blob: 72c02538e87ac9dfbdde48cf3ac434b01bba5d98 [file] [log] [blame]
yoshi-code-botb6dc1b92021-03-02 11:49:08 -08001<html><body>
2<style>
3
4body, h1, h2, h3, div, span, p, pre, a {
5 margin: 0;
6 padding: 0;
7 border: 0;
8 font-weight: inherit;
9 font-style: inherit;
10 font-size: 100%;
11 font-family: inherit;
12 vertical-align: baseline;
13}
14
15body {
16 font-size: 13px;
17 padding: 1em;
18}
19
20h1 {
21 font-size: 26px;
22 margin-bottom: 1em;
23}
24
25h2 {
26 font-size: 24px;
27 margin-bottom: 1em;
28}
29
30h3 {
31 font-size: 20px;
32 margin-bottom: 1em;
33 margin-top: 1em;
34}
35
36pre, code {
37 line-height: 1.5;
38 font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
39}
40
41pre {
42 margin-top: 0.5em;
43}
44
45h1, h2, h3, p {
46 font-family: Arial, sans serif;
47}
48
49h1, h2, h3 {
50 border-bottom: solid #CCC 1px;
51}
52
53.toc_element {
54 margin-top: 0.5em;
55}
56
57.firstline {
58 margin-left: 2 em;
59}
60
61.method {
62 margin-top: 1em;
63 border: solid 1px #CCC;
64 padding: 1em;
65 background: #EEE;
66}
67
68.details {
69 font-weight: bold;
70 font-size: 14px;
71}
72
73</style>
74
75<h1><a href="notebooks_v1.html">Notebooks API</a> . <a href="notebooks_v1.projects.html">projects</a> . <a href="notebooks_v1.projects.locations.html">locations</a> . <a href="notebooks_v1.projects.locations.schedules.html">schedules</a></h1>
76<h2>Instance Methods</h2>
77<p class="toc_element">
78 <code><a href="#close">close()</a></code></p>
79<p class="firstline">Close httplib2 connections.</p>
80<p class="toc_element">
81 <code><a href="#create">create(parent, body=None, scheduleId=None, x__xgafv=None)</a></code></p>
82<p class="firstline">Creates a new Scheduled Notebook in a given project and location.</p>
83<p class="toc_element">
84 <code><a href="#delete">delete(name, x__xgafv=None)</a></code></p>
85<p class="firstline">Deletes schedule and all underlying jobs</p>
86<p class="toc_element">
87 <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
88<p class="firstline">Gets details of schedule</p>
89<p class="toc_element">
90 <code><a href="#list">list(parent, filter=None, orderBy=None, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
91<p class="firstline">Lists schedules in a given project and location.</p>
92<p class="toc_element">
93 <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p>
94<p class="firstline">Retrieves the next page of results.</p>
95<p class="toc_element">
96 <code><a href="#trigger">trigger(name, body=None, x__xgafv=None)</a></code></p>
97<p class="firstline">Triggers execution of an existing schedule.</p>
98<h3>Method Details</h3>
99<div class="method">
100 <code class="details" id="close">close()</code>
101 <pre>Close httplib2 connections.</pre>
102</div>
103
104<div class="method">
105 <code class="details" id="create">create(parent, body=None, scheduleId=None, x__xgafv=None)</code>
106 <pre>Creates a new Scheduled Notebook in a given project and location.
107
108Args:
109 parent: string, Required. Format: `parent=projects/{project_id}/locations/{location}` (required)
110 body: object, The request body.
111 The object takes the form of:
112
113{ # The definition of a schedule.
114 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the schedule was created.
115 &quot;cronSchedule&quot;: &quot;A String&quot;, # Cron-tab formatted schedule by which the job will execute Format: minute, hour, day of month, month, day of week e.g. 0 0 * * WED = every Wednesday More examples: https://crontab.guru/examples.html
116 &quot;description&quot;: &quot;A String&quot;, # A brief description of this environment.
117 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Display name used for UI purposes. Name can only contain alphanumeric characters, hyphens ‘-’, and underscores ‘_’.
118 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # Notebook Execution Template corresponding to this schedule.
119 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
120 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
121 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
122 },
123 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
124 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
125 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
126 &quot;a_key&quot;: &quot;A String&quot;,
127 },
128 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
129 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
130 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
131 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
132 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
133 },
134 &quot;name&quot;: &quot;A String&quot;, # Output only. The name of this schedule. Format: `projects/{project_id}/locations/{location}/schedules/{schedule_id}`
135 &quot;recentExecutions&quot;: [ # Output only. The most recent execution names triggered from this schedule and their corresponding states.
136 { # The definition of a single executed notebook.
137 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
138 &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
139 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
140 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
141 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
142 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
143 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
144 },
145 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
146 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
147 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
148 &quot;a_key&quot;: &quot;A String&quot;,
149 },
150 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
151 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
152 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
153 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
154 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
155 },
156 &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
157 &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
158 &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
159 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
160 },
161 ],
162 &quot;state&quot;: &quot;A String&quot;,
163 &quot;timeZone&quot;: &quot;A String&quot;, # Timezone on which the cron_schedule. The value of this field must be a time zone name from the tz database. TZ Database: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones Note that some time zones include a provision for daylight savings time. The rules for daylight saving time are determined by the chosen tz. For UTC use the string &quot;utc&quot;. If a time zone is not specified, the default will be in UTC (also known as GMT).
164 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the schedule was last updated.
165}
166
167 scheduleId: string, Required. User-defined unique ID of this schedule.
168 x__xgafv: string, V1 error format.
169 Allowed values
170 1 - v1 error format
171 2 - v2 error format
172
173Returns:
174 An object of the form:
175
176 { # This resource represents a long-running operation that is the result of a network API call.
177 &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
178 &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
179 &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
180 &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
181 {
182 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
183 },
184 ],
185 &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
186 },
187 &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
188 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
189 },
190 &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
191 &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
192 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
193 },
194}</pre>
195</div>
196
197<div class="method">
198 <code class="details" id="delete">delete(name, x__xgafv=None)</code>
199 <pre>Deletes schedule and all underlying jobs
200
201Args:
202 name: string, Required. Format: `projects/{project_id}/locations/{location}/schedules/{schedule_id}` (required)
203 x__xgafv: string, V1 error format.
204 Allowed values
205 1 - v1 error format
206 2 - v2 error format
207
208Returns:
209 An object of the form:
210
211 { # This resource represents a long-running operation that is the result of a network API call.
212 &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
213 &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
214 &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
215 &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
216 {
217 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
218 },
219 ],
220 &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
221 },
222 &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
223 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
224 },
225 &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
226 &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
227 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
228 },
229}</pre>
230</div>
231
232<div class="method">
233 <code class="details" id="get">get(name, x__xgafv=None)</code>
234 <pre>Gets details of schedule
235
236Args:
237 name: string, Required. Format: `projects/{project_id}/locations/{location}/schedules/{schedule_id}` (required)
238 x__xgafv: string, V1 error format.
239 Allowed values
240 1 - v1 error format
241 2 - v2 error format
242
243Returns:
244 An object of the form:
245
246 { # The definition of a schedule.
247 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the schedule was created.
248 &quot;cronSchedule&quot;: &quot;A String&quot;, # Cron-tab formatted schedule by which the job will execute Format: minute, hour, day of month, month, day of week e.g. 0 0 * * WED = every Wednesday More examples: https://crontab.guru/examples.html
249 &quot;description&quot;: &quot;A String&quot;, # A brief description of this environment.
250 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Display name used for UI purposes. Name can only contain alphanumeric characters, hyphens ‘-’, and underscores ‘_’.
251 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # Notebook Execution Template corresponding to this schedule.
252 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
253 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
254 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
255 },
256 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
257 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
258 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
259 &quot;a_key&quot;: &quot;A String&quot;,
260 },
261 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
262 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
263 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
264 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
265 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
266 },
267 &quot;name&quot;: &quot;A String&quot;, # Output only. The name of this schedule. Format: `projects/{project_id}/locations/{location}/schedules/{schedule_id}`
268 &quot;recentExecutions&quot;: [ # Output only. The most recent execution names triggered from this schedule and their corresponding states.
269 { # The definition of a single executed notebook.
270 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
271 &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
272 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
273 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
274 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
275 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
276 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
277 },
278 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
279 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
280 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
281 &quot;a_key&quot;: &quot;A String&quot;,
282 },
283 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
284 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
285 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
286 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
287 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
288 },
289 &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
290 &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
291 &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
292 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
293 },
294 ],
295 &quot;state&quot;: &quot;A String&quot;,
296 &quot;timeZone&quot;: &quot;A String&quot;, # Timezone on which the cron_schedule. The value of this field must be a time zone name from the tz database. TZ Database: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones Note that some time zones include a provision for daylight savings time. The rules for daylight saving time are determined by the chosen tz. For UTC use the string &quot;utc&quot;. If a time zone is not specified, the default will be in UTC (also known as GMT).
297 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the schedule was last updated.
298}</pre>
299</div>
300
301<div class="method">
302 <code class="details" id="list">list(parent, filter=None, orderBy=None, pageSize=None, pageToken=None, x__xgafv=None)</code>
303 <pre>Lists schedules in a given project and location.
304
305Args:
306 parent: string, Required. Format: `parent=projects/{project_id}/locations/{location}` (required)
307 filter: string, Filter applied to resulting schedules.
308 orderBy: string, Field to order results by.
309 pageSize: integer, Maximum return size of the list call.
310 pageToken: string, A previous returned page token that can be used to continue listing from the last result.
311 x__xgafv: string, V1 error format.
312 Allowed values
313 1 - v1 error format
314 2 - v2 error format
315
316Returns:
317 An object of the form:
318
319 { # Response for listing scheduled notebook job.
320 &quot;nextPageToken&quot;: &quot;A String&quot;, # Page token that can be used to continue listing from the last result in the next list call.
321 &quot;schedules&quot;: [ # A list of returned instances.
322 { # The definition of a schedule.
323 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the schedule was created.
324 &quot;cronSchedule&quot;: &quot;A String&quot;, # Cron-tab formatted schedule by which the job will execute Format: minute, hour, day of month, month, day of week e.g. 0 0 * * WED = every Wednesday More examples: https://crontab.guru/examples.html
325 &quot;description&quot;: &quot;A String&quot;, # A brief description of this environment.
326 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Display name used for UI purposes. Name can only contain alphanumeric characters, hyphens ‘-’, and underscores ‘_’.
327 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # Notebook Execution Template corresponding to this schedule.
328 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
329 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
330 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
331 },
332 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
333 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
334 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
335 &quot;a_key&quot;: &quot;A String&quot;,
336 },
337 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
338 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
339 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
340 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
341 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
342 },
343 &quot;name&quot;: &quot;A String&quot;, # Output only. The name of this schedule. Format: `projects/{project_id}/locations/{location}/schedules/{schedule_id}`
344 &quot;recentExecutions&quot;: [ # Output only. The most recent execution names triggered from this schedule and their corresponding states.
345 { # The definition of a single executed notebook.
346 &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was instantiated.
347 &quot;description&quot;: &quot;A String&quot;, # A brief description of this execution.
348 &quot;displayName&quot;: &quot;A String&quot;, # Output only. Name used for UI purposes. Name can only contain alphanumeric characters and underscores &#x27;_&#x27;.
349 &quot;executionTemplate&quot;: { # The description a notebook execution workload. # execute metadata including name, hardware spec, region, labels, etc.
350 &quot;acceleratorConfig&quot;: { # Definition of a hardware accelerator. Note that not all combinations of `type` and `core_count` are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not supported. # Configuration (count and accelerator type) for hardware running notebook execution.
351 &quot;coreCount&quot;: &quot;A String&quot;, # Count of cores of this accelerator.
352 &quot;type&quot;: &quot;A String&quot;, # Type of this accelerator.
353 },
354 &quot;containerImageUri&quot;: &quot;A String&quot;, # Container Image URI to a DLVM Example: &#x27;gcr.io/deeplearning-platform-release/base-cu100&#x27; More examples can be found at: https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
355 &quot;inputNotebookFile&quot;: &quot;A String&quot;, # Path to the notebook file to execute. Must be in a Google Cloud Storage bucket. Format: gs://{project_id}/{folder}/{notebook_file_name} Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
356 &quot;labels&quot;: { # Labels for execution. If execution is scheduled, a field included will be &#x27;nbs-scheduled&#x27;. Otherwise, it is an immediate execution, and an included field will be &#x27;nbs-immediate&#x27;. Use fields to efficiently index between various types of executions.
357 &quot;a_key&quot;: &quot;A String&quot;,
358 },
359 &quot;masterType&quot;: &quot;A String&quot;, # Specifies the type of virtual machine to use for your training job&#x27;s master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. You can use certain Compute Engine machine types directly in this field. The following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `n1-highcpu-64` - `n1-highcpu-96` Alternatively, you can use the following legacy machine types: - `standard` - `large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `complex_model_m_v100` - `complex_model_l_v100` Finally, if you want to use a TPU for training, specify `cloud_tpu` in this field. Learn more about the [special configuration options for training with TPU.
360 &quot;outputNotebookFolder&quot;: &quot;A String&quot;, # Path to the notebook folder to write to. Must be in a Google Cloud Storage bucket path. Format: gs://{project_id}/{folder} Ex: gs://notebook_user/scheduled_notebooks
361 &quot;parameters&quot;: &quot;A String&quot;, # Parameters used within the &#x27;input_notebook_file&#x27; notebook.
362 &quot;paramsYamlFile&quot;: &quot;A String&quot;, # Parameters to be overridden in the notebook during execution. Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on how to specifying parameters in the input notebook and pass them here in an YAML file. Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
363 &quot;scaleTier&quot;: &quot;A String&quot;, # Required. Scale tier of the hardware used for notebook execution.
364 },
365 &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the execute. Format: `projects/{project_id}/locations/{location}/execution/{execution_id}
366 &quot;outputNotebookFile&quot;: &quot;A String&quot;, # Output notebook file generated by this execution
367 &quot;state&quot;: &quot;A String&quot;, # Output only. State of the underlying AI Platform job.
368 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the Execution was last updated.
369 },
370 ],
371 &quot;state&quot;: &quot;A String&quot;,
372 &quot;timeZone&quot;: &quot;A String&quot;, # Timezone on which the cron_schedule. The value of this field must be a time zone name from the tz database. TZ Database: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones Note that some time zones include a provision for daylight savings time. The rules for daylight saving time are determined by the chosen tz. For UTC use the string &quot;utc&quot;. If a time zone is not specified, the default will be in UTC (also known as GMT).
373 &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time the schedule was last updated.
374 },
375 ],
376 &quot;unreachable&quot;: [ # Schedules that could not be reached. For example, [&#x27;projects/{project_id}/location/{location}/schedules/monthly_digest&#x27;, &#x27;projects/{project_id}/location/{location}/schedules/weekly_sentiment&#x27;].
377 &quot;A String&quot;,
378 ],
379}</pre>
380</div>
381
382<div class="method">
383 <code class="details" id="list_next">list_next(previous_request, previous_response)</code>
384 <pre>Retrieves the next page of results.
385
386Args:
387 previous_request: The request for the previous page. (required)
388 previous_response: The response from the request for the previous page. (required)
389
390Returns:
391 A request object that you can call &#x27;execute()&#x27; on to request the next
392 page. Returns None if there are no more items in the collection.
393 </pre>
394</div>
395
396<div class="method">
397 <code class="details" id="trigger">trigger(name, body=None, x__xgafv=None)</code>
398 <pre>Triggers execution of an existing schedule.
399
400Args:
401 name: string, Required. Format: `parent=projects/{project_id}/locations/{location}/schedules/{schedule_id}` (required)
402 body: object, The request body.
403 The object takes the form of:
404
405{ # Request for created scheduled notebooks
406}
407
408 x__xgafv: string, V1 error format.
409 Allowed values
410 1 - v1 error format
411 2 - v2 error format
412
413Returns:
414 An object of the form:
415
416 { # This resource represents a long-running operation that is the result of a network API call.
417 &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
418 &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
419 &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
420 &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
421 {
422 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
423 },
424 ],
425 &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
426 },
427 &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
428 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
429 },
430 &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
431 &quot;response&quot;: { # The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
432 &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
433 },
434}</pre>
435</div>
436
437</body></html>