blob: e3acff06bf0d5607c128e6aea89c3c394557b494 [file] [log] [blame]
Dean Moldovan67b52d82016-10-16 19:12:43 +02001Functions
2#########
3
4Before proceeding with this section, make sure that you are already familiar
5with the basics of binding functions and classes, as explained in :doc:`/basics`
6and :doc:`/classes`. The following guide is applicable to both free and member
7functions, i.e. *methods* in Python.
8
Jason Rhinelander17d02832017-01-16 20:35:14 -05009.. _return_value_policies:
10
Dean Moldovan67b52d82016-10-16 19:12:43 +020011Return value policies
12=====================
13
Wenzel Jakob6ba98652016-10-24 23:48:20 +020014Python and C++ use fundamentally different ways of managing the memory and
15lifetime of objects managed by them. This can lead to issues when creating
16bindings for functions that return a non-trivial type. Just by looking at the
17type information, it is not clear whether Python should take charge of the
18returned value and eventually free its resources, or if this is handled on the
Dean Moldovan57a9bbc2017-01-31 16:54:08 +010019C++ side. For this reason, pybind11 provides a several *return value policy*
Wenzel Jakob6ba98652016-10-24 23:48:20 +020020annotations that can be passed to the :func:`module::def` and
21:func:`class_::def` functions. The default policy is
22:enum:`return_value_policy::automatic`.
Dean Moldovan67b52d82016-10-16 19:12:43 +020023
Wenzel Jakob6ba98652016-10-24 23:48:20 +020024Return value policies are tricky, and it's very important to get them right.
25Just to illustrate what can go wrong, consider the following simple example:
Dean Moldovan67b52d82016-10-16 19:12:43 +020026
27.. code-block:: cpp
28
Dean Moldovan57a9bbc2017-01-31 16:54:08 +010029 /* Function declaration */
Wenzel Jakob6ba98652016-10-24 23:48:20 +020030 Data *get_data() { return _data; /* (pointer to a static data structure) */ }
31 ...
Dean Moldovan67b52d82016-10-16 19:12:43 +020032
Dean Moldovan57a9bbc2017-01-31 16:54:08 +010033 /* Binding code */
Wenzel Jakob6ba98652016-10-24 23:48:20 +020034 m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python
35
36What's going on here? When ``get_data()`` is called from Python, the return
37value (a native C++ type) must be wrapped to turn it into a usable Python type.
38In this case, the default return value policy (:enum:`return_value_policy::automatic`)
39causes pybind11 to assume ownership of the static ``_data`` instance.
40
41When Python's garbage collector eventually deletes the Python
42wrapper, pybind11 will also attempt to delete the C++ instance (via ``operator
43delete()``) due to the implied ownership. At this point, the entire application
44will come crashing down, though errors could also be more subtle and involve
45silent data corruption.
46
47In the above example, the policy :enum:`return_value_policy::reference` should have
48been specified so that the global data instance is only *referenced* without any
Dean Moldovan57a9bbc2017-01-31 16:54:08 +010049implied transfer of ownership, i.e.:
Wenzel Jakob6ba98652016-10-24 23:48:20 +020050
51.. code-block:: cpp
52
53 m.def("get_data", &get_data, return_value_policy::reference);
54
55On the other hand, this is not the right policy for many other situations,
56where ignoring ownership could lead to resource leaks.
57As a developer using pybind11, it's important to be familiar with the different
58return value policies, including which situation calls for which one of them.
59The following table provides an overview of available policies:
Dean Moldovan67b52d82016-10-16 19:12:43 +020060
61.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
62
63+--------------------------------------------------+----------------------------------------------------------------------------+
64| Return value policy | Description |
65+==================================================+============================================================================+
Dean Moldovan67b52d82016-10-16 19:12:43 +020066| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
67| | ownership. Python will call the destructor and delete operator when the |
68| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakob6ba98652016-10-24 23:48:20 +020069| | C++ side does the same, or when the data was not dynamically allocated. |
Dean Moldovan67b52d82016-10-16 19:12:43 +020070+--------------------------------------------------+----------------------------------------------------------------------------+
71| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
72| | This policy is comparably safe because the lifetimes of the two instances |
73| | are decoupled. |
74+--------------------------------------------------+----------------------------------------------------------------------------+
75| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
76| | that will be owned by Python. This policy is comparably safe because the |
77| | lifetimes of the two instances (move source and destination) are decoupled.|
78+--------------------------------------------------+----------------------------------------------------------------------------+
79| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
80| | responsible for managing the object's lifetime and deallocating it when |
81| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
82| | side deletes an object that is still referenced and used by Python. |
83+--------------------------------------------------+----------------------------------------------------------------------------+
84| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
85| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
86| | the called method or property. Internally, this policy works just like |
87| | :enum:`return_value_policy::reference` but additionally applies a |
88| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
89| | prevents the parent object from being garbage collected as long as the |
90| | return value is referenced by Python. This is the default policy for |
91| | property getters created via ``def_property``, ``def_readwrite``, etc. |
92+--------------------------------------------------+----------------------------------------------------------------------------+
jbarlow837830e852017-01-13 02:17:29 -080093| :enum:`return_value_policy::automatic` | **Default policy.** This policy falls back to the policy |
Wenzel Jakob6ba98652016-10-24 23:48:20 +020094| | :enum:`return_value_policy::take_ownership` when the return value is a |
thorinke72eaa42017-02-17 12:57:39 +010095| | pointer. Otherwise, it uses :enum:`return_value_policy::move` or |
96| | :enum:`return_value_policy::copy` for rvalue and lvalue references, |
97| | respectively. See above for a description of what all of these different |
98| | policies do. |
Wenzel Jakob6ba98652016-10-24 23:48:20 +020099+--------------------------------------------------+----------------------------------------------------------------------------+
100| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
101| | return value is a pointer. This is the default conversion policy for |
102| | function arguments when calling Python functions manually from C++ code |
103| | (i.e. via handle::operator()). You probably won't need to use this. |
104+--------------------------------------------------+----------------------------------------------------------------------------+
105
Dean Moldovan03f627e2016-11-01 11:44:57 +0100106Return value policies can also be applied to properties:
Wenzel Jakob6ba98652016-10-24 23:48:20 +0200107
108.. code-block:: cpp
109
110 class_<MyClass>(m, "MyClass")
Dean Moldovan03f627e2016-11-01 11:44:57 +0100111 .def_property("data", &MyClass::getData, &MyClass::setData,
112 py::return_value_policy::copy);
113
114Technically, the code above applies the policy to both the getter and the
115setter function, however, the setter doesn't really care about *return*
116value policies which makes this a convenient terse syntax. Alternatively,
117targeted arguments can be passed through the :class:`cpp_function` constructor:
118
119.. code-block:: cpp
120
121 class_<MyClass>(m, "MyClass")
122 .def_property("data"
Wenzel Jakob6ba98652016-10-24 23:48:20 +0200123 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
124 py::cpp_function(&MyClass::setData)
125 );
Dean Moldovan67b52d82016-10-16 19:12:43 +0200126
127.. warning::
128
luz.paz28cb6762018-01-09 12:30:19 -0500129 Code with invalid return value policies might access uninitialized memory or
Dean Moldovan67b52d82016-10-16 19:12:43 +0200130 free data structures multiple times, which can lead to hard-to-debug
131 non-determinism and segmentation faults, hence it is worth spending the
132 time to understand all the different options in the table above.
133
Wenzel Jakob6ba98652016-10-24 23:48:20 +0200134.. note::
135
136 One important aspect of the above policies is that they only apply to
137 instances which pybind11 has *not* seen before, in which case the policy
138 clarifies essential questions about the return value's lifetime and
139 ownership. When pybind11 knows the instance already (as identified by its
140 type and address in memory), it will return the existing Python object
141 wrapper rather than creating a new copy.
Dean Moldovan67b52d82016-10-16 19:12:43 +0200142
143.. note::
144
145 The next section on :ref:`call_policies` discusses *call policies* that can be
146 specified *in addition* to a return value policy from the list above. Call
147 policies indicate reference relationships that can involve both return values
148 and parameters of functions.
149
150.. note::
151
152 As an alternative to elaborate call policies and lifetime management logic,
153 consider using smart pointers (see the section on :ref:`smart_pointers` for
154 details). Smart pointers can tell whether an object is still referenced from
155 C++ or Python, which generally eliminates the kinds of inconsistencies that
156 can lead to crashes or undefined behavior. For functions returning smart
157 pointers, it is not necessary to specify a return value policy.
158
159.. _call_policies:
160
161Additional call policies
162========================
163
Dean Moldovan57a9bbc2017-01-31 16:54:08 +0100164In addition to the above return value policies, further *call policies* can be
Dean Moldovan1ac19032017-03-16 11:22:26 +0100165specified to indicate dependencies between parameters or ensure a certain state
166for the function call.
jbarlow837830e852017-01-13 02:17:29 -0800167
Dean Moldovan1ac19032017-03-16 11:22:26 +0100168Keep alive
169----------
170
171In general, this policy is required when the C++ object is any kind of container
172and another object is being added to the container. ``keep_alive<Nurse, Patient>``
173indicates that the argument with index ``Patient`` should be kept alive at least
174until the argument with index ``Nurse`` is freed by the garbage collector. Argument
Dean Moldovan67b52d82016-10-16 19:12:43 +0200175indices start at one, while zero refers to the return value. For methods, index
176``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
177index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
178with value ``None`` is detected at runtime, the call policy does nothing.
179
Bruce Merryb490b442017-09-01 09:27:00 +0200180When the nurse is not a pybind11-registered type, the implementation internally
181relies on the ability to create a *weak reference* to the nurse object. When
182the nurse object is not a pybind11-registered type and does not support weak
183references, an exception will be thrown.
Dean Moldovan67b52d82016-10-16 19:12:43 +0200184
185Consider the following example: here, the binding code for a list append
186operation ties the lifetime of the newly added element to the underlying
187container:
188
189.. code-block:: cpp
190
191 py::class_<List>(m, "List")
192 .def("append", &List::append, py::keep_alive<1, 2>());
193
Dean Moldovan7939f4b2017-09-04 13:49:19 +0200194For consistency, the argument indexing is identical for constructors. Index
195``1`` still refers to the implicit ``this`` pointer, i.e. the object which is
196being constructed. Index ``0`` refers to the return type which is presumed to
197be ``void`` when a constructor is viewed like a function. The following example
198ties the lifetime of the constructor element to the constructed object:
199
200.. code-block:: cpp
201
202 py::class_<Nurse>(m, "Nurse")
203 .def(py::init<Patient &>(), py::keep_alive<1, 2>());
204
Dean Moldovan67b52d82016-10-16 19:12:43 +0200205.. note::
206
207 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
208 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
209 0) policies from Boost.Python.
210
Dean Moldovan1ac19032017-03-16 11:22:26 +0100211Call guard
212----------
213
214The ``call_guard<T>`` policy allows any scope guard type ``T`` to be placed
215around the function call. For example, this definition:
216
217.. code-block:: cpp
218
219 m.def("foo", foo, py::call_guard<T>());
220
221is equivalent to the following pseudocode:
222
223.. code-block:: cpp
224
225 m.def("foo", [](args...) {
226 T scope_guard;
227 return foo(args...); // forwarded arguments
228 });
229
230The only requirement is that ``T`` is default-constructible, but otherwise any
231scope guard will work. This is very useful in combination with `gil_scoped_release`.
232See :ref:`gil`.
233
234Multiple guards can also be specified as ``py::call_guard<T1, T2, T3...>``. The
235constructor order is left to right and destruction happens in reverse.
236
Dean Moldovan67b52d82016-10-16 19:12:43 +0200237.. seealso::
238
Dean Moldovan1ac19032017-03-16 11:22:26 +0100239 The file :file:`tests/test_call_policies.cpp` contains a complete example
240 that demonstrates using `keep_alive` and `call_guard` in more detail.
Dean Moldovan67b52d82016-10-16 19:12:43 +0200241
242.. _python_objects_as_args:
243
244Python objects as arguments
245===========================
246
247pybind11 exposes all major Python types using thin C++ wrapper classes. These
248wrapper classes can also be used as parameters of functions in bindings, which
249makes it possible to directly work with native Python types on the C++ side.
250For instance, the following statement iterates over a Python ``dict``:
251
252.. code-block:: cpp
253
254 void print_dict(py::dict dict) {
255 /* Easily interact with Python types */
256 for (auto item : dict)
myd73499b815ad2017-01-13 18:15:52 +0800257 std::cout << "key=" << std::string(py::str(item.first)) << ", "
258 << "value=" << std::string(py::str(item.second)) << std::endl;
Dean Moldovan67b52d82016-10-16 19:12:43 +0200259 }
260
261It can be exported:
262
263.. code-block:: cpp
264
265 m.def("print_dict", &print_dict);
266
267And used in Python as usual:
268
269.. code-block:: pycon
270
271 >>> print_dict({'foo': 123, 'bar': 'hello'})
272 key=foo, value=123
273 key=bar, value=hello
274
275For more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`.
276
277Accepting \*args and \*\*kwargs
278===============================
279
280Python provides a useful mechanism to define functions that accept arbitrary
281numbers of arguments and keyword arguments:
282
283.. code-block:: python
284
285 def generic(*args, **kwargs):
286 ... # do something with args and kwargs
287
288Such functions can also be created using pybind11:
289
290.. code-block:: cpp
291
292 void generic(py::args args, py::kwargs kwargs) {
293 /// .. do something with args
294 if (kwargs)
295 /// .. do something with kwargs
296 }
297
298 /// Binding code
299 m.def("generic", &generic);
300
301The class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives
Jason Rhinelander2686da82017-01-21 23:42:14 -0500302from ``py::dict``.
Dean Moldovan67b52d82016-10-16 19:12:43 +0200303
Jason Rhinelander2686da82017-01-21 23:42:14 -0500304You may also use just one or the other, and may combine these with other
305arguments as long as the ``py::args`` and ``py::kwargs`` arguments are the last
306arguments accepted by the function.
Dean Moldovan67b52d82016-10-16 19:12:43 +0200307
Jason Rhinelander2686da82017-01-21 23:42:14 -0500308Please refer to the other examples for details on how to iterate over these,
309and on how to cast their entries into C++ objects. A demonstration is also
310available in ``tests/test_kwargs_and_defaults.cpp``.
311
312.. note::
313
314 When combining \*args or \*\*kwargs with :ref:`keyword_args` you should
315 *not* include ``py::arg`` tags for the ``py::args`` and ``py::kwargs``
316 arguments.
Dean Moldovan67b52d82016-10-16 19:12:43 +0200317
318Default arguments revisited
319===========================
320
321The section on :ref:`default_args` previously discussed basic usage of default
322arguments using pybind11. One noteworthy aspect of their implementation is that
323default arguments are converted to Python objects right at declaration time.
324Consider the following example:
325
326.. code-block:: cpp
327
328 py::class_<MyClass>("MyClass")
329 .def("myFunction", py::arg("arg") = SomeType(123));
330
331In this case, pybind11 must already be set up to deal with values of the type
332``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
333exception will be thrown.
334
335Another aspect worth highlighting is that the "preview" of the default argument
336in the function signature is generated using the object's ``__repr__`` method.
337If not available, the signature may not be very helpful, e.g.:
338
339.. code-block:: pycon
340
341 FUNCTIONS
342 ...
343 | myFunction(...)
344 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
345 ...
346
347The first way of addressing this is by defining ``SomeType.__repr__``.
348Alternatively, it is possible to specify the human-readable preview of the
349default argument manually using the ``arg_v`` notation:
350
351.. code-block:: cpp
352
353 py::class_<MyClass>("MyClass")
354 .def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)"));
355
356Sometimes it may be necessary to pass a null pointer value as a default
357argument. In this case, remember to cast it to the underlying type in question,
358like so:
359
360.. code-block:: cpp
361
362 py::class_<MyClass>("MyClass")
363 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
Jason Rhinelanderabc29ca2017-01-23 03:50:00 -0500364
Jason Rhinelander17d02832017-01-16 20:35:14 -0500365.. _nonconverting_arguments:
366
Jason Rhinelanderabc29ca2017-01-23 03:50:00 -0500367Non-converting arguments
368========================
369
370Certain argument types may support conversion from one type to another. Some
371examples of conversions are:
372
373* :ref:`implicit_conversions` declared using ``py::implicitly_convertible<A,B>()``
374* Calling a method accepting a double with an integer argument
375* Calling a ``std::complex<float>`` argument with a non-complex python type
376 (for example, with a float). (Requires the optional ``pybind11/complex.h``
377 header).
378* Calling a function taking an Eigen matrix reference with a numpy array of the
379 wrong type or of an incompatible data layout. (Requires the optional
380 ``pybind11/eigen.h`` header).
381
382This behaviour is sometimes undesirable: the binding code may prefer to raise
383an error rather than convert the argument. This behaviour can be obtained
384through ``py::arg`` by calling the ``.noconvert()`` method of the ``py::arg``
385object, such as:
386
387.. code-block:: cpp
388
389 m.def("floats_only", [](double f) { return 0.5 * f; }, py::arg("f").noconvert());
390 m.def("floats_preferred", [](double f) { return 0.5 * f; }, py::arg("f"));
391
392Attempting the call the second function (the one without ``.noconvert()``) with
393an integer will succeed, but attempting to call the ``.noconvert()`` version
394will fail with a ``TypeError``:
395
396.. code-block:: pycon
397
398 >>> floats_preferred(4)
399 2.0
400 >>> floats_only(4)
401 Traceback (most recent call last):
402 File "<stdin>", line 1, in <module>
403 TypeError: floats_only(): incompatible function arguments. The following argument types are supported:
404 1. (f: float) -> float
405
406 Invoked with: 4
407
408You may, of course, combine this with the :var:`_a` shorthand notation (see
409:ref:`keyword_args`) and/or :ref:`default_args`. It is also permitted to omit
410the argument name by using the ``py::arg()`` constructor without an argument
411name, i.e. by specifying ``py::arg().noconvert()``.
412
413.. note::
414
415 When specifying ``py::arg`` options it is necessary to provide the same
416 number of options as the bound function has arguments. Thus if you want to
417 enable no-convert behaviour for just one of several arguments, you will
418 need to specify a ``py::arg()`` annotation for each argument with the
419 no-convert argument modified to ``py::arg().noconvert()``.
Jason Rhinelandere5505892017-02-03 18:25:34 -0500420
Dean Moldovandb46a892017-08-13 22:25:15 +0200421.. _none_arguments:
422
Jason Rhinelander4e1e4a52017-05-17 11:55:43 -0400423Allow/Prohibiting None arguments
424================================
425
426When a C++ type registered with :class:`py::class_` is passed as an argument to
427a function taking the instance as pointer or shared holder (e.g. ``shared_ptr``
428or a custom, copyable holder as described in :ref:`smart_pointers`), pybind
429allows ``None`` to be passed from Python which results in calling the C++
430function with ``nullptr`` (or an empty holder) for the argument.
431
432To explicitly enable or disable this behaviour, using the
433``.none`` method of the :class:`py::arg` object:
434
435.. code-block:: cpp
436
437 py::class_<Dog>(m, "Dog").def(py::init<>());
438 py::class_<Cat>(m, "Cat").def(py::init<>());
439 m.def("bark", [](Dog *dog) -> std::string {
440 if (dog) return "woof!"; /* Called with a Dog instance */
441 else return "(no dog)"; /* Called with None, d == nullptr */
442 }, py::arg("dog").none(true));
443 m.def("meow", [](Cat *cat) -> std::string {
444 // Can't be called with None argument
445 return "meow";
446 }, py::arg("cat").none(false));
447
448With the above, the Python call ``bark(None)`` will return the string ``"(no
Jason Rhinelander4f9ee6e2017-05-26 23:20:48 -0400449dog)"``, while attempting to call ``meow(None)`` will raise a ``TypeError``:
Jason Rhinelander4e1e4a52017-05-17 11:55:43 -0400450
451.. code-block:: pycon
452
453 >>> from animals import Dog, Cat, bark, meow
454 >>> bark(Dog())
455 'woof!'
456 >>> meow(Cat())
457 'meow'
458 >>> bark(None)
459 '(no dog)'
460 >>> meow(None)
461 Traceback (most recent call last):
462 File "<stdin>", line 1, in <module>
463 TypeError: meow(): incompatible function arguments. The following argument types are supported:
464 1. (cat: animals.Cat) -> str
465
466 Invoked with: None
467
468The default behaviour when the tag is unspecified is to allow ``None``.
469
Jason Rhinelandere5505892017-02-03 18:25:34 -0500470Overload resolution order
471=========================
472
473When a function or method with multiple overloads is called from Python,
474pybind11 determines which overload to call in two passes. The first pass
475attempts to call each overload without allowing argument conversion (as if
Unknown0b3f44e2017-11-01 21:08:06 -0400476every argument had been specified as ``py::arg().noconvert()`` as described
Jason Rhinelandere5505892017-02-03 18:25:34 -0500477above).
478
479If no overload succeeds in the no-conversion first pass, a second pass is
480attempted in which argument conversion is allowed (except where prohibited via
481an explicit ``py::arg().noconvert()`` attribute in the function definition).
482
483If the second pass also fails a ``TypeError`` is raised.
484
485Within each pass, overloads are tried in the order they were registered with
486pybind11.
487
488What this means in practice is that pybind11 will prefer any overload that does
489not require conversion of arguments to an overload that does, but otherwise prefers
490earlier-defined overloads to later-defined ones.
491
492.. note::
493
494 pybind11 does *not* further prioritize based on the number/pattern of
495 overloaded arguments. That is, pybind11 does not prioritize a function
496 requiring one conversion over one requiring three, but only prioritizes
497 overloads requiring no conversion at all to overloads that require
498 conversion of at least one argument.