blob: 1deec9b537fbae32145e5366b4b92d71389b054d [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _classes:
2
3Object-oriented code
4####################
5
6Creating bindings for a custom type
7===================================
8
9Let's now look at a more complex example where we'll create bindings for a
10custom C++ data structure named ``Pet``. Its definition is given below:
11
12.. code-block:: cpp
13
14 struct Pet {
15 Pet(const std::string &name) : name(name) { }
16 void setName(const std::string &name_) { name = name_; }
17 const std::string &getName() const { return name; }
18
19 std::string name;
20 };
21
22The binding code for ``Pet`` looks as follows:
23
24.. code-block:: cpp
25
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020026 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020027
Wenzel Jakob10e62e12015-10-15 22:46:07 +020028 namespace py = pybind11;
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020029
Dean Moldovan443ab592017-04-24 01:51:44 +020030 PYBIND11_MODULE(example, m) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031 py::class_<Pet>(m, "Pet")
32 .def(py::init<const std::string &>())
33 .def("setName", &Pet::setName)
34 .def("getName", &Pet::getName);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020035 }
36
Dean Moldovan57a9bbc2017-01-31 16:54:08 +010037:class:`class_` creates bindings for a C++ *class* or *struct*-style data
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020038structure. :func:`init` is a convenience function that takes the types of a
39constructor's parameters as template arguments and wraps the corresponding
40constructor (see the :ref:`custom_constructors` section for details). An
41interactive Python session demonstrating this example is shown below:
42
Wenzel Jakob99279f72016-06-03 11:19:29 +020043.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020044
45 % python
46 >>> import example
47 >>> p = example.Pet('Molly')
48 >>> print(p)
49 <example.Pet object at 0x10cd98060>
50 >>> p.getName()
51 u'Molly'
52 >>> p.setName('Charly')
53 >>> p.getName()
54 u'Charly'
55
Wenzel Jakob43b6a232016-02-07 17:24:41 +010056.. seealso::
57
58 Static member functions can be bound in the same way using
59 :func:`class_::def_static`.
60
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020061Keyword and default arguments
62=============================
63It is possible to specify keyword and default arguments using the syntax
64discussed in the previous chapter. Refer to the sections :ref:`keyword_args`
65and :ref:`default_args` for details.
66
67Binding lambda functions
68========================
69
70Note how ``print(p)`` produced a rather useless summary of our data structure in the example above:
71
Wenzel Jakob99279f72016-06-03 11:19:29 +020072.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020073
74 >>> print(p)
75 <example.Pet object at 0x10cd98060>
76
77To address this, we could bind an utility function that returns a human-readable
78summary to the special method slot named ``__repr__``. Unfortunately, there is no
79suitable functionality in the ``Pet`` data structure, and it would be nice if
80we did not have to change it. This can easily be accomplished by binding a
81Lambda function instead:
82
83.. code-block:: cpp
84
85 py::class_<Pet>(m, "Pet")
86 .def(py::init<const std::string &>())
87 .def("setName", &Pet::setName)
88 .def("getName", &Pet::getName)
89 .def("__repr__",
90 [](const Pet &a) {
91 return "<example.Pet named '" + a.name + "'>";
92 }
93 );
94
95Both stateless [#f1]_ and stateful lambda closures are supported by pybind11.
96With the above change, the same Python code now produces the following output:
97
Wenzel Jakob99279f72016-06-03 11:19:29 +020098.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020099
100 >>> print(p)
101 <example.Pet named 'Molly'>
102
Dean Moldovan4e959c92016-12-08 11:07:52 +0100103.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
104
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200105.. _properties:
106
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200107Instance and static fields
108==========================
109
110We can also directly expose the ``name`` field using the
111:func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly`
112method also exists for ``const`` fields.
113
114.. code-block:: cpp
115
116 py::class_<Pet>(m, "Pet")
117 .def(py::init<const std::string &>())
118 .def_readwrite("name", &Pet::name)
119 // ... remainder ...
120
121This makes it possible to write
122
Wenzel Jakob99279f72016-06-03 11:19:29 +0200123.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200124
125 >>> p = example.Pet('Molly')
126 >>> p.name
127 u'Molly'
128 >>> p.name = 'Charly'
129 >>> p.name
130 u'Charly'
131
132Now suppose that ``Pet::name`` was a private internal variable
133that can only be accessed via setters and getters.
134
135.. code-block:: cpp
136
137 class Pet {
138 public:
139 Pet(const std::string &name) : name(name) { }
140 void setName(const std::string &name_) { name = name_; }
141 const std::string &getName() const { return name; }
142 private:
143 std::string name;
144 };
145
146In this case, the method :func:`class_::def_property`
147(:func:`class_::def_property_readonly` for read-only data) can be used to
Wenzel Jakob93296692015-10-13 23:21:54 +0200148provide a field-like interface within Python that will transparently call
149the setter and getter functions:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200150
151.. code-block:: cpp
152
153 py::class_<Pet>(m, "Pet")
154 .def(py::init<const std::string &>())
155 .def_property("name", &Pet::getName, &Pet::setName)
156 // ... remainder ...
157
Ted Drain0a0758c2017-11-07 08:35:27 -0800158Write only properties can be defined by passing ``nullptr`` as the
159input for the read function.
160
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200161.. seealso::
162
163 Similar functions :func:`class_::def_readwrite_static`,
164 :func:`class_::def_readonly_static` :func:`class_::def_property_static`,
165 and :func:`class_::def_property_readonly_static` are provided for binding
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200166 static variables and properties. Please also see the section on
167 :ref:`static_properties` in the advanced part of the documentation.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200168
Dean Moldovan9273af42016-10-13 23:53:16 +0200169Dynamic attributes
170==================
171
172Native Python classes can pick up new attributes dynamically:
173
174.. code-block:: pycon
175
176 >>> class Pet:
177 ... name = 'Molly'
178 ...
179 >>> p = Pet()
180 >>> p.name = 'Charly' # overwrite existing
181 >>> p.age = 2 # dynamically add a new attribute
182
183By default, classes exported from C++ do not support this and the only writable
184attributes are the ones explicitly defined using :func:`class_::def_readwrite`
185or :func:`class_::def_property`.
186
187.. code-block:: cpp
188
189 py::class_<Pet>(m, "Pet")
190 .def(py::init<>())
191 .def_readwrite("name", &Pet::name);
192
193Trying to set any other attribute results in an error:
194
195.. code-block:: pycon
196
197 >>> p = example.Pet()
198 >>> p.name = 'Charly' # OK, attribute defined in C++
199 >>> p.age = 2 # fail
200 AttributeError: 'Pet' object has no attribute 'age'
201
202To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag
203must be added to the :class:`py::class_` constructor:
204
205.. code-block:: cpp
206
207 py::class_<Pet>(m, "Pet", py::dynamic_attr())
208 .def(py::init<>())
209 .def_readwrite("name", &Pet::name);
210
211Now everything works as expected:
212
213.. code-block:: pycon
214
215 >>> p = example.Pet()
216 >>> p.name = 'Charly' # OK, overwrite value in C++
217 >>> p.age = 2 # OK, dynamically add a new attribute
218 >>> p.__dict__ # just like a native Python class
219 {'age': 2}
220
221Note that there is a small runtime cost for a class with dynamic attributes.
222Not only because of the addition of a ``__dict__``, but also because of more
223expensive garbage collection tracking which must be activated to resolve
224possible circular references. Native Python classes incur this same cost by
225default, so this is not anything to worry about. By default, pybind11 classes
226are more efficient than native Python classes. Enabling dynamic attributes
227just brings them on par.
228
Wenzel Jakob2dfbade2016-01-17 22:36:37 +0100229.. _inheritance:
230
oremanjfd9bc8f2018-04-13 20:13:10 -0400231Inheritance and automatic downcasting
232=====================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200233
234Suppose now that the example consists of two data structures with an
235inheritance relationship:
236
237.. code-block:: cpp
238
239 struct Pet {
240 Pet(const std::string &name) : name(name) { }
241 std::string name;
242 };
243
244 struct Dog : Pet {
245 Dog(const std::string &name) : Pet(name) { }
246 std::string bark() const { return "woof!"; }
247 };
248
Wenzel Jakobbad589a2016-09-12 12:03:20 +0900249There are two different ways of indicating a hierarchical relationship to
Jason Rhinelander6b52c832016-09-06 12:27:00 -0400250pybind11: the first specifies the C++ base class as an extra template
Wenzel Jakobbad589a2016-09-12 12:03:20 +0900251parameter of the :class:`class_`:
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100252
253.. code-block:: cpp
254
255 py::class_<Pet>(m, "Pet")
256 .def(py::init<const std::string &>())
257 .def_readwrite("name", &Pet::name);
258
Jason Rhinelander6b52c832016-09-06 12:27:00 -0400259 // Method 1: template parameter:
260 py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
261 .def(py::init<const std::string &>())
262 .def("bark", &Dog::bark);
263
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100264Alternatively, we can also assign a name to the previously bound ``Pet``
265:class:`class_` object and reference it when binding the ``Dog`` class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200266
267.. code-block:: cpp
268
269 py::class_<Pet> pet(m, "Pet");
270 pet.def(py::init<const std::string &>())
271 .def_readwrite("name", &Pet::name);
272
Wenzel Jakobbad589a2016-09-12 12:03:20 +0900273 // Method 2: pass parent class_ object:
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100274 py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200275 .def(py::init<const std::string &>())
276 .def("bark", &Dog::bark);
277
Wenzel Jakobbad589a2016-09-12 12:03:20 +0900278Functionality-wise, both approaches are equivalent. Afterwards, instances will
279expose fields and methods of both types:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200280
Wenzel Jakob99279f72016-06-03 11:19:29 +0200281.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200282
283 >>> p = example.Dog('Molly')
284 >>> p.name
285 u'Molly'
286 >>> p.bark()
287 u'woof!'
288
Dustin Spicuzza7c0e2c22017-07-22 21:36:08 -0400289The C++ classes defined above are regular non-polymorphic types with an
290inheritance relationship. This is reflected in Python:
291
292.. code-block:: cpp
293
294 // Return a base pointer to a derived instance
295 m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
296
297.. code-block:: pycon
298
299 >>> p = example.pet_store()
300 >>> type(p) # `Dog` instance behind `Pet` pointer
oremanjfd9bc8f2018-04-13 20:13:10 -0400301 Pet # no pointer downcasting for regular non-polymorphic types
Dustin Spicuzza7c0e2c22017-07-22 21:36:08 -0400302 >>> p.bark()
303 AttributeError: 'Pet' object has no attribute 'bark'
304
305The function returned a ``Dog`` instance, but because it's a non-polymorphic
306type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only
307considered polymorphic if it has at least one virtual function and pybind11
308will automatically recognize this:
309
310.. code-block:: cpp
311
312 struct PolymorphicPet {
313 virtual ~PolymorphicPet() = default;
314 };
315
316 struct PolymorphicDog : PolymorphicPet {
317 std::string bark() const { return "woof!"; }
318 };
319
320 // Same binding code
321 py::class_<PolymorphicPet>(m, "PolymorphicPet");
322 py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
323 .def(py::init<>())
324 .def("bark", &PolymorphicDog::bark);
325
326 // Again, return a base pointer to a derived instance
327 m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
328
329.. code-block:: pycon
330
331 >>> p = example.pet_store2()
332 >>> type(p)
oremanjfd9bc8f2018-04-13 20:13:10 -0400333 PolymorphicDog # automatically downcast
Dustin Spicuzza7c0e2c22017-07-22 21:36:08 -0400334 >>> p.bark()
335 u'woof!'
336
oremanjfd9bc8f2018-04-13 20:13:10 -0400337Given a pointer to a polymorphic base, pybind11 performs automatic downcasting
Dustin Spicuzza7c0e2c22017-07-22 21:36:08 -0400338to the actual derived type. Note that this goes beyond the usual situation in
339C++: we don't just get access to the virtual functions of the base, we get the
340concrete derived type including functions and attributes that the base type may
341not even be aware of.
342
343.. seealso::
344
345 For more information about polymorphic behavior see :ref:`overriding_virtuals`.
346
347
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200348Overloaded methods
349==================
350
351Sometimes there are several overloaded C++ methods with the same name taking
352different kinds of input arguments:
353
354.. code-block:: cpp
355
356 struct Pet {
357 Pet(const std::string &name, int age) : name(name), age(age) { }
358
myd73499b815ad2017-01-13 18:15:52 +0800359 void set(int age_) { age = age_; }
360 void set(const std::string &name_) { name = name_; }
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200361
362 std::string name;
363 int age;
364 };
365
366Attempting to bind ``Pet::set`` will cause an error since the compiler does not
367know which method the user intended to select. We can disambiguate by casting
368them to function pointers. Binding multiple functions to the same Python name
Wenzel Jakob0fb85282015-10-19 23:50:51 +0200369automatically creates a chain of function overloads that will be tried in
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200370sequence.
371
372.. code-block:: cpp
373
374 py::class_<Pet>(m, "Pet")
375 .def(py::init<const std::string &, int>())
376 .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age")
377 .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name");
378
379The overload signatures are also visible in the method's docstring:
380
Wenzel Jakob99279f72016-06-03 11:19:29 +0200381.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200382
383 >>> help(example.Pet)
384
385 class Pet(__builtin__.object)
386 | Methods defined here:
387 |
388 | __init__(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100389 | Signature : (Pet, str, int) -> NoneType
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200390 |
391 | set(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100392 | 1. Signature : (Pet, int) -> NoneType
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200393 |
394 | Set the pet's age
395 |
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100396 | 2. Signature : (Pet, str) -> NoneType
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200397 |
398 | Set the pet's name
Wenzel Jakob93296692015-10-13 23:21:54 +0200399
Dean Moldovan4e959c92016-12-08 11:07:52 +0100400If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative
401syntax to cast the overloaded function:
402
403.. code-block:: cpp
404
405 py::class_<Pet>(m, "Pet")
406 .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
407 .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
408
409Here, ``py::overload_cast`` only requires the parameter types to be specified.
410The return type and class are deduced. This avoids the additional noise of
411``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based
412on constness, the ``py::const_`` tag should be used:
413
414.. code-block:: cpp
415
416 struct Widget {
417 int foo(int x, float y);
418 int foo(int x, float y) const;
419 };
420
421 py::class_<Widget>(m, "Widget")
422 .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
423 .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
424
425
426.. [#cpp14] A compiler which supports the ``-std=c++14`` flag
427 or Visual Studio 2015 Update 2 and newer.
428
Wenzel Jakob93296692015-10-13 23:21:54 +0200429.. note::
430
431 To define multiple overloaded constructors, simply declare one after the
432 other using the ``.def(py::init<...>())`` syntax. The existing machinery
433 for specifying keyword and default arguments also works.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200434
435Enumerations and internal types
436===============================
437
Wenzel Jakob93296692015-10-13 23:21:54 +0200438Let's now suppose that the example class contains an internal enumeration type,
439e.g.:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200440
441.. code-block:: cpp
442
443 struct Pet {
444 enum Kind {
445 Dog = 0,
446 Cat
447 };
448
449 Pet(const std::string &name, Kind type) : name(name), type(type) { }
450
451 std::string name;
452 Kind type;
453 };
454
455The binding code for this example looks as follows:
456
457.. code-block:: cpp
458
459 py::class_<Pet> pet(m, "Pet");
460
461 pet.def(py::init<const std::string &, Pet::Kind>())
462 .def_readwrite("name", &Pet::name)
463 .def_readwrite("type", &Pet::type);
464
465 py::enum_<Pet::Kind>(pet, "Kind")
466 .value("Dog", Pet::Kind::Dog)
467 .value("Cat", Pet::Kind::Cat)
468 .export_values();
469
470To ensure that the ``Kind`` type is created within the scope of ``Pet``, the
471``pet`` :class:`class_` instance must be supplied to the :class:`enum_`.
Wenzel Jakob93296692015-10-13 23:21:54 +0200472constructor. The :func:`enum_::export_values` function exports the enum entries
473into the parent scope, which should be skipped for newer C++11-style strongly
474typed enums.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200475
Wenzel Jakob99279f72016-06-03 11:19:29 +0200476.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200477
478 >>> p = Pet('Lucy', Pet.Cat)
479 >>> p.type
480 Kind.Cat
481 >>> int(p.type)
482 1L
483
Matthieu Becaf936e12017-03-03 08:45:50 -0800484The entries defined by the enumeration type are exposed in the ``__members__`` property:
485
486.. code-block:: pycon
487
488 >>> Pet.Kind.__members__
489 {'Dog': Kind.Dog, 'Cat': Kind.Cat}
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200490
Boris Staletic289e5d92018-04-02 23:26:48 +0200491The ``name`` property returns the name of the enum value as a unicode string.
492
493.. note::
494
495 It is also possible to use ``str(enum)``, however these accomplish different
496 goals. The following shows how these two approaches differ.
497
498 .. code-block:: pycon
499
500 >>> p = Pet( "Lucy", Pet.Cat )
501 >>> pet_type = p.type
502 >>> pet_type
503 Pet.Cat
504 >>> str(pet_type)
505 'Pet.Cat'
506 >>> pet_type.name
507 'Cat'
508
Wenzel Jakob405f6d12016-11-17 23:24:47 +0100509.. note::
510
511 When the special tag ``py::arithmetic()`` is specified to the ``enum_``
512 constructor, pybind11 creates an enumeration that also supports rudimentary
513 arithmetic and bit-level operations like comparisons, and, or, xor, negation,
514 etc.
515
516 .. code-block:: cpp
517
518 py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
519 ...
520
521 By default, these are omitted to conserve space.