blob: 8c77a41270f54af20fa5fc85038ec0d472b6547e [file] [log] [blame]
/*
pybind11/pybind11.h: Infrastructure for processing custom
type and function attributes
Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "cast.h"
NAMESPACE_BEGIN(pybind11)
template <typename T> struct arg_t;
/// Annotation for keyword arguments
struct arg {
arg(const char *name) : name(name) { }
template <typename T> arg_t<T> operator=(const T &value);
template <typename T, size_t N> arg_t<const T *> operator=(T const (&value)[N]);
const char *name;
};
/// Annotation for keyword arguments with default values
template <typename T> struct arg_t : public arg {
arg_t(const char *name, const T &value, const char *descr = nullptr)
: arg(name), value(value), descr(descr) { }
T value;
const char *descr;
};
template <typename T> arg_t<T> arg::operator=(const T &value) { return arg_t<T>(name, value); }
template <typename T, size_t N> arg_t<const T *> arg::operator=(T const (&value)[N]) {
return operator=((const T *) value);
}
/// Annotation for methods
struct is_method { handle class_; is_method(const handle &c) : class_(c) { } };
/// Annotation for parent scope
struct scope { handle value; scope(const handle &s) : value(s) { } };
/// Annotation for documentation
struct doc { const char *value; doc(const char *value) : value(value) { } };
/// Annotation for function names
struct name { const char *value; name(const char *value) : value(value) { } };
/// Annotation indicating that a function is an overload associated with a given "sibling"
struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } };
/// Annotation indicating that a class derives from another given type
template <typename T> struct base { };
/// Keep patient alive while nurse lives
template <int Nurse, int Patient> struct keep_alive { };
NAMESPACE_BEGIN(detail)
/* Forward declarations */
enum op_id : int;
enum op_type : int;
struct undefined_t;
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_;
template <typename... Args> struct init;
inline void keep_alive_impl(int Nurse, int Patient, handle args, handle ret);
/// Internal data structure which holds metadata about a keyword argument
struct argument_record {
const char *name; ///< Argument name
const char *descr; ///< Human-readable version of the argument value
handle value; ///< Associated Python object
argument_record(const char *name, const char *descr, handle value)
: name(name), descr(descr), value(value) { }
};
/// Internal data structure which holds metadata about a bound function (signature, overloads, etc.)
struct function_record {
/// Function name
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
// User-specified documentation string
char *doc = nullptr;
/// Human-readable version of the function signature
char *signature = nullptr;
/// List of registered keyword arguments
std::vector<argument_record> args;
/// Pointer to lambda function which converts arguments and performs the actual call
handle (*impl) (function_record *, handle, handle) = nullptr;
/// Storage for the wrapped function pointer and captured data, if any
void *data = nullptr;
/// Pointer to custom destructor for 'data' (if needed)
void (*free_data) (void *ptr) = nullptr;
/// Return value policy associated with this function
return_value_policy policy = return_value_policy::automatic;
/// True if name == '__init__'
bool is_constructor = false;
/// Python method object
PyMethodDef *def = nullptr;
/// Python handle to the associated class (if this is method)
handle class_;
/// Python handle to the parent scope (a class or a module)
handle scope;
/// Python handle to the sibling function representing an overload chain
handle sibling;
/// Pointer to next overload
function_record *next = nullptr;
};
/// Special data structure which (temporarily) holds metadata about a bound class
struct type_record {
/// Handle to the parent scope
handle scope;
/// Name of the class
const char *name = nullptr;
// Pointer to RTTI type_info data structure
const std::type_info *type = nullptr;
/// How large is the underlying C++ type?
size_t type_size = 0;
/// How large is pybind11::instance<type>?
size_t instance_size = 0;
/// Function pointer to class_<..>::init_holder
void (*init_holder)(PyObject *, const void *) = nullptr;
/// Function pointer to class_<..>::dealloc
void (*dealloc)(PyObject *) = nullptr;
// Pointer to RTTI type_info data structure of base class
const std::type_info *base_type = nullptr;
/// OR: Python handle to base class
handle base_handle;
/// Optional docstring
const char *doc = nullptr;
};
/**
* Partial template specializations to process custom attributes provided to
* cpp_function_ and class_. These are either used to initialize the respective
* fields in the type_record and function_record data structures or executed
* at runtime to deal with custom call policies (e.g. keep_alive).
*/
template <typename T, typename SFINAE = void> struct process_attribute;
template <typename T> struct process_attribute_default {
/// Default implementation: do nothing
static void init(const T &, function_record *) { }
static void init(const T &, type_record *) { }
static void precall(handle) { }
static void postcall(handle, handle) { }
};
/// Process an attribute specifying the function's name
template <> struct process_attribute<name> : process_attribute_default<name> {
static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring
template <> struct process_attribute<doc> : process_attribute_default<doc> {
static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring (provided as a C-style string)
template <> struct process_attribute<const char *> : process_attribute_default<const char *> {
static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); }
};
template <> struct process_attribute<char *> : process_attribute<const char *> { };
/// Process an attribute indicating the function's return value policy
template <> struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
};
/// Process an attribute which indicates that this is an overloaded function associated with a given sibling
template <> struct process_attribute<sibling> : process_attribute_default<sibling> {
static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
};
/// Process an attribute which indicates that this function is a method
template <> struct process_attribute<is_method> : process_attribute_default<is_method> {
static void init(const is_method &s, function_record *r) { r->class_ = s.class_; r->scope = s.class_; }
};
/// Process an attribute which indicates the parent scope of a method
template <> struct process_attribute<scope> : process_attribute_default<scope> {
static void init(const scope &s, function_record *r) { r->scope = s.value; }
};
/// Process a keyword argument attribute (*without* a default value)
template <> struct process_attribute<arg> : process_attribute_default<arg> {
static void init(const arg &a, function_record *r) {
if (r->class_ && r->args.empty())
r->args.emplace_back("self", nullptr, handle());
r->args.emplace_back(a.name, nullptr, handle());
}
};
/// Process a keyword argument attribute (*with* a default value)
template <typename T>
struct process_attribute<arg_t<T>> : process_attribute_default<arg_t<T>> {
static void init(const arg_t<T> &a, function_record *r) {
if (r->class_ && r->args.empty())
r->args.emplace_back("self", nullptr, handle());
/* Convert keyword value into a Python object */
object o = object(detail::type_caster<typename detail::intrinsic_type<T>::type>::cast(
a.value, return_value_policy::automatic, handle()), false);
if (!o) {
#if !defined(NDEBUG)
std::string descr(typeid(T).name());
detail::clean_type_id(descr);
if (r->class_)
descr += " in method of " + (std::string) r->class_.str();
pybind11_fail("arg(): could not convert default keyword argument "
"of type " + descr +
" into a Python object (type not registered yet?)");
#else
pybind11_fail("arg(): could not convert default keyword argument "
"into a Python object (type not registered yet?). "
"Compile in debug mode for more information.");
#endif
}
r->args.emplace_back(a.name, a.descr, o.release());
}
};
/// Process a parent class attribute
template <typename T>
struct process_attribute<T, typename std::enable_if<std::is_base_of<handle, T>::value>::type> : process_attribute_default<handle> {
static void init(const handle &h, type_record *r) { r->base_handle = h; }
};
/// Process a parent class attribute
template <typename T>
struct process_attribute<base<T>> : process_attribute_default<base<T>> {
static void init(const base<T> &, type_record *r) { r->base_type = &typeid(T); }
};
/***
* Process a keep_alive call policy -- invokes keep_alive_impl during the
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler
* otherwise
*/
template <int Nurse, int Patient> struct process_attribute<keep_alive<Nurse, Patient>> : public process_attribute_default<keep_alive<Nurse, Patient>> {
template <int N = Nurse, int P = Patient, typename std::enable_if<N != 0 && P != 0, int>::type = 0>
static void precall(handle args) { keep_alive_impl(Nurse, Patient, args, handle()); }
template <int N = Nurse, int P = Patient, typename std::enable_if<N != 0 && P != 0, int>::type = 0>
static void postcall(handle, handle) { }
template <int N = Nurse, int P = Patient, typename std::enable_if<N == 0 || P == 0, int>::type = 0>
static void precall(handle) { }
template <int N = Nurse, int P = Patient, typename std::enable_if<N == 0 || P == 0, int>::type = 0>
static void postcall(handle args, handle ret) { keep_alive_impl(Nurse, Patient, args, ret); }
};
/// Ignore that a variable is unused in compiler warnings
inline void ignore_unused(const int *) { }
/// Recursively iterate over variadic template arguments
template <typename... Args> struct process_attributes {
static void init(const Args&... args, function_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void init(const Args&... args, type_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void precall(handle fn_args) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::precall(fn_args), 0) ... };
ignore_unused(unused);
}
static void postcall(handle fn_args, handle fn_ret) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::postcall(fn_args, fn_ret), 0) ... };
ignore_unused(unused);
}
};
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)