| .. _classes: |
| |
| Object-oriented code |
| #################### |
| |
| Creating bindings for a custom type |
| =================================== |
| |
| Let's now look at a more complex example where we'll create bindings for a |
| custom C++ data structure named ``Pet``. Its definition is given below: |
| |
| .. code-block:: cpp |
| |
| struct Pet { |
| Pet(const std::string &name) : name(name) { } |
| void setName(const std::string &name_) { name = name_; } |
| const std::string &getName() const { return name; } |
| |
| std::string name; |
| }; |
| |
| The binding code for ``Pet`` looks as follows: |
| |
| .. code-block:: cpp |
| |
| #include <pybind11/pybind11.h> |
| |
| namespace py = pybind11; |
| |
| PYBIND11_PLUGIN(example) { |
| py::module m("example", "pybind11 example plugin"); |
| |
| py::class_<Pet>(m, "Pet") |
| .def(py::init<const std::string &>()) |
| .def("setName", &Pet::setName) |
| .def("getName", &Pet::getName); |
| |
| return m.ptr(); |
| } |
| |
| :class:`class_` creates bindings for a C++ `class` or `struct`-style data |
| structure. :func:`init` is a convenience function that takes the types of a |
| constructor's parameters as template arguments and wraps the corresponding |
| constructor (see the :ref:`custom_constructors` section for details). An |
| interactive Python session demonstrating this example is shown below: |
| |
| .. code-block:: python |
| |
| % python |
| >>> import example |
| >>> p = example.Pet('Molly') |
| >>> print(p) |
| <example.Pet object at 0x10cd98060> |
| >>> p.getName() |
| u'Molly' |
| >>> p.setName('Charly') |
| >>> p.getName() |
| u'Charly' |
| |
| Keyword and default arguments |
| ============================= |
| It is possible to specify keyword and default arguments using the syntax |
| discussed in the previous chapter. Refer to the sections :ref:`keyword_args` |
| and :ref:`default_args` for details. |
| |
| Binding lambda functions |
| ======================== |
| |
| Note how ``print(p)`` produced a rather useless summary of our data structure in the example above: |
| |
| .. code-block:: python |
| |
| >>> print(p) |
| <example.Pet object at 0x10cd98060> |
| |
| To address this, we could bind an utility function that returns a human-readable |
| summary to the special method slot named ``__repr__``. Unfortunately, there is no |
| suitable functionality in the ``Pet`` data structure, and it would be nice if |
| we did not have to change it. This can easily be accomplished by binding a |
| Lambda function instead: |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet>(m, "Pet") |
| .def(py::init<const std::string &>()) |
| .def("setName", &Pet::setName) |
| .def("getName", &Pet::getName) |
| .def("__repr__", |
| [](const Pet &a) { |
| return "<example.Pet named '" + a.name + "'>"; |
| } |
| ); |
| |
| Both stateless [#f1]_ and stateful lambda closures are supported by pybind11. |
| With the above change, the same Python code now produces the following output: |
| |
| .. code-block:: python |
| |
| >>> print(p) |
| <example.Pet named 'Molly'> |
| |
| Instance and static fields |
| ========================== |
| |
| We can also directly expose the ``name`` field using the |
| :func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly` |
| method also exists for ``const`` fields. |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet>(m, "Pet") |
| .def(py::init<const std::string &>()) |
| .def_readwrite("name", &Pet::name) |
| // ... remainder ... |
| |
| This makes it possible to write |
| |
| .. code-block:: python |
| |
| >>> p = example.Pet('Molly') |
| >>> p.name |
| u'Molly' |
| >>> p.name = 'Charly' |
| >>> p.name |
| u'Charly' |
| |
| Now suppose that ``Pet::name`` was a private internal variable |
| that can only be accessed via setters and getters. |
| |
| .. code-block:: cpp |
| |
| class Pet { |
| public: |
| Pet(const std::string &name) : name(name) { } |
| void setName(const std::string &name_) { name = name_; } |
| const std::string &getName() const { return name; } |
| private: |
| std::string name; |
| }; |
| |
| In this case, the method :func:`class_::def_property` |
| (:func:`class_::def_property_readonly` for read-only data) can be used to |
| provide a field-like interface within Python that will transparently call |
| the setter and getter functions: |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet>(m, "Pet") |
| .def(py::init<const std::string &>()) |
| .def_property("name", &Pet::getName, &Pet::setName) |
| // ... remainder ... |
| |
| .. seealso:: |
| |
| Similar functions :func:`class_::def_readwrite_static`, |
| :func:`class_::def_readonly_static` :func:`class_::def_property_static`, |
| and :func:`class_::def_property_readonly_static` are provided for binding |
| static variables and properties. |
| |
| .. _inheritance: |
| |
| Inheritance |
| =========== |
| |
| Suppose now that the example consists of two data structures with an |
| inheritance relationship: |
| |
| .. code-block:: cpp |
| |
| struct Pet { |
| Pet(const std::string &name) : name(name) { } |
| std::string name; |
| }; |
| |
| struct Dog : Pet { |
| Dog(const std::string &name) : Pet(name) { } |
| std::string bark() const { return "woof!"; } |
| }; |
| |
| There are two different ways of indicating a hierarchical relationship to |
| pybind11: the first is by specifying the C++ base class explicitly during |
| construction using the ``base`` attribute: |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet>(m, "Pet") |
| .def(py::init<const std::string &>()) |
| .def_readwrite("name", &Pet::name); |
| |
| py::class_<Dog>(m, "Dog", py::base<Pet>() /* <- specify C++ parent type */) |
| .def(py::init<const std::string &>()) |
| .def("bark", &Dog::bark); |
| |
| Alternatively, we can also assign a name to the previously bound ``Pet`` |
| :class:`class_` object and reference it when binding the ``Dog`` class: |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet> pet(m, "Pet"); |
| pet.def(py::init<const std::string &>()) |
| .def_readwrite("name", &Pet::name); |
| |
| py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */) |
| .def(py::init<const std::string &>()) |
| .def("bark", &Dog::bark); |
| |
| Functionality-wise, both approaches are completely equivalent. Afterwards, |
| instances will expose fields and methods of both types: |
| |
| .. code-block:: python |
| |
| >>> p = example.Dog('Molly') |
| >>> p.name |
| u'Molly' |
| >>> p.bark() |
| u'woof!' |
| |
| Overloaded methods |
| ================== |
| |
| Sometimes there are several overloaded C++ methods with the same name taking |
| different kinds of input arguments: |
| |
| .. code-block:: cpp |
| |
| struct Pet { |
| Pet(const std::string &name, int age) : name(name), age(age) { } |
| |
| void set(int age) { age = age; } |
| void set(const std::string &name) { name = name; } |
| |
| std::string name; |
| int age; |
| }; |
| |
| Attempting to bind ``Pet::set`` will cause an error since the compiler does not |
| know which method the user intended to select. We can disambiguate by casting |
| them to function pointers. Binding multiple functions to the same Python name |
| automatically creates a chain of function overloads that will be tried in |
| sequence. |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet>(m, "Pet") |
| .def(py::init<const std::string &, int>()) |
| .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age") |
| .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name"); |
| |
| The overload signatures are also visible in the method's docstring: |
| |
| .. code-block:: python |
| |
| >>> help(example.Pet) |
| |
| class Pet(__builtin__.object) |
| | Methods defined here: |
| | |
| | __init__(...) |
| | Signature : (Pet, str, int) -> NoneType |
| | |
| | set(...) |
| | 1. Signature : (Pet, int) -> NoneType |
| | |
| | Set the pet's age |
| | |
| | 2. Signature : (Pet, str) -> NoneType |
| | |
| | Set the pet's name |
| |
| .. note:: |
| |
| To define multiple overloaded constructors, simply declare one after the |
| other using the ``.def(py::init<...>())`` syntax. The existing machinery |
| for specifying keyword and default arguments also works. |
| |
| Enumerations and internal types |
| =============================== |
| |
| Let's now suppose that the example class contains an internal enumeration type, |
| e.g.: |
| |
| .. code-block:: cpp |
| |
| struct Pet { |
| enum Kind { |
| Dog = 0, |
| Cat |
| }; |
| |
| Pet(const std::string &name, Kind type) : name(name), type(type) { } |
| |
| std::string name; |
| Kind type; |
| }; |
| |
| The binding code for this example looks as follows: |
| |
| .. code-block:: cpp |
| |
| py::class_<Pet> pet(m, "Pet"); |
| |
| pet.def(py::init<const std::string &, Pet::Kind>()) |
| .def_readwrite("name", &Pet::name) |
| .def_readwrite("type", &Pet::type); |
| |
| py::enum_<Pet::Kind>(pet, "Kind") |
| .value("Dog", Pet::Kind::Dog) |
| .value("Cat", Pet::Kind::Cat) |
| .export_values(); |
| |
| To ensure that the ``Kind`` type is created within the scope of ``Pet``, the |
| ``pet`` :class:`class_` instance must be supplied to the :class:`enum_`. |
| constructor. The :func:`enum_::export_values` function exports the enum entries |
| into the parent scope, which should be skipped for newer C++11-style strongly |
| typed enums. |
| |
| .. code-block:: python |
| |
| >>> p = Pet('Lucy', Pet.Cat) |
| >>> p.type |
| Kind.Cat |
| >>> int(p.type) |
| 1L |
| |
| |
| .. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object. |