blob: 4683c70865a41e13b0b9b89a74e18937b3f734fa [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020015Operator overloading
16====================
17
Wenzel Jakob93296692015-10-13 23:21:54 +020018Suppose that we're given the following ``Vector2`` class with a vector addition
19and scalar multiplication operation, all implemented using overloaded operators
20in C++.
21
22.. code-block:: cpp
23
24 class Vector2 {
25 public:
26 Vector2(float x, float y) : x(x), y(y) { }
27
28 std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; }
29
30 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
31 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
32 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
33 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
34
35 friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); }
36
37 private:
38 float x, y;
39 };
40
41The following snippet shows how the above operators can be conveniently exposed
42to Python.
43
44.. code-block:: cpp
45
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020046 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020047
Wenzel Jakobb1b71402015-10-18 16:48:30 +020048 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020049 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020050
51 py::class_<Vector2>(m, "Vector2")
52 .def(py::init<float, float>())
53 .def(py::self + py::self)
54 .def(py::self += py::self)
55 .def(py::self *= float())
56 .def(float() * py::self)
57 .def("__repr__", &Vector2::toString);
58
59 return m.ptr();
60 }
61
62Note that a line like
63
64.. code-block:: cpp
65
66 .def(py::self * float())
67
68is really just short hand notation for
69
70.. code-block:: cpp
71
72 .def("__mul__", [](const Vector2 &a, float b) {
73 return a * b;
74 })
75
76This can be useful for exposing additional operators that don't exist on the
77C++ side, or to perform other types of customization.
78
79.. note::
80
81 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020082 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +020083
84.. seealso::
85
86 The file :file:`example/example3.cpp` contains a complete example that
87 demonstrates how to work with overloaded operators in more detail.
88
89Callbacks and passing anonymous functions
90=========================================
91
92The C++11 standard brought lambda functions and the generic polymorphic
93function wrapper ``std::function<>`` to the C++ programming language, which
94enable powerful new ways of working with functions. Lambda functions come in
95two flavors: stateless lambda function resemble classic function pointers that
96link to an anonymous piece of code, while stateful lambda functions
97additionally depend on captured variables that are stored in an anonymous
98*lambda closure object*.
99
100Here is a simple example of a C++ function that takes an arbitrary function
101(stateful or stateless) with signature ``int -> int`` as an argument and runs
102it with the value 10.
103
104.. code-block:: cpp
105
106 int func_arg(const std::function<int(int)> &f) {
107 return f(10);
108 }
109
110The example below is more involved: it takes a function of signature ``int -> int``
111and returns another function of the same kind. The return value is a stateful
112lambda function, which stores the value ``f`` in the capture object and adds 1 to
113its return value upon execution.
114
115.. code-block:: cpp
116
117 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
118 return [f](int i) {
119 return f(i) + 1;
120 };
121 }
122
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200123After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200124trivial to generate binding code for both of these functions.
125
126.. code-block:: cpp
127
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200128 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200129
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200130 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200131 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200132
133 m.def("func_arg", &func_arg);
134 m.def("func_ret", &func_ret);
135
136 return m.ptr();
137 }
138
139The following interactive session shows how to call them from Python.
140
141.. code-block:: python
142
143 $ python
144 >>> import example
145 >>> def square(i):
146 ... return i * i
147 ...
148 >>> example.func_arg(square)
149 100L
150 >>> square_plus_1 = example.func_ret(square)
151 >>> square_plus_1(4)
152 17L
153 >>>
154
155.. note::
156
157 This functionality is very useful when generating bindings for callbacks in
158 C++ libraries (e.g. a graphical user interface library).
159
160 The file :file:`example/example5.cpp` contains a complete example that
161 demonstrates how to work with callbacks and anonymous functions in more detail.
162
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100163.. warning::
164
165 Keep in mind that passing a function from C++ to Python (or vice versa)
166 will instantiate a piece of wrapper code that translates function
167 invocations between the two languages. Copying the same function back and
168 forth between Python and C++ many times in a row will cause these wrappers
169 to accumulate, which can decrease performance.
170
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200171Overriding virtual functions in Python
172======================================
173
Wenzel Jakob93296692015-10-13 23:21:54 +0200174Suppose that a C++ class or interface has a virtual function that we'd like to
175to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
176given as a specific example of how one would do this with traditional C++
177code).
178
179.. code-block:: cpp
180
181 class Animal {
182 public:
183 virtual ~Animal() { }
184 virtual std::string go(int n_times) = 0;
185 };
186
187 class Dog : public Animal {
188 public:
189 std::string go(int n_times) {
190 std::string result;
191 for (int i=0; i<n_times; ++i)
192 result += "woof! ";
193 return result;
194 }
195 };
196
197Let's also suppose that we are given a plain function which calls the
198function ``go()`` on an arbitrary ``Animal`` instance.
199
200.. code-block:: cpp
201
202 std::string call_go(Animal *animal) {
203 return animal->go(3);
204 }
205
206Normally, the binding code for these classes would look as follows:
207
208.. code-block:: cpp
209
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200210 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200211 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200212
213 py::class_<Animal> animal(m, "Animal");
214 animal
215 .def("go", &Animal::go);
216
217 py::class_<Dog>(m, "Dog", animal)
218 .def(py::init<>());
219
220 m.def("call_go", &call_go);
221
222 return m.ptr();
223 }
224
225However, these bindings are impossible to extend: ``Animal`` is not
226constructible, and we clearly require some kind of "trampoline" that
227redirects virtual calls back to Python.
228
229Defining a new type of ``Animal`` from within Python is possible but requires a
230helper class that is defined as follows:
231
232.. code-block:: cpp
233
234 class PyAnimal : public Animal {
235 public:
236 /* Inherit the constructors */
237 using Animal::Animal;
238
239 /* Trampoline (need one for each virtual function) */
240 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200241 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200242 std::string, /* Return type */
243 Animal, /* Parent class */
244 go, /* Name of function */
245 n_times /* Argument(s) */
246 );
247 }
248 };
249
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200250The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
251functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200252a default implementation. The binding code also needs a few minor adaptations
253(highlighted):
254
255.. code-block:: cpp
256 :emphasize-lines: 4,6,7
257
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200258 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200259 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200260
261 py::class_<PyAnimal> animal(m, "Animal");
262 animal
263 .alias<Animal>()
264 .def(py::init<>())
265 .def("go", &Animal::go);
266
267 py::class_<Dog>(m, "Dog", animal)
268 .def(py::init<>());
269
270 m.def("call_go", &call_go);
271
272 return m.ptr();
273 }
274
275Importantly, the trampoline helper class is used as the template argument to
276:class:`class_`, and a call to :func:`class_::alias` informs the binding
277generator that this is merely an alias for the underlying type ``Animal``.
278Following this, we are able to define a constructor as usual.
279
280The Python session below shows how to override ``Animal::go`` and invoke it via
281a virtual method call.
282
283.. code-block:: cpp
284
285 >>> from example import *
286 >>> d = Dog()
287 >>> call_go(d)
288 u'woof! woof! woof! '
289 >>> class Cat(Animal):
290 ... def go(self, n_times):
291 ... return "meow! " * n_times
292 ...
293 >>> c = Cat()
294 >>> call_go(c)
295 u'meow! meow! meow! '
296
297.. seealso::
298
299 The file :file:`example/example12.cpp` contains a complete example that
300 demonstrates how to override virtual functions using pybind11 in more
301 detail.
302
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100303
304Global Interpreter Lock (GIL)
305=============================
306
307The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
308used to acquire and release the global interpreter lock in the body of a C++
309function call. In this way, long-running C++ code can be parallelized using
310multiple Python threads. Taking the previous section as an example, this could
311be realized as follows (important changes highlighted):
312
313.. code-block:: cpp
314 :emphasize-lines: 8,9,33,34
315
316 class PyAnimal : public Animal {
317 public:
318 /* Inherit the constructors */
319 using Animal::Animal;
320
321 /* Trampoline (need one for each virtual function) */
322 std::string go(int n_times) {
323 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100324 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100325
326 PYBIND11_OVERLOAD_PURE(
327 std::string, /* Return type */
328 Animal, /* Parent class */
329 go, /* Name of function */
330 n_times /* Argument(s) */
331 );
332 }
333 };
334
335 PYBIND11_PLUGIN(example) {
336 py::module m("example", "pybind11 example plugin");
337
338 py::class_<PyAnimal> animal(m, "Animal");
339 animal
340 .alias<Animal>()
341 .def(py::init<>())
342 .def("go", &Animal::go);
343
344 py::class_<Dog>(m, "Dog", animal)
345 .def(py::init<>());
346
347 m.def("call_go", [](Animal *animal) -> std::string {
348 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100349 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100350 return call_go(animal);
351 });
352
353 return m.ptr();
354 }
355
Wenzel Jakob93296692015-10-13 23:21:54 +0200356Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200357===========================
358
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200359When including the additional header file :file:`pybind11/stl.h`, conversions
Jared Casper6be9e2f2015-12-15 15:56:14 -0800360between ``std::vector<>``, ``std::set<>``, and ``std::map<>`` and the Python
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100361``list``, ``set`` and ``dict`` data structures are automatically enabled. The
362types ``std::pair<>`` and ``std::tuple<>`` are already supported out of the box
363with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200364
365.. note::
366
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100367 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200368
369.. seealso::
370
371 The file :file:`example/example2.cpp` contains a complete example that
372 demonstrates how to pass STL data types in more detail.
373
374Binding sequence data types, the slicing protocol, etc.
375=======================================================
376
377Please refer to the supplemental example for details.
378
379.. seealso::
380
381 The file :file:`example/example6.cpp` contains a complete example that
382 shows how to bind a sequence data type, including length queries
383 (``__len__``), iterators (``__iter__``), the slicing protocol and other
384 kinds of useful operations.
385
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200386Return value policies
387=====================
388
Wenzel Jakob93296692015-10-13 23:21:54 +0200389Python and C++ use wildly different ways of managing the memory and lifetime of
390objects managed by them. This can lead to issues when creating bindings for
391functions that return a non-trivial type. Just by looking at the type
392information, it is not clear whether Python should take charge of the returned
393value and eventually free its resources, or if this is handled on the C++ side.
394For this reason, pybind11 provides a several `return value policy` annotations
395that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100396functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200397
Wenzel Jakob93296692015-10-13 23:21:54 +0200398
399+--------------------------------------------------+---------------------------------------------------------------------------+
400| Return value policy | Description |
401+==================================================+===========================================================================+
402| :enum:`return_value_policy::automatic` | Automatic: copy objects returned as values and take ownership of |
403| | objects returned as pointers |
404+--------------------------------------------------+---------------------------------------------------------------------------+
405| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python |
406+--------------------------------------------------+---------------------------------------------------------------------------+
407| :enum:`return_value_policy::take_ownership` | Reference the existing object and take ownership. Python will call |
408| | the destructor and delete operator when the reference count reaches zero |
409+--------------------------------------------------+---------------------------------------------------------------------------+
410| :enum:`return_value_policy::reference` | Reference the object, but do not take ownership and defer responsibility |
411| | for deleting it to C++ (dangerous when C++ code at some point decides to |
412| | delete it while Python still has a nonzero reference count) |
413+--------------------------------------------------+---------------------------------------------------------------------------+
414| :enum:`return_value_policy::reference_internal` | Reference the object, but do not take ownership. The object is considered |
415| | be owned by the C++ instance whose method or property returned it. The |
416| | Python object will increase the reference count of this 'parent' by 1 |
417| | to ensure that it won't be deallocated while Python is using the 'child' |
418+--------------------------------------------------+---------------------------------------------------------------------------+
419
420.. warning::
421
422 Code with invalid call policies might access unitialized memory and free
423 data structures multiple times, which can lead to hard-to-debug
424 non-determinism and segmentation faults, hence it is worth spending the
425 time to understand all the different options above.
426
427See below for an example that uses the
428:enum:`return_value_policy::reference_internal` policy.
429
430.. code-block:: cpp
431
432 class Example {
433 public:
434 Internal &get_internal() { return internal; }
435 private:
436 Internal internal;
437 };
438
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200439 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200440 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200441
442 py::class_<Example>(m, "Example")
443 .def(py::init<>())
444 .def("get_internal", &Example::get_internal, "Return the internal data", py::return_value_policy::reference_internal)
445
446 return m.ptr();
447 }
448
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100449
450Additional call policies
451========================
452
453In addition to the above return value policies, further `call policies` can be
454specified to indicate dependencies between parameters. There is currently just
455one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
456argument with index ``Patient`` should be kept alive at least until the
457argument with index ``Nurse`` is freed by the garbage collector; argument
458indices start at one, while zero refers to the return value. Arbitrarily many
459call policies can be specified.
460
461For instance, binding code for a a list append operation that ties the lifetime
462of the newly added element to the underlying container might be declared as
463follows:
464
465.. code-block:: cpp
466
467 py::class_<List>(m, "List")
468 .def("append", &List::append, py::keep_alive<1, 2>());
469
470.. note::
471
472 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
473 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
474 0) policies from Boost.Python.
475
Wenzel Jakob93296692015-10-13 23:21:54 +0200476Implicit type conversions
477=========================
478
479Suppose that instances of two types ``A`` and ``B`` are used in a project, and
480that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
481could be a fixed and an arbitrary precision number type).
482
483.. code-block:: cpp
484
485 py::class_<A>(m, "A")
486 /// ... members ...
487
488 py::class_<B>(m, "B")
489 .def(py::init<A>())
490 /// ... members ...
491
492 m.def("func",
493 [](const B &) { /* .... */ }
494 );
495
496To invoke the function ``func`` using a variable ``a`` containing an ``A``
497instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
498will automatically apply an implicit type conversion, which makes it possible
499to directly write ``func(a)``.
500
501In this situation (i.e. where ``B`` has a constructor that converts from
502``A``), the following statement enables similar implicit conversions on the
503Python side:
504
505.. code-block:: cpp
506
507 py::implicitly_convertible<A, B>();
508
509Smart pointers
510==============
511
512The binding generator for classes (:class:`class_`) takes an optional second
513template type, which denotes a special *holder* type that is used to manage
514references to the object. When wrapping a type named ``Type``, the default
515value of this template parameter is ``std::unique_ptr<Type>``, which means that
516the object is deallocated when Python's reference count goes to zero.
517
Wenzel Jakob1853b652015-10-18 15:38:50 +0200518It is possible to switch to other types of reference counting wrappers or smart
519pointers, which is useful in codebases that rely on them. For instance, the
520following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200521
522.. code-block:: cpp
523
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100524 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100525
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100526Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200527
Wenzel Jakob1853b652015-10-18 15:38:50 +0200528To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100529argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200530be declared at the top level before any binding code:
531
532.. code-block:: cpp
533
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200534 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200535
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100536.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100537
538 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
539 placeholder name that is used as a template parameter of the second
540 argument. Thus, feel free to use any identifier, but use it consistently on
541 both sides; also, don't use the name of a type that already exists in your
542 codebase.
543
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100544One potential stumbling block when using holder types is that they need to be
545applied consistently. Can you guess what's broken about the following binding
546code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100547
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100548.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100549
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100550 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100551
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100552 class Parent {
553 public:
554 Parent() : child(std::make_shared<Child>()) { }
555 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
556 private:
557 std::shared_ptr<Child> child;
558 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100559
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100560 PYBIND11_PLUGIN(example) {
561 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100562
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100563 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
564
565 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
566 .def(py::init<>())
567 .def("get_child", &Parent::get_child);
568
569 return m.ptr();
570 }
571
572The following Python code will cause undefined behavior (and likely a
573segmentation fault).
574
575.. code-block:: python
576
577 from example import Parent
578 print(Parent().get_child())
579
580The problem is that ``Parent::get_child()`` returns a pointer to an instance of
581``Child``, but the fact that this instance is already managed by
582``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
583pybind11 will create a second independent ``std::shared_ptr<...>`` that also
584claims ownership of the pointer. In the end, the object will be freed **twice**
585since these shared pointers have no way of knowing about each other.
586
587There are two ways to resolve this issue:
588
5891. For types that are managed by a smart pointer class, never use raw pointers
590 in function arguments or return values. In other words: always consistently
591 wrap pointers into their designated holder types (such as
592 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
593 should be modified as follows:
594
595.. code-block:: cpp
596
597 std::shared_ptr<Child> get_child() { return child; }
598
5992. Adjust the definition of ``Child`` by specifying
600 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
601 base class. This adds a small bit of information to ``Child`` that allows
602 pybind11 to realize that there is already an existing
603 ``std::shared_ptr<...>`` and communicate with it. In this case, the
604 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100605
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100606.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
607
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100608.. code-block:: cpp
609
610 class Child : public std::enable_shared_from_this<Child> { };
611
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100612.. seealso::
613
614 The file :file:`example/example8.cpp` contains a complete example that
615 demonstrates how to work with custom reference-counting holder types in
616 more detail.
617
Wenzel Jakob93296692015-10-13 23:21:54 +0200618.. _custom_constructors:
619
620Custom constructors
621===================
622
623The syntax for binding constructors was previously introduced, but it only
624works when a constructor with the given parameters actually exists on the C++
625side. To extend this to more general cases, let's take a look at what actually
626happens under the hood: the following statement
627
628.. code-block:: cpp
629
630 py::class_<Example>(m, "Example")
631 .def(py::init<int>());
632
633is short hand notation for
634
635.. code-block:: cpp
636
637 py::class_<Example>(m, "Example")
638 .def("__init__",
639 [](Example &instance, int arg) {
640 new (&instance) Example(arg);
641 }
642 );
643
644In other words, :func:`init` creates an anonymous function that invokes an
645in-place constructor. Memory allocation etc. is already take care of beforehand
646within pybind11.
647
648Catching and throwing exceptions
649================================
650
651When C++ code invoked from Python throws an ``std::exception``, it is
652automatically converted into a Python ``Exception``. pybind11 defines multiple
653special exception classes that will map to different types of Python
654exceptions:
655
656+----------------------------+------------------------------+
657| C++ exception type | Python exception type |
658+============================+==============================+
659| :class:`std::exception` | ``Exception`` |
660+----------------------------+------------------------------+
661| :class:`stop_iteration` | ``StopIteration`` (used to |
662| | implement custom iterators) |
663+----------------------------+------------------------------+
664| :class:`index_error` | ``IndexError`` (used to |
665| | indicate out of bounds |
666| | accesses in ``__getitem__``, |
667| | ``__setitem__``, etc.) |
668+----------------------------+------------------------------+
669| :class:`error_already_set` | Indicates that the Python |
670| | exception flag has already |
671| | been initialized. |
672+----------------------------+------------------------------+
673
674When a Python function invoked from C++ throws an exception, it is converted
675into a C++ exception of type :class:`error_already_set` whose string payload
676contains a textual summary.
677
678There is also a special exception :class:`cast_error` that is thrown by
679:func:`handle::call` when the input arguments cannot be converted to Python
680objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200681
682Buffer protocol
683===============
684
685Python supports an extremely general and convenient approach for exchanging
686data between plugin libraries. Types can expose a buffer view which provides
687fast direct access to the raw internal representation. Suppose we want to bind
688the following simplistic Matrix class:
689
690.. code-block:: cpp
691
692 class Matrix {
693 public:
694 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
695 m_data = new float[rows*cols];
696 }
697 float *data() { return m_data; }
698 size_t rows() const { return m_rows; }
699 size_t cols() const { return m_cols; }
700 private:
701 size_t m_rows, m_cols;
702 float *m_data;
703 };
704
705The following binding code exposes the ``Matrix`` contents as a buffer object,
706making it possible to cast Matrixes into NumPy arrays. It is even possible to
707completely avoid copy operations with Python expressions like
708``np.array(matrix_instance, copy = False)``.
709
710.. code-block:: cpp
711
712 py::class_<Matrix>(m, "Matrix")
713 .def_buffer([](Matrix &m) -> py::buffer_info {
714 return py::buffer_info(
715 m.data(), /* Pointer to buffer */
716 sizeof(float), /* Size of one scalar */
717 py::format_descriptor<float>::value(), /* Python struct-style format descriptor */
718 2, /* Number of dimensions */
719 { m.rows(), m.cols() }, /* Buffer dimensions */
720 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
721 sizeof(float) }
722 );
723 });
724
725The snippet above binds a lambda function, which can create ``py::buffer_info``
726description records on demand describing a given matrix. The contents of
727``py::buffer_info`` mirror the Python buffer protocol specification.
728
729.. code-block:: cpp
730
731 struct buffer_info {
732 void *ptr;
733 size_t itemsize;
734 std::string format;
735 int ndim;
736 std::vector<size_t> shape;
737 std::vector<size_t> strides;
738 };
739
740To create a C++ function that can take a Python buffer object as an argument,
741simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
742in a great variety of configurations, hence some safety checks are usually
743necessary in the function body. Below, you can see an basic example on how to
744define a custom constructor for the Eigen double precision matrix
745(``Eigen::MatrixXd``) type, which supports initialization from compatible
746buffer
747objects (e.g. a NumPy matrix).
748
749.. code-block:: cpp
750
751 py::class_<Eigen::MatrixXd>(m, "MatrixXd")
752 .def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
753 /* Request a buffer descriptor from Python */
754 py::buffer_info info = b.request();
755
756 /* Some sanity checks ... */
757 if (info.format != py::format_descriptor<double>::value())
758 throw std::runtime_error("Incompatible format: expected a double array!");
759
760 if (info.ndim != 2)
761 throw std::runtime_error("Incompatible buffer dimension!");
762
763 if (info.strides[0] == sizeof(double)) {
764 /* Buffer has the right layout -- directly copy. */
765 new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
766 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
767 } else {
768 /* Oops -- the buffer is transposed */
769 new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
770 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
771 m.transposeInPlace();
772 }
773 });
774
Wenzel Jakob93296692015-10-13 23:21:54 +0200775.. seealso::
776
777 The file :file:`example/example7.cpp` contains a complete example that
778 demonstrates using the buffer protocol with pybind11 in more detail.
779
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200780NumPy support
781=============
782
783By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
784restrict the function so that it only accepts NumPy arrays (rather than any
785type of Python object satisfying the buffer object protocol).
786
787In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +0200788array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200789template. For instance, the following function requires the argument to be a
790dense array of doubles in C-style ordering.
791
792.. code-block:: cpp
793
Wenzel Jakob93296692015-10-13 23:21:54 +0200794 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200795
796When it is invoked with a different type (e.g. an integer), the binding code
797will attempt to cast the input into a NumPy array of the requested type.
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200798Note that this feature requires the ``pybind11/numpy.h`` header to be included.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200799
800Vectorizing functions
801=====================
802
803Suppose we want to bind a function with the following signature to Python so
804that it can process arbitrary NumPy array arguments (vectors, matrices, general
805N-D arrays) in addition to its normal arguments:
806
807.. code-block:: cpp
808
809 double my_func(int x, float y, double z);
810
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200811After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200812
813.. code-block:: cpp
814
815 m.def("vectorized_func", py::vectorize(my_func));
816
817Invoking the function like below causes 4 calls to be made to ``my_func`` with
818each of the the array elements. The result is returned as a NumPy array of type
819``numpy.dtype.float64``.
820
821.. code-block:: python
822
823 >>> x = np.array([[1, 3],[5, 7]])
824 >>> y = np.array([[2, 4],[6, 8]])
825 >>> z = 3
826 >>> result = vectorized_func(x, y, z)
827
828The scalar argument ``z`` is transparently replicated 4 times. The input
829arrays ``x`` and ``y`` are automatically converted into the right types (they
830are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
831``numpy.dtype.float32``, respectively)
832
833Sometimes we might want to explitly exclude an argument from the vectorization
834because it makes little sense to wrap it in a NumPy array. For instance,
835suppose the function signature was
836
837.. code-block:: cpp
838
839 double my_func(int x, float y, my_custom_type *z);
840
841This can be done with a stateful Lambda closure:
842
843.. code-block:: cpp
844
845 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
846 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +0200847 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200848 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
849 return py::vectorize(stateful_closure)(x, y);
850 }
851 );
852
Wenzel Jakob93296692015-10-13 23:21:54 +0200853.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200854
Wenzel Jakob93296692015-10-13 23:21:54 +0200855 The file :file:`example/example10.cpp` contains a complete example that
856 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200857
Wenzel Jakob93296692015-10-13 23:21:54 +0200858Functions taking Python objects as arguments
859============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200860
Wenzel Jakob93296692015-10-13 23:21:54 +0200861pybind11 exposes all major Python types using thin C++ wrapper classes. These
862wrapper classes can also be used as parameters of functions in bindings, which
863makes it possible to directly work with native Python types on the C++ side.
864For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200865
Wenzel Jakob93296692015-10-13 23:21:54 +0200866.. code-block:: cpp
867
868 void print_dict(py::dict dict) {
869 /* Easily interact with Python types */
870 for (auto item : dict)
871 std::cout << "key=" << item.first << ", "
872 << "value=" << item.second << std::endl;
873 }
874
875Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +0100876:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
877:class:`list`, :class:`dict`, :class:`slice`, :class:`capsule`,
878:class:`function`, :class:`buffer`, :class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +0200879
Wenzel Jakob436b7312015-10-20 01:04:30 +0200880In this kind of mixed code, it is often necessary to convert arbitrary C++
881types to Python, which can be done using :func:`cast`:
882
883.. code-block:: cpp
884
885 MyClass *cls = ..;
886 py::object obj = py::cast(cls);
887
888The reverse direction uses the following syntax:
889
890.. code-block:: cpp
891
892 py::object obj = ...;
893 MyClass *cls = obj.cast<MyClass *>();
894
895When conversion fails, both directions throw the exception :class:`cast_error`.
896
Wenzel Jakob93296692015-10-13 23:21:54 +0200897.. seealso::
898
899 The file :file:`example/example2.cpp` contains a complete example that
900 demonstrates passing native Python types in more detail.
Wenzel Jakob2ac50442016-01-17 22:36:35 +0100901
902Default arguments revisited
903===========================
904
905The section on :ref:`default_args` previously discussed basic usage of default
906arguments using pybind11. One noteworthy aspect of their implementation is that
907default arguments are converted to Python objects right at declaration time.
908Consider the following example:
909
910.. code-block:: cpp
911
912 py::class_<MyClass>("MyClass")
913 .def("myFunction", py::arg("arg") = SomeType(123));
914
915In this case, pybind11 must already be set up to deal with values of the type
916``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
917exception will be thrown.
918
919Another aspect worth highlighting is that the "preview" of the default argument
920in the function signature is generated using the object's ``__repr__`` method.
921If not available, the signature may not be very helpful, e.g.:
922
923.. code-block:: python
924
925 FUNCTIONS
926 ...
927 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100928 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +0100929 ...
930
931The first way of addressing this is by defining ``SomeType.__repr__``.
932Alternatively, it is possible to specify the human-readable preview of the
933default argument manually using the ``arg_t`` notation:
934
935.. code-block:: cpp
936
937 py::class_<MyClass>("MyClass")
938 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
939
Wenzel Jakob2dfbade2016-01-17 22:36:37 +0100940Partitioning code over multiple extension modules
941=================================================
942
943It's straightforward to split binding code over multiple extension modules and
944reference types declared elsewhere. Everything "just" works without any special
945precautions. One exception to this rule occurs when wanting to extend a type declared
946in another extension module. Recall the basic example from Section
947:ref:`inheritance`.
948
949.. code-block:: cpp
950
951 py::class_<Pet> pet(m, "Pet");
952 pet.def(py::init<const std::string &>())
953 .def_readwrite("name", &Pet::name);
954
955 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
956 .def(py::init<const std::string &>())
957 .def("bark", &Dog::bark);
958
959Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
960whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
961course that the variable ``pet`` is not available anymore though it is needed
962to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
963However, it can be acquired as follows:
964
965.. code-block:: cpp
966
967 py::object pet = (py::object) py::module::import("basic").attr("Pet");
968
969 py::class_<Dog>(m, "Dog", pet)
970 .def(py::init<const std::string &>())
971 .def("bark", &Dog::bark);
972