEAR_SCALE`).
520 },
521 ],
522 "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently.
523 # You can reduce the time it takes to perform hyperparameter tuning by adding
524 # trials in parallel. However, each trail only benefits from the information
525 # gained in completed trials. That means that a trial does not get access to
526 # the results of trials running at the same time, which could reduce the
527 # quality of the overall optimization.
528 #
529 # Each trial will use the same scale tier and machine types.
530 #
531 # Defaults to one.
532 "goal": "A String", # Required. The type of goal to use for tuning. Available types are
533 # `MAXIMIZE` and `MINIMIZE`.
534 #
535 # Defaults to `MAXIMIZE`.
536 },
537 "region": "A String", # Required. The Google Compute Engine region to run the training job in.
538 "args": [ # Optional. Command line arguments to pass to the program.
539 "A String",
540 ],
541 "pythonModule": "A String", # Required. The Python module name to run after installing the packages.
542 "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs
543 # and other data needed for training. This path is passed to your TensorFlow
544 # program as the 'job_dir' command-line argument. The benefit of specifying
545 # this field is that Cloud ML validates the path for use in training.
546 "packageUris": [ # Required. The Google Cloud Storage location of the packages with
547 # the training program and any additional dependencies.
548 "A String",
549 ],
550 "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
551 # replica in the cluster will be of the type specified in `worker_type`.
552 #
553 # This value can only be used when `scale_tier` is set to `CUSTOM`. If you
554 # set this value, you must also set `worker_type`.
555 "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
556 # job's parameter server.
557 #
558 # The supported values are the same as those described in the entry for
559 # `master_type`.
560 #
561 # This value must be present when `scaleTier` is set to `CUSTOM` and
562 # `parameter_server_count` is greater than zero.
563 "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training
564 # job. Each replica in the cluster will be of the type specified in
565 # `parameter_server_type`.
566 #
567 # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
568 # set this value, you must also set `parameter_server_type`.
569 },
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400570 "endTime": "A String", # Output only. When the job processing was completed.
571 "predictionOutput": { # Represents results of a prediction job. # The current prediction job result.
572 "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time.
573 "nodeHours": 3.14, # Node hours used by the batch prediction job.
574 "predictionCount": "A String", # The number of generated predictions.
575 "errorCount": "A String", # The number of data instances which resulted in errors.
576 },
577 "createTime": "A String", # Output only. When the job was created.
578 }</pre>
579</div>
580
581<div class="method">
Thomas Coffee2f245372017-03-27 10:39:26 -0700582 <code class="details" id="get">get(name, x__xgafv=None)</code>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400583 <pre>Describes a job.
584
585Args:
586 name: string, Required. The name of the job to get the description of.
587
588Authorization: requires `Viewer` role on the parent project. (required)
589 x__xgafv: string, V1 error format.
590 Allowed values
591 1 - v1 error format
592 2 - v2 error format
593
594Returns:
595 An object of the form:
596
597 { # Represents a training or prediction job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400598 "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
Thomas Coffee2f245372017-03-27 10:39:26 -0700599 "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
600 "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400601 "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
602 # Only set for hyperparameter tuning jobs.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400603 "trials": [ # Results for individual Hyperparameter trials.
604 # Only set for hyperparameter tuning jobs.
605 { # Represents the result of a single hyperparameter tuning trial from a
606 # training job. The TrainingOutput object that is returned on successful
607 # completion of a training job with hyperparameter tuning includes a list
608 # of HyperparameterOutput objects, one for each successful trial.
609 "hyperparameters": { # The hyperparameters given to this trial.
610 "a_key": "A String",
611 },
612 "trialId": "A String", # The trial id for these results.
613 "allMetrics": [ # All recorded object metrics for this trial.
614 { # An observed value of a metric.
615 "trainingStep": "A String", # The global training step for this metric.
616 "objectiveValue": 3.14, # The objective value at this training step.
617 },
618 ],
619 "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial.
620 "trainingStep": "A String", # The global training step for this metric.
621 "objectiveValue": 3.14, # The objective value at this training step.
622 },
623 },
624 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400625 },
Thomas Coffee2f245372017-03-27 10:39:26 -0700626 "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
627 "modelName": "A String", # Use this field if you want to use the default version for the specified
628 # model. The string must use the following format:
629 #
630 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"`
631 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch
632 # prediction. If not set, Google Cloud ML will pick the runtime version used
633 # during the CreateVersion request for this model version, or choose the
634 # latest stable version when model version information is not available
635 # such as when the model is specified by uri.
636 "inputPaths": [ # Required. The Google Cloud Storage location of the input data files.
637 # May contain wildcards.
638 "A String",
639 ],
640 "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing.
641 # Defaults to 10 if not specified.
642 "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for
643 # the model to use.
644 "outputPath": "A String", # Required. The output Google Cloud Storage location.
645 "dataFormat": "A String", # Required. The format of the input data files.
646 "versionName": "A String", # Use this field if you want to specify a version of the model to use. The
647 # string is formatted the same way as `model_version`, with the addition
648 # of the version information:
649 #
650 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"`
651 "region": "A String", # Required. The Google Compute Engine region to run the prediction job in.
652 },
653 "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
654 "jobId": "A String", # Required. The user-specified id of the job.
655 "state": "A String", # Output only. The detailed state of a job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400656 "startTime": "A String", # Output only. When the job processing was started.
657 "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
658 "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
659 # job's worker nodes.
660 #
661 # The supported values are the same as those described in the entry for
662 # `masterType`.
663 #
664 # This value must be present when `scaleTier` is set to `CUSTOM` and
665 # `workerCount` is greater than zero.
666 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not
667 # set, Google Cloud ML will choose the latest stable version.
668 "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers
669 # and parameter servers.
670 "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training
671 # job's master worker.
672 #
673 # The following types are supported:
674 #
675 # <dl>
676 # <dt>standard</dt>
677 # <dd>
678 # A basic machine configuration suitable for training simple models with
679 # small to moderate datasets.
680 # </dd>
681 # <dt>large_model</dt>
682 # <dd>
683 # A machine with a lot of memory, specially suited for parameter servers
684 # when your model is large (having many hidden layers or layers with very
685 # large numbers of nodes).
686 # </dd>
687 # <dt>complex_model_s</dt>
688 # <dd>
689 # A machine suitable for the master and workers of the cluster when your
690 # model requires more computation than the standard machine can handle
691 # satisfactorily.
692 # </dd>
693 # <dt>complex_model_m</dt>
694 # <dd>
695 # A machine with roughly twice the number of cores and roughly double the
696 # memory of <code suppresswarning="true">complex_model_s</code>.
697 # </dd>
698 # <dt>complex_model_l</dt>
699 # <dd>
700 # A machine with roughly twice the number of cores and roughly double the
701 # memory of <code suppresswarning="true">complex_model_m</code>.
702 # </dd>
703 # <dt>standard_gpu</dt>
704 # <dd>
705 # A machine equivalent to <code suppresswarning="true">standard</code> that
706 # also includes a
Sai Cheemalapatie833b792017-03-24 15:06:46 -0700707 # <a href="/ml-engine/docs/how-tos/using-gpus">
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400708 # GPU that you can use in your trainer</a>.
709 # </dd>
710 # <dt>complex_model_m_gpu</dt>
711 # <dd>
712 # A machine equivalent to
713 # <code suppresswarning="true">coplex_model_m</code> that also includes
714 # four GPUs.
715 # </dd>
716 # </dl>
717 #
718 # You must set this value when `scaleTier` is set to `CUSTOM`.
719 "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune.
720 "maxTrials": 42, # Optional. How many training trials should be attempted to optimize
721 # the specified hyperparameters.
722 #
723 # Defaults to one.
724 "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For
725 # current versions of Tensorflow, this tag name should exactly match what is
726 # shown in Tensorboard, including all scopes. For versions of Tensorflow
727 # prior to 0.12, this should be only the tag passed to tf.Summary.
728 # By default, "training/hptuning/metric" will be used.
729 "params": [ # Required. The set of parameters to tune.
730 { # Represents a single hyperparameter to optimize.
731 "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
732 # should be unset if type is `CATEGORICAL`. This value should be integers if
733 # type is `INTEGER`.
Thomas Coffee2f245372017-03-27 10:39:26 -0700734 "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
735 # should be unset if type is `CATEGORICAL`. This value should be integers if
736 # type is INTEGER.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400737 "discreteValues": [ # Required if type is `DISCRETE`.
738 # A list of feasible points.
739 # The list should be in strictly increasing order. For instance, this
740 # parameter might have possible settings of 1.5, 2.5, and 4.0. This list
741 # should not contain more than 1,000 values.
742 3.14,
743 ],
744 "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
745 # a HyperparameterSpec message. E.g., "learning_rate".
Thomas Coffee2f245372017-03-27 10:39:26 -0700746 "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
747 "A String",
748 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400749 "type": "A String", # Required. The type of the parameter.
750 "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
751 # Leave unset for categorical parameters.
752 # Some kind of scaling is strongly recommended for real or integral
753 # parameters (e.g., `UNIT_LINEAR_SCALE`).
754 },
755 ],
756 "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently.
757 # You can reduce the time it takes to perform hyperparameter tuning by adding
758 # trials in parallel. However, each trail only benefits from the information
759 # gained in completed trials. That means that a trial does not get access to
760 # the results of trials running at the same time, which could reduce the
761 # quality of the overall optimization.
762 #
763 # Each trial will use the same scale tier and machine types.
764 #
765 # Defaults to one.
766 "goal": "A String", # Required. The type of goal to use for tuning. Available types are
767 # `MAXIMIZE` and `MINIMIZE`.
768 #
769 # Defaults to `MAXIMIZE`.
770 },
771 "region": "A String", # Required. The Google Compute Engine region to run the training job in.
772 "args": [ # Optional. Command line arguments to pass to the program.
773 "A String",
774 ],
775 "pythonModule": "A String", # Required. The Python module name to run after installing the packages.
776 "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs
777 # and other data needed for training. This path is passed to your TensorFlow
778 # program as the 'job_dir' command-line argument. The benefit of specifying
779 # this field is that Cloud ML validates the path for use in training.
780 "packageUris": [ # Required. The Google Cloud Storage location of the packages with
781 # the training program and any additional dependencies.
782 "A String",
783 ],
784 "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
785 # replica in the cluster will be of the type specified in `worker_type`.
786 #
787 # This value can only be used when `scale_tier` is set to `CUSTOM`. If you
788 # set this value, you must also set `worker_type`.
789 "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
790 # job's parameter server.
791 #
792 # The supported values are the same as those described in the entry for
793 # `master_type`.
794 #
795 # This value must be present when `scaleTier` is set to `CUSTOM` and
796 # `parameter_server_count` is greater than zero.
797 "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training
798 # job. Each replica in the cluster will be of the type specified in
799 # `parameter_server_type`.
800 #
801 # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
802 # set this value, you must also set `parameter_server_type`.
803 },
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400804 "endTime": "A String", # Output only. When the job processing was completed.
805 "predictionOutput": { # Represents results of a prediction job. # The current prediction job result.
806 "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time.
807 "nodeHours": 3.14, # Node hours used by the batch prediction job.
808 "predictionCount": "A String", # The number of generated predictions.
809 "errorCount": "A String", # The number of data instances which resulted in errors.
810 },
811 "createTime": "A String", # Output only. When the job was created.
812 }</pre>
813</div>
814
815<div class="method">
Thomas Coffee2f245372017-03-27 10:39:26 -0700816 <code class="details" id="list">list(parent, pageSize=None, filter=None, pageToken=None, x__xgafv=None)</code>
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400817 <pre>Lists the jobs in the project.
818
819Args:
820 parent: string, Required. The name of the project for which to list jobs.
821
822Authorization: requires `Viewer` role on the specified project. (required)
823 pageSize: integer, Optional. The number of jobs to retrieve per "page" of results. If there
824are more remaining results than this number, the response message will
825contain a valid value in the `next_page_token` field.
826
827The default value is 20, and the maximum page size is 100.
828 filter: string, Optional. Specifies the subset of jobs to retrieve.
829 pageToken: string, Optional. A page token to request the next page of results.
830
831You get the token from the `next_page_token` field of the response from
832the previous call.
833 x__xgafv: string, V1 error format.
834 Allowed values
835 1 - v1 error format
836 2 - v2 error format
837
838Returns:
839 An object of the form:
840
841 { # Response message for the ListJobs method.
842 "nextPageToken": "A String", # Optional. Pass this token as the `page_token` field of the request for a
843 # subsequent call.
844 "jobs": [ # The list of jobs.
845 { # Represents a training or prediction job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400846 "trainingOutput": { # Represents results of a training job. Output only. # The current training job result.
Thomas Coffee2f245372017-03-27 10:39:26 -0700847 "consumedMLUnits": 3.14, # The amount of ML units consumed by the job.
848 "isHyperparameterTuningJob": True or False, # Whether this job is a hyperparameter tuning job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400849 "completedTrialCount": "A String", # The number of hyperparameter tuning trials that completed successfully.
850 # Only set for hyperparameter tuning jobs.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400851 "trials": [ # Results for individual Hyperparameter trials.
852 # Only set for hyperparameter tuning jobs.
853 { # Represents the result of a single hyperparameter tuning trial from a
854 # training job. The TrainingOutput object that is returned on successful
855 # completion of a training job with hyperparameter tuning includes a list
856 # of HyperparameterOutput objects, one for each successful trial.
857 "hyperparameters": { # The hyperparameters given to this trial.
858 "a_key": "A String",
859 },
860 "trialId": "A String", # The trial id for these results.
861 "allMetrics": [ # All recorded object metrics for this trial.
862 { # An observed value of a metric.
863 "trainingStep": "A String", # The global training step for this metric.
864 "objectiveValue": 3.14, # The objective value at this training step.
865 },
866 ],
867 "finalMetric": { # An observed value of a metric. # The final objective metric seen for this trial.
868 "trainingStep": "A String", # The global training step for this metric.
869 "objectiveValue": 3.14, # The objective value at this training step.
870 },
871 },
872 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400873 },
Thomas Coffee2f245372017-03-27 10:39:26 -0700874 "predictionInput": { # Represents input parameters for a prediction job. # Input parameters to create a prediction job.
875 "modelName": "A String", # Use this field if you want to use the default version for the specified
876 # model. The string must use the following format:
877 #
878 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>"`
879 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for this batch
880 # prediction. If not set, Google Cloud ML will pick the runtime version used
881 # during the CreateVersion request for this model version, or choose the
882 # latest stable version when model version information is not available
883 # such as when the model is specified by uri.
884 "inputPaths": [ # Required. The Google Cloud Storage location of the input data files.
885 # May contain wildcards.
886 "A String",
887 ],
888 "maxWorkerCount": "A String", # Optional. The maximum number of workers to be used for parallel processing.
889 # Defaults to 10 if not specified.
890 "uri": "A String", # Use this field if you want to specify a Google Cloud Storage path for
891 # the model to use.
892 "outputPath": "A String", # Required. The output Google Cloud Storage location.
893 "dataFormat": "A String", # Required. The format of the input data files.
894 "versionName": "A String", # Use this field if you want to specify a version of the model to use. The
895 # string is formatted the same way as `model_version`, with the addition
896 # of the version information:
897 #
898 # `"projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>"`
899 "region": "A String", # Required. The Google Compute Engine region to run the prediction job in.
900 },
901 "errorMessage": "A String", # Output only. The details of a failure or a cancellation.
902 "jobId": "A String", # Required. The user-specified id of the job.
903 "state": "A String", # Output only. The detailed state of a job.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400904 "startTime": "A String", # Output only. When the job processing was started.
905 "trainingInput": { # Represents input parameters for a training job. # Input parameters to create a training job.
906 "workerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
907 # job's worker nodes.
908 #
909 # The supported values are the same as those described in the entry for
910 # `masterType`.
911 #
912 # This value must be present when `scaleTier` is set to `CUSTOM` and
913 # `workerCount` is greater than zero.
914 "runtimeVersion": "A String", # Optional. The Google Cloud ML runtime version to use for training. If not
915 # set, Google Cloud ML will choose the latest stable version.
916 "scaleTier": "A String", # Required. Specifies the machine types, the number of replicas for workers
917 # and parameter servers.
918 "masterType": "A String", # Optional. Specifies the type of virtual machine to use for your training
919 # job's master worker.
920 #
921 # The following types are supported:
922 #
923 # <dl>
924 # <dt>standard</dt>
925 # <dd>
926 # A basic machine configuration suitable for training simple models with
927 # small to moderate datasets.
928 # </dd>
929 # <dt>large_model</dt>
930 # <dd>
931 # A machine with a lot of memory, specially suited for parameter servers
932 # when your model is large (having many hidden layers or layers with very
933 # large numbers of nodes).
934 # </dd>
935 # <dt>complex_model_s</dt>
936 # <dd>
937 # A machine suitable for the master and workers of the cluster when your
938 # model requires more computation than the standard machine can handle
939 # satisfactorily.
940 # </dd>
941 # <dt>complex_model_m</dt>
942 # <dd>
943 # A machine with roughly twice the number of cores and roughly double the
944 # memory of <code suppresswarning="true">complex_model_s</code>.
945 # </dd>
946 # <dt>complex_model_l</dt>
947 # <dd>
948 # A machine with roughly twice the number of cores and roughly double the
949 # memory of <code suppresswarning="true">complex_model_m</code>.
950 # </dd>
951 # <dt>standard_gpu</dt>
952 # <dd>
953 # A machine equivalent to <code suppresswarning="true">standard</code> that
954 # also includes a
Sai Cheemalapatie833b792017-03-24 15:06:46 -0700955 # <a href="/ml-engine/docs/how-tos/using-gpus">
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400956 # GPU that you can use in your trainer</a>.
957 # </dd>
958 # <dt>complex_model_m_gpu</dt>
959 # <dd>
960 # A machine equivalent to
961 # <code suppresswarning="true">coplex_model_m</code> that also includes
962 # four GPUs.
963 # </dd>
964 # </dl>
965 #
966 # You must set this value when `scaleTier` is set to `CUSTOM`.
967 "hyperparameters": { # Represents a set of hyperparameters to optimize. # Optional. The set of Hyperparameters to tune.
968 "maxTrials": 42, # Optional. How many training trials should be attempted to optimize
969 # the specified hyperparameters.
970 #
971 # Defaults to one.
972 "hyperparameterMetricTag": "A String", # Optional. The Tensorflow summary tag name to use for optimizing trials. For
973 # current versions of Tensorflow, this tag name should exactly match what is
974 # shown in Tensorboard, including all scopes. For versions of Tensorflow
975 # prior to 0.12, this should be only the tag passed to tf.Summary.
976 # By default, "training/hptuning/metric" will be used.
977 "params": [ # Required. The set of parameters to tune.
978 { # Represents a single hyperparameter to optimize.
979 "maxValue": 3.14, # Required if typeis `DOUBLE` or `INTEGER`. This field
980 # should be unset if type is `CATEGORICAL`. This value should be integers if
981 # type is `INTEGER`.
Thomas Coffee2f245372017-03-27 10:39:26 -0700982 "minValue": 3.14, # Required if type is `DOUBLE` or `INTEGER`. This field
983 # should be unset if type is `CATEGORICAL`. This value should be integers if
984 # type is INTEGER.
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400985 "discreteValues": [ # Required if type is `DISCRETE`.
986 # A list of feasible points.
987 # The list should be in strictly increasing order. For instance, this
988 # parameter might have possible settings of 1.5, 2.5, and 4.0. This list
989 # should not contain more than 1,000 values.
990 3.14,
991 ],
992 "parameterName": "A String", # Required. The parameter name must be unique amongst all ParameterConfigs in
993 # a HyperparameterSpec message. E.g., "learning_rate".
Thomas Coffee2f245372017-03-27 10:39:26 -0700994 "categoricalValues": [ # Required if type is `CATEGORICAL`. The list of possible categories.
995 "A String",
996 ],
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -0400997 "type": "A String", # Required. The type of the parameter.
998 "scaleType": "A String", # Optional. How the parameter should be scaled to the hypercube.
999 # Leave unset for categorical parameters.
1000 # Some kind of scaling is strongly recommended for real or integral
1001 # parameters (e.g., `UNIT_LINEAR_SCALE`).
1002 },
1003 ],
1004 "maxParallelTrials": 42, # Optional. The number of training trials to run concurrently.
1005 # You can reduce the time it takes to perform hyperparameter tuning by adding
1006 # trials in parallel. However, each trail only benefits from the information
1007 # gained in completed trials. That means that a trial does not get access to
1008 # the results of trials running at the same time, which could reduce the
1009 # quality of the overall optimization.
1010 #
1011 # Each trial will use the same scale tier and machine types.
1012 #
1013 # Defaults to one.
1014 "goal": "A String", # Required. The type of goal to use for tuning. Available types are
1015 # `MAXIMIZE` and `MINIMIZE`.
1016 #
1017 # Defaults to `MAXIMIZE`.
1018 },
1019 "region": "A String", # Required. The Google Compute Engine region to run the training job in.
1020 "args": [ # Optional. Command line arguments to pass to the program.
1021 "A String",
1022 ],
1023 "pythonModule": "A String", # Required. The Python module name to run after installing the packages.
1024 "jobDir": "A String", # Optional. A Google Cloud Storage path in which to store training outputs
1025 # and other data needed for training. This path is passed to your TensorFlow
1026 # program as the 'job_dir' command-line argument. The benefit of specifying
1027 # this field is that Cloud ML validates the path for use in training.
1028 "packageUris": [ # Required. The Google Cloud Storage location of the packages with
1029 # the training program and any additional dependencies.
1030 "A String",
1031 ],
1032 "workerCount": "A String", # Optional. The number of worker replicas to use for the training job. Each
1033 # replica in the cluster will be of the type specified in `worker_type`.
1034 #
1035 # This value can only be used when `scale_tier` is set to `CUSTOM`. If you
1036 # set this value, you must also set `worker_type`.
1037 "parameterServerType": "A String", # Optional. Specifies the type of virtual machine to use for your training
1038 # job's parameter server.
1039 #
1040 # The supported values are the same as those described in the entry for
1041 # `master_type`.
1042 #
1043 # This value must be present when `scaleTier` is set to `CUSTOM` and
1044 # `parameter_server_count` is greater than zero.
1045 "parameterServerCount": "A String", # Optional. The number of parameter server replicas to use for the training
1046 # job. Each replica in the cluster will be of the type specified in
1047 # `parameter_server_type`.
1048 #
1049 # This value can only be used when `scale_tier` is set to `CUSTOM`.If you
1050 # set this value, you must also set `parameter_server_type`.
1051 },
Sai Cheemalapatic30d2b52017-03-13 12:12:03 -04001052 "endTime": "A String", # Output only. When the job processing was completed.
1053 "predictionOutput": { # Represents results of a prediction job. # The current prediction job result.
1054 "outputPath": "A String", # The output Google Cloud Storage location provided at the job creation time.
1055 "nodeHours": 3.14, # Node hours used by the batch prediction job.
1056 "predictionCount": "A String", # The number of generated predictions.
1057 "errorCount": "A String", # The number of data instances which resulted in errors.
1058 },
1059 "createTime": "A String", # Output only. When the job was created.
1060 },
1061 ],
1062 }</pre>
1063</div>
1064
1065<div class="method">
1066 <code class="details" id="list_next">list_next(previous_request, previous_response)</code>
1067 <pre>Retrieves the next page of results.
1068
1069Args:
1070 previous_request: The request for the previous page. (required)
1071 previous_response: The response from the request for the previous page. (required)
1072
1073Returns:
1074 A request object that you can call 'execute()' on to request the next
1075 page. Returns None if there are no more items in the collection.
1076 </pre>
1077</div>
1078
1079</body></html>