#----------------------------------------------------------------- | |
# pycparser: c_parser.py | |
# | |
# CParser class: Parser and AST builder for the C language | |
# | |
# Copyright (C) 2008-2010, Eli Bendersky | |
# License: LGPL | |
#----------------------------------------------------------------- | |
import re | |
import ply.yacc | |
from . import c_ast | |
from .c_lexer import CLexer | |
from .plyparser import PLYParser, Coord, ParseError | |
class CParser(PLYParser): | |
def __init__( | |
self, | |
lex_optimize=True, | |
lextab='pycparser.lextab', | |
yacc_optimize=True, | |
yacctab='pycparser.yacctab', | |
yacc_debug=False): | |
""" Create a new CParser. | |
Some arguments for controlling the debug/optimization | |
level of the parser are provided. The defaults are | |
tuned for release/performance mode. | |
The simple rules for using them are: | |
*) When tweaking CParser/CLexer, set these to False | |
*) When releasing a stable parser, set to True | |
lex_optimize: | |
Set to False when you're modifying the lexer. | |
Otherwise, changes in the lexer won't be used, if | |
some lextab.py file exists. | |
When releasing with a stable lexer, set to True | |
to save the re-generation of the lexer table on | |
each run. | |
lextab: | |
Points to the lex table that's used for optimized | |
mode. Only if you're modifying the lexer and want | |
some tests to avoid re-generating the table, make | |
this point to a local lex table file (that's been | |
earlier generated with lex_optimize=True) | |
yacc_optimize: | |
Set to False when you're modifying the parser. | |
Otherwise, changes in the parser won't be used, if | |
some parsetab.py file exists. | |
When releasing with a stable parser, set to True | |
to save the re-generation of the parser table on | |
each run. | |
yacctab: | |
Points to the yacc table that's used for optimized | |
mode. Only if you're modifying the parser, make | |
this point to a local yacc table file | |
yacc_debug: | |
Generate a parser.out file that explains how yacc | |
built the parsing table from the grammar. | |
""" | |
self.clex = CLexer( | |
error_func=self._lex_error_func, | |
type_lookup_func=self._lex_type_lookup_func) | |
self.clex.build( | |
optimize=lex_optimize, | |
lextab=lextab) | |
self.tokens = self.clex.tokens | |
rules_with_opt = [ | |
'abstract_declarator', | |
'assignment_expression', | |
'declaration_list', | |
'declaration_specifiers', | |
'designation', | |
'expression', | |
'identifier_list', | |
'init_declarator_list', | |
'parameter_type_list', | |
'specifier_qualifier_list', | |
'block_item_list', | |
'type_qualifier_list', | |
] | |
for rule in rules_with_opt: | |
self._create_opt_rule(rule) | |
self.cparser = ply.yacc.yacc( | |
module=self, | |
start='translation_unit', | |
debug=yacc_debug, | |
optimize=yacc_optimize, | |
tabmodule=yacctab) | |
# A table of identifiers defined as typedef types during | |
# parsing. | |
# | |
self.typedef_table = set([]) | |
def parse(self, text, filename='', debuglevel=0): | |
""" Parses C code and returns an AST. | |
text: | |
A string containing the C source code | |
filename: | |
Name of the file being parsed (for meaningful | |
error messages) | |
debuglevel: | |
Debug level to yacc | |
""" | |
self.clex.filename = filename | |
self.clex.reset_lineno() | |
self.typedef_table = set([]) | |
return self.cparser.parse(text, lexer=self.clex, debug=debuglevel) | |
######################-- PRIVATE --###################### | |
def _lex_error_func(self, msg, line, column): | |
self._parse_error(msg, self._coord(line, column)) | |
def _lex_type_lookup_func(self, name): | |
""" Looks up types that were previously defined with | |
typedef. | |
Passed to the lexer for recognizing identifiers that | |
are types. | |
""" | |
return name in self.typedef_table | |
def _add_typedef_type(self, name): | |
""" Adds names that were defined as new types with | |
typedef. | |
""" | |
self.typedef_table.add(name) | |
# To understand what's going on here, read sections A.8.5 and | |
# A.8.6 of K&R2 very carefully. | |
# | |
# A C type consists of a basic type declaration, with a list | |
# of modifiers. For example: | |
# | |
# int *c[5]; | |
# | |
# The basic declaration here is 'int x', and the pointer and | |
# the array are the modifiers. | |
# | |
# Basic declarations are represented by TypeDecl (from module | |
# c_ast) and the modifiers are FuncDecl, PtrDecl and | |
# ArrayDecl. | |
# | |
# The standard states that whenever a new modifier is parsed, | |
# it should be added to the end of the list of modifiers. For | |
# example: | |
# | |
# K&R2 A.8.6.2: Array Declarators | |
# | |
# In a declaration T D where D has the form | |
# D1 [constant-expression-opt] | |
# and the type of the identifier in the declaration T D1 is | |
# "type-modifier T", the type of the | |
# identifier of D is "type-modifier array of T" | |
# | |
# This is what this method does. The declarator it receives | |
# can be a list of declarators ending with TypeDecl. It | |
# tacks the modifier to the end of this list, just before | |
# the TypeDecl. | |
# | |
# Additionally, the modifier may be a list itself. This is | |
# useful for pointers, that can come as a chain from the rule | |
# p_pointer. In this case, the whole modifier list is spliced | |
# into the new location. | |
# | |
def _type_modify_decl(self, decl, modifier): | |
""" Tacks a type modifier on a declarator, and returns | |
the modified declarator. | |
Note: the declarator and modifier may be modified | |
""" | |
#~ print '****' | |
#~ decl.show(offset=3) | |
#~ modifier.show(offset=3) | |
#~ print '****' | |
modifier_head = modifier | |
modifier_tail = modifier | |
# The modifier may be a nested list. Reach its tail. | |
# | |
while modifier_tail.type: | |
modifier_tail = modifier_tail.type | |
# If the decl is a basic type, just tack the modifier onto | |
# it | |
# | |
if isinstance(decl, c_ast.TypeDecl): | |
modifier_tail.type = decl | |
return modifier | |
else: | |
# Otherwise, the decl is a list of modifiers. Reach | |
# its tail and splice the modifier onto the tail, | |
# pointing to the underlying basic type. | |
# | |
decl_tail = decl | |
while not isinstance(decl_tail.type, c_ast.TypeDecl): | |
decl_tail = decl_tail.type | |
modifier_tail.type = decl_tail.type | |
decl_tail.type = modifier_head | |
return decl | |
# Due to the order in which declarators are constructed, | |
# they have to be fixed in order to look like a normal AST. | |
# | |
# When a declaration arrives from syntax construction, it has | |
# these problems: | |
# * The innermost TypeDecl has no type (because the basic | |
# type is only known at the uppermost declaration level) | |
# * The declaration has no variable name, since that is saved | |
# in the innermost TypeDecl | |
# * The typename of the declaration is a list of type | |
# specifiers, and not a node. Here, basic identifier types | |
# should be separated from more complex types like enums | |
# and structs. | |
# | |
# This method fixes these problem. | |
# | |
def _fix_decl_name_type(self, decl, typename): | |
""" Fixes a declaration. Modifies decl. | |
""" | |
# Reach the underlying basic type | |
# | |
type = decl | |
while not isinstance(type, c_ast.TypeDecl): | |
type = type.type | |
decl.name = type.declname | |
type.quals = decl.quals | |
# The typename is a list of types. If any type in this | |
# list isn't a simple string type, it must be the only | |
# type in the list (it's illegal to declare "int enum .." | |
# If all the types are basic, they're collected in the | |
# IdentifierType holder. | |
# | |
for tn in typename: | |
if not isinstance(tn, str): | |
if len(typename) > 1: | |
self._parse_error( | |
"Invalid multiple types specified", tn.coord) | |
else: | |
type.type = tn | |
return decl | |
type.type = c_ast.IdentifierType(typename) | |
return decl | |
def _add_declaration_specifier(self, declspec, newspec, kind): | |
""" Declaration specifiers are represented by a dictionary | |
with the entries: | |
* qual: a list of type qualifiers | |
* storage: a list of storage type qualifiers | |
* type: a list of type specifiers | |
* function: a list of function specifiers | |
This method is given a declaration specifier, and a | |
new specifier of a given kind. | |
Returns the declaration specifier, with the new | |
specifier incorporated. | |
""" | |
spec = declspec or dict(qual=[], storage=[], type=[], function=[]) | |
spec[kind].append(newspec) | |
return spec | |
def _build_function_definition(self, decl, spec, param_decls, body): | |
""" Builds a function definition. | |
""" | |
declaration = c_ast.Decl( | |
name=None, | |
quals=spec['qual'], | |
storage=spec['storage'], | |
funcspec=spec['function'], | |
type=decl, | |
init=None, | |
bitsize=None, | |
coord=decl.coord) | |
typename = spec['type'] | |
declaration = self._fix_decl_name_type(declaration, typename) | |
return c_ast.FuncDef( | |
decl=declaration, | |
param_decls=param_decls, | |
body=body, | |
coord=decl.coord) | |
def _select_struct_union_class(self, token): | |
""" Given a token (either STRUCT or UNION), selects the | |
appropriate AST class. | |
""" | |
if token == 'struct': | |
return c_ast.Struct | |
else: | |
return c_ast.Union | |
## | |
## Precedence and associativity of operators | |
## | |
precedence = ( | |
('left', 'LOR'), | |
('left', 'LAND'), | |
('left', 'OR'), | |
('left', 'XOR'), | |
('left', 'AND'), | |
('left', 'EQ', 'NE'), | |
('left', 'GT', 'GE', 'LT', 'LE'), | |
('left', 'RSHIFT', 'LSHIFT'), | |
('left', 'PLUS', 'MINUS'), | |
('left', 'TIMES', 'DIVIDE', 'MOD') | |
) | |
## | |
## Grammar productions | |
## Implementation of the BNF defined in K&R2 A.13 | |
## | |
def p_translation_unit_1(self, p): | |
""" translation_unit : external_declaration | |
""" | |
# Note: external_declaration is already a list | |
# | |
p[0] = c_ast.FileAST(p[1]) | |
def p_translation_unit_2(self, p): | |
""" translation_unit : translation_unit external_declaration | |
""" | |
p[1].ext.extend(p[2]) | |
p[0] = p[1] | |
# Declarations always come as lists (because they can be | |
# several in one line), so we wrap the function definition | |
# into a list as well, to make the return value of | |
# external_declaration homogenous. | |
# | |
def p_external_declaration_1(self, p): | |
""" external_declaration : function_definition | |
""" | |
p[0] = [p[1]] | |
def p_external_declaration_2(self, p): | |
""" external_declaration : declaration | |
""" | |
p[0] = p[1] | |
def p_external_declaration_3(self, p): | |
""" external_declaration : pp_directive | |
""" | |
p[0] = p[1] | |
def p_pp_directive(self, p): | |
""" pp_directive : PPHASH | |
""" | |
self._parse_error('Directives not supported yet', | |
self._coord(p.lineno(1))) | |
# In function definitions, the declarator can be followed by | |
# a declaration list, for old "K&R style" function definitios. | |
# | |
def p_function_definition_1(self, p): | |
""" function_definition : declarator declaration_list_opt compound_statement | |
""" | |
# no declaration specifiers | |
spec = dict(qual=[], storage=[], type=[]) | |
p[0] = self._build_function_definition( | |
decl=p[1], | |
spec=spec, | |
param_decls=p[2], | |
body=p[3]) | |
def p_function_definition_2(self, p): | |
""" function_definition : declaration_specifiers declarator declaration_list_opt compound_statement | |
""" | |
spec = p[1] | |
p[0] = self._build_function_definition( | |
decl=p[2], | |
spec=spec, | |
param_decls=p[3], | |
body=p[4]) | |
def p_statement(self, p): | |
""" statement : labeled_statement | |
| expression_statement | |
| compound_statement | |
| selection_statement | |
| iteration_statement | |
| jump_statement | |
""" | |
p[0] = p[1] | |
# In C, declarations can come several in a line: | |
# int x, *px, romulo = 5; | |
# | |
# However, for the AST, we will split them to separate Decl | |
# nodes. | |
# | |
# This rule splits its declarations and always returns a list | |
# of Decl nodes, even if it's one element long. | |
# | |
def p_decl_body(self, p): | |
""" decl_body : declaration_specifiers init_declarator_list_opt | |
""" | |
spec = p[1] | |
is_typedef = 'typedef' in spec['storage'] | |
decls = [] | |
# p[2] (init_declarator_list_opt) is either a list or None | |
# | |
if p[2] is None: | |
# Then it's a declaration of a struct / enum tag, | |
# without an actual declarator. | |
# | |
type = spec['type'] | |
if len(type) > 1: | |
coord = '?' | |
for t in type: | |
if hasattr(t, 'coord'): | |
coord = t.coord | |
break | |
self._parse_error('Multiple type specifiers with a type tag', coord) | |
decl = c_ast.Decl( | |
name=None, | |
quals=spec['qual'], | |
storage=spec['storage'], | |
funcspec=spec['function'], | |
type=type[0], | |
init=None, | |
bitsize=None, | |
coord=type[0].coord) | |
decls = [decl] | |
else: | |
for decl, init in p[2] or []: | |
if is_typedef: | |
decl = c_ast.Typedef( | |
name=None, | |
quals=spec['qual'], | |
storage=spec['storage'], | |
type=decl, | |
coord=decl.coord) | |
else: | |
decl = c_ast.Decl( | |
name=None, | |
quals=spec['qual'], | |
storage=spec['storage'], | |
funcspec=spec['function'], | |
type=decl, | |
init=init, | |
bitsize=None, | |
coord=decl.coord) | |
typename = spec['type'] | |
fixed_decl = self._fix_decl_name_type(decl, typename) | |
# Add the type name defined by typedef to a | |
# symbol table (for usage in the lexer) | |
# | |
if is_typedef: | |
self._add_typedef_type(fixed_decl.name) | |
decls.append(fixed_decl) | |
p[0] = decls | |
# The declaration has been split to a decl_body sub-rule and | |
# SEMI, because having them in a single rule created a problem | |
# for defining typedefs. | |
# | |
# If a typedef line was directly followed by a line using the | |
# type defined with the typedef, the type would not be | |
# recognized. This is because to reduce the declaration rule, | |
# the parser's lookahead asked for the token after SEMI, which | |
# was the type from the next line, and the lexer had no chance | |
# to see the updated type symbol table. | |
# | |
# Splitting solves this problem, because after seeing SEMI, | |
# the parser reduces decl_body, which actually adds the new | |
# type into the table to be seen by the lexer before the next | |
# line is reached. | |
# | |
def p_declaration(self, p): | |
""" declaration : decl_body SEMI | |
""" | |
p[0] = p[1] | |
# Since each declaration is a list of declarations, this | |
# rule will combine all the declarations and return a single | |
# list | |
# | |
def p_declaration_list(self, p): | |
""" declaration_list : declaration | |
| declaration_list declaration | |
""" | |
p[0] = p[1] if len(p) == 2 else p[1] + p[2] | |
def p_declaration_specifiers_1(self, p): | |
""" declaration_specifiers : type_qualifier declaration_specifiers_opt | |
""" | |
p[0] = self._add_declaration_specifier(p[2], p[1], 'qual') | |
def p_declaration_specifiers_2(self, p): | |
""" declaration_specifiers : type_specifier declaration_specifiers_opt | |
""" | |
p[0] = self._add_declaration_specifier(p[2], p[1], 'type') | |
def p_declaration_specifiers_3(self, p): | |
""" declaration_specifiers : storage_class_specifier declaration_specifiers_opt | |
""" | |
p[0] = self._add_declaration_specifier(p[2], p[1], 'storage') | |
def p_declaration_specifiers_4(self, p): | |
""" declaration_specifiers : function_specifier declaration_specifiers_opt | |
""" | |
p[0] = self._add_declaration_specifier(p[2], p[1], 'function') | |
def p_storage_class_specifier(self, p): | |
""" storage_class_specifier : AUTO | |
| REGISTER | |
| STATIC | |
| EXTERN | |
| TYPEDEF | |
""" | |
p[0] = p[1] | |
def p_function_specifier(self, p): | |
""" function_specifier : INLINE | |
""" | |
p[0] = p[1] | |
def p_type_specifier_1(self, p): | |
""" type_specifier : VOID | |
| CHAR | |
| SHORT | |
| INT | |
| LONG | |
| FLOAT | |
| DOUBLE | |
| SIGNED | |
| UNSIGNED | |
| typedef_name | |
| enum_specifier | |
| struct_or_union_specifier | |
""" | |
p[0] = p[1] | |
def p_type_qualifier(self, p): | |
""" type_qualifier : CONST | |
| RESTRICT | |
| VOLATILE | |
""" | |
p[0] = p[1] | |
def p_init_declarator_list(self, p): | |
""" init_declarator_list : init_declarator | |
| init_declarator_list COMMA init_declarator | |
""" | |
p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]] | |
# Returns a (declarator, initializer) pair | |
# If there's no initializer, returns (declarator, None) | |
# | |
def p_init_declarator(self, p): | |
""" init_declarator : declarator | |
| declarator EQUALS initializer | |
""" | |
p[0] = (p[1], p[3] if len(p) > 2 else None) | |
def p_specifier_qualifier_list_1(self, p): | |
""" specifier_qualifier_list : type_qualifier specifier_qualifier_list_opt | |
""" | |
p[0] = self._add_declaration_specifier(p[2], p[1], 'qual') | |
def p_specifier_qualifier_list_2(self, p): | |
""" specifier_qualifier_list : type_specifier specifier_qualifier_list_opt | |
""" | |
p[0] = self._add_declaration_specifier(p[2], p[1], 'type') | |
# TYPEID is allowed here (and in other struct/enum related tag names), because | |
# struct/enum tags reside in their own namespace and can be named the same as types | |
# | |
def p_struct_or_union_specifier_1(self, p): | |
""" struct_or_union_specifier : struct_or_union ID | |
| struct_or_union TYPEID | |
""" | |
klass = self._select_struct_union_class(p[1]) | |
p[0] = klass( | |
name=p[2], | |
decls=None, | |
coord=self._coord(p.lineno(2))) | |
def p_struct_or_union_specifier_2(self, p): | |
""" struct_or_union_specifier : struct_or_union LBRACE struct_declaration_list RBRACE | |
""" | |
klass = self._select_struct_union_class(p[1]) | |
p[0] = klass( | |
name=None, | |
decls=p[3], | |
coord=self._coord(p.lineno(2))) | |
def p_struct_or_union_specifier_3(self, p): | |
""" struct_or_union_specifier : struct_or_union ID LBRACE struct_declaration_list RBRACE | |
| struct_or_union TYPEID LBRACE struct_declaration_list RBRACE | |
""" | |
klass = self._select_struct_union_class(p[1]) | |
p[0] = klass( | |
name=p[2], | |
decls=p[4], | |
coord=self._coord(p.lineno(2))) | |
def p_struct_or_union(self, p): | |
""" struct_or_union : STRUCT | |
| UNION | |
""" | |
p[0] = p[1] | |
# Combine all declarations into a single list | |
# | |
def p_struct_declaration_list(self, p): | |
""" struct_declaration_list : struct_declaration | |
| struct_declaration_list struct_declaration | |
""" | |
p[0] = p[1] if len(p) == 2 else p[1] + p[2] | |
def p_struct_declaration_1(self, p): | |
""" struct_declaration : specifier_qualifier_list struct_declarator_list SEMI | |
""" | |
spec = p[1] | |
decls = [] | |
for struct_decl in p[2]: | |
if struct_decl['decl'] is not None: | |
decl_coord = struct_decl['decl'].coord | |
else: | |
decl_coord = struct_decl['bitsize'].coord | |
decl = c_ast.Decl( | |
name=None, | |
quals=spec['qual'], | |
funcspec=spec['function'], | |
storage=spec['storage'], | |
type=struct_decl['decl'], | |
init=None, | |
bitsize=struct_decl['bitsize'], | |
coord=decl_coord) | |
typename = spec['type'] | |
decls.append(self._fix_decl_name_type(decl, typename)) | |
p[0] = decls | |
def p_struct_declarator_list(self, p): | |
""" struct_declarator_list : struct_declarator | |
| struct_declarator_list COMMA struct_declarator | |
""" | |
p[0] = p[1] + [p[3]] if len(p) == 4 else [p[1]] | |
# struct_declarator passes up a dict with the keys: decl (for | |
# the underlying declarator) and bitsize (for the bitsize) | |
# | |
def p_struct_declarator_1(self, p): | |
""" struct_declarator : declarator | |
""" | |
p[0] = {'decl': p[1], 'bitsize': None} | |
def p_struct_declarator_2(self, p): | |
""" struct_declarator : declarator COLON constant_expression | |
| COLON constant_expression | |
""" | |
if len(p) > 3: | |
p[0] = {'decl': p[1], 'bitsize': p[3]} | |
else: | |
p[0] = {'decl': c_ast.TypeDecl(None, None, None), 'bitsize': p[2]} | |
def p_enum_specifier_1(self, p): | |
""" enum_specifier : ENUM ID | |
| ENUM TYPEID | |
""" | |
p[0] = c_ast.Enum(p[2], None, self._coord(p.lineno(1))) | |
def p_enum_specifier_2(self, p): | |
""" enum_specifier : ENUM LBRACE enumerator_list RBRACE | |
""" | |
p[0] = c_ast.Enum(None, p[3], self._coord(p.lineno(1))) | |
def p_enum_specifier_3(self, p): | |
""" enum_specifier : ENUM ID LBRACE enumerator_list RBRACE | |
| ENUM TYPEID LBRACE enumerator_list RBRACE | |
""" | |
p[0] = c_ast.Enum(p[2], p[4], self._coord(p.lineno(1))) | |
def p_enumerator_list(self, p): | |
""" enumerator_list : enumerator | |
| enumerator_list COMMA | |
| enumerator_list COMMA enumerator | |
""" | |
if len(p) == 2: | |
p[0] = c_ast.EnumeratorList([p[1]], p[1].coord) | |
elif len(p) == 3: | |
p[0] = p[1] | |
else: | |
p[1].enumerators.append(p[3]) | |
p[0] = p[1] | |
def p_enumerator(self, p): | |
""" enumerator : ID | |
| ID EQUALS constant_expression | |
""" | |
if len(p) == 2: | |
p[0] = c_ast.Enumerator( | |
p[1], None, | |
self._coord(p.lineno(1))) | |
else: | |
p[0] = c_ast.Enumerator( | |
p[1], p[3], | |
self._coord(p.lineno(1))) | |
def p_declarator_1(self, p): | |
""" declarator : direct_declarator | |
""" | |
p[0] = p[1] | |
def p_declarator_2(self, p): | |
""" declarator : pointer direct_declarator | |
""" | |
p[0] = self._type_modify_decl(p[2], p[1]) | |
def p_direct_declarator_1(self, p): | |
""" direct_declarator : ID | |
""" | |
p[0] = c_ast.TypeDecl( | |
declname=p[1], | |
type=None, | |
quals=None, | |
coord=self._coord(p.lineno(1))) | |
def p_direct_declarator_2(self, p): | |
""" direct_declarator : LPAREN declarator RPAREN | |
""" | |
p[0] = p[2] | |
def p_direct_declarator_3(self, p): | |
""" direct_declarator : direct_declarator LBRACKET assignment_expression_opt RBRACKET | |
""" | |
arr = c_ast.ArrayDecl( | |
type=None, | |
dim=p[3], | |
coord=p[1].coord) | |
p[0] = self._type_modify_decl(decl=p[1], modifier=arr) | |
# Special for VLAs | |
# | |
def p_direct_declarator_4(self, p): | |
""" direct_declarator : direct_declarator LBRACKET TIMES RBRACKET | |
""" | |
arr = c_ast.ArrayDecl( | |
type=None, | |
dim=c_ast.ID(p[3], self._coord(p.lineno(3))), | |
coord=p[1].coord) | |
p[0] = self._type_modify_decl(decl=p[1], modifier=arr) | |
def p_direct_declarator_5(self, p): | |
""" direct_declarator : direct_declarator LPAREN parameter_type_list RPAREN | |
| direct_declarator LPAREN identifier_list_opt RPAREN | |
""" | |
func = c_ast.FuncDecl( | |
args=p[3], | |
type=None, | |
coord=p[1].coord) | |
p[0] = self._type_modify_decl(decl=p[1], modifier=func) | |
def p_pointer(self, p): | |
""" pointer : TIMES type_qualifier_list_opt | |
| TIMES type_qualifier_list_opt pointer | |
""" | |
coord = self._coord(p.lineno(1)) | |
p[0] = c_ast.PtrDecl( | |
quals=p[2] or [], | |
type=p[3] if len(p) > 3 else None, | |
coord=coord) | |
def p_type_qualifier_list(self, p): | |
""" type_qualifier_list : type_qualifier | |
| type_qualifier_list type_qualifier | |
""" | |
p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]] | |
def p_parameter_type_list(self, p): | |
""" parameter_type_list : parameter_list | |
| parameter_list COMMA ELLIPSIS | |
""" | |
if len(p) > 2: | |
p[1].params.append(c_ast.EllipsisParam()) | |
p[0] = p[1] | |
def p_parameter_list(self, p): | |
""" parameter_list : parameter_declaration | |
| parameter_list COMMA parameter_declaration | |
""" | |
if len(p) == 2: # single parameter | |
p[0] = c_ast.ParamList([p[1]], p[1].coord) | |
else: | |
p[1].params.append(p[3]) | |
p[0] = p[1] | |
def p_parameter_declaration_1(self, p): | |
""" parameter_declaration : declaration_specifiers declarator | |
""" | |
spec = p[1] | |
decl = p[2] | |
decl = c_ast.Decl( | |
name=None, | |
quals=spec['qual'], | |
storage=spec['storage'], | |
funcspec=spec['function'], | |
type=decl, | |
init=None, | |
bitsize=None, | |
coord=decl.coord) | |
typename = spec['type'] or ['int'] | |
p[0] = self._fix_decl_name_type(decl, typename) | |
def p_parameter_declaration_2(self, p): | |
""" parameter_declaration : declaration_specifiers abstract_declarator_opt | |
""" | |
spec = p[1] | |
decl = c_ast.Typename( | |
quals=spec['qual'], | |
type=p[2] or c_ast.TypeDecl(None, None, None)) | |
typename = spec['type'] or ['int'] | |
p[0] = self._fix_decl_name_type(decl, typename) | |
def p_identifier_list(self, p): | |
""" identifier_list : identifier | |
| identifier_list COMMA identifier | |
""" | |
if len(p) == 2: # single parameter | |
p[0] = c_ast.ParamList([p[1]], p[1].coord) | |
else: | |
p[1].params.append(p[3]) | |
p[0] = p[1] | |
def p_initializer_1(self, p): | |
""" initializer : assignment_expression | |
""" | |
p[0] = p[1] | |
def p_initializer_2(self, p): | |
""" initializer : LBRACE initializer_list RBRACE | |
| LBRACE initializer_list COMMA RBRACE | |
""" | |
p[0] = p[2] | |
def p_initializer_list(self, p): | |
""" initializer_list : designation_opt initializer | |
| initializer_list COMMA designation_opt initializer | |
""" | |
if len(p) == 3: # single initializer | |
init = p[2] if p[1] is None else c_ast.NamedInitializer(p[1], p[2]) | |
p[0] = c_ast.ExprList([init], p[2].coord) | |
else: | |
init = p[4] if p[3] is None else c_ast.NamedInitializer(p[3], p[4]) | |
p[1].exprs.append(init) | |
p[0] = p[1] | |
def p_designation(self, p): | |
""" designation : designator_list EQUALS | |
""" | |
p[0] = p[1] | |
# Designators are represented as a list of nodes, in the order in which | |
# they're written in the code. | |
# | |
def p_designator_list(self, p): | |
""" designator_list : designator | |
| designator_list designator | |
""" | |
p[0] = [p[1]] if len(p) == 2 else p[1] + [p[2]] | |
def p_designator(self, p): | |
""" designator : LBRACKET constant_expression RBRACKET | |
| PERIOD identifier | |
""" | |
p[0] = p[2] | |
def p_type_name(self, p): | |
""" type_name : specifier_qualifier_list abstract_declarator_opt | |
""" | |
#~ print '==========' | |
#~ print p[1] | |
#~ print p[2] | |
#~ print p[2].children() | |
#~ print '==========' | |
typename = c_ast.Typename( | |
quals=p[1]['qual'], | |
type=p[2] or c_ast.TypeDecl(None, None, None)) | |
p[0] = self._fix_decl_name_type(typename, p[1]['type']) | |
def p_abstract_declarator_1(self, p): | |
""" abstract_declarator : pointer | |
""" | |
dummytype = c_ast.TypeDecl(None, None, None) | |
p[0] = self._type_modify_decl( | |
decl=dummytype, | |
modifier=p[1]) | |
def p_abstract_declarator_2(self, p): | |
""" abstract_declarator : pointer direct_abstract_declarator | |
""" | |
p[0] = self._type_modify_decl(p[2], p[1]) | |
def p_abstract_declarator_3(self, p): | |
""" abstract_declarator : direct_abstract_declarator | |
""" | |
p[0] = p[1] | |
# Creating and using direct_abstract_declarator_opt here | |
# instead of listing both direct_abstract_declarator and the | |
# lack of it in the beginning of _1 and _2 caused two | |
# shift/reduce errors. | |
# | |
def p_direct_abstract_declarator_1(self, p): | |
""" direct_abstract_declarator : LPAREN abstract_declarator RPAREN """ | |
p[0] = p[2] | |
def p_direct_abstract_declarator_2(self, p): | |
""" direct_abstract_declarator : direct_abstract_declarator LBRACKET assignment_expression_opt RBRACKET | |
""" | |
arr = c_ast.ArrayDecl( | |
type=None, | |
dim=p[3], | |
coord=p[1].coord) | |
p[0] = self._type_modify_decl(decl=p[1], modifier=arr) | |
def p_direct_abstract_declarator_3(self, p): | |
""" direct_abstract_declarator : LBRACKET assignment_expression_opt RBRACKET | |
""" | |
p[0] = c_ast.ArrayDecl( | |
type=c_ast.TypeDecl(None, None, None), | |
dim=p[2], | |
coord=self._coord(p.lineno(1))) | |
def p_direct_abstract_declarator_4(self, p): | |
""" direct_abstract_declarator : direct_abstract_declarator LBRACKET TIMES RBRACKET | |
""" | |
arr = c_ast.ArrayDecl( | |
type=None, | |
dim=c_ast.ID(p[3], self._coord(p.lineno(3))), | |
coord=p[1].coord) | |
p[0] = self._type_modify_decl(decl=p[1], modifier=arr) | |
def p_direct_abstract_declarator_5(self, p): | |
""" direct_abstract_declarator : LBRACKET TIMES RBRACKET | |
""" | |
p[0] = c_ast.ArrayDecl( | |
type=c_ast.TypeDecl(None, None, None), | |
dim=c_ast.ID(p[3], self._coord(p.lineno(3))), | |
coord=self._coord(p.lineno(1))) | |
def p_direct_abstract_declarator_6(self, p): | |
""" direct_abstract_declarator : direct_abstract_declarator LPAREN parameter_type_list_opt RPAREN | |
""" | |
func = c_ast.FuncDecl( | |
args=p[3], | |
type=None, | |
coord=p[1].coord) | |
p[0] = self._type_modify_decl(decl=p[1], modifier=func) | |
def p_direct_abstract_declarator_7(self, p): | |
""" direct_abstract_declarator : LPAREN parameter_type_list_opt RPAREN | |
""" | |
p[0] = c_ast.FuncDecl( | |
args=p[2], | |
type=c_ast.TypeDecl(None, None, None), | |
coord=self._coord(p.lineno(1))) | |
# declaration is a list, statement isn't. To make it consistent, block_item | |
# will always be a list | |
# | |
def p_block_item(self, p): | |
""" block_item : declaration | |
| statement | |
""" | |
p[0] = p[1] if isinstance(p[1], list) else [p[1]] | |
# Since we made block_item a list, this just combines lists | |
# | |
def p_block_item_list(self, p): | |
""" block_item_list : block_item | |
| block_item_list block_item | |
""" | |
p[0] = p[1] if len(p) == 2 else p[1] + p[2] | |
def p_compound_statement_1(self, p): | |
""" compound_statement : LBRACE block_item_list_opt RBRACE """ | |
p[0] = c_ast.Compound( | |
block_items=p[2], | |
coord=self._coord(p.lineno(1))) | |
def p_labeled_statement_1(self, p): | |
""" labeled_statement : ID COLON statement """ | |
p[0] = c_ast.Label(p[1], p[3], self._coord(p.lineno(1))) | |
def p_labeled_statement_2(self, p): | |
""" labeled_statement : CASE constant_expression COLON statement """ | |
p[0] = c_ast.Case(p[2], p[4], self._coord(p.lineno(1))) | |
def p_labeled_statement_3(self, p): | |
""" labeled_statement : DEFAULT COLON statement """ | |
p[0] = c_ast.Default(p[3], self._coord(p.lineno(1))) | |
def p_selection_statement_1(self, p): | |
""" selection_statement : IF LPAREN expression RPAREN statement """ | |
p[0] = c_ast.If(p[3], p[5], None, self._coord(p.lineno(1))) | |
def p_selection_statement_2(self, p): | |
""" selection_statement : IF LPAREN expression RPAREN statement ELSE statement """ | |
p[0] = c_ast.If(p[3], p[5], p[7], self._coord(p.lineno(1))) | |
def p_selection_statement_3(self, p): | |
""" selection_statement : SWITCH LPAREN expression RPAREN statement """ | |
p[0] = c_ast.Switch(p[3], p[5], self._coord(p.lineno(1))) | |
def p_iteration_statement_1(self, p): | |
""" iteration_statement : WHILE LPAREN expression RPAREN statement """ | |
p[0] = c_ast.While(p[3], p[5], self._coord(p.lineno(1))) | |
def p_iteration_statement_2(self, p): | |
""" iteration_statement : DO statement WHILE LPAREN expression RPAREN SEMI """ | |
p[0] = c_ast.DoWhile(p[5], p[2], self._coord(p.lineno(1))) | |
def p_iteration_statement_3(self, p): | |
""" iteration_statement : FOR LPAREN expression_opt SEMI expression_opt SEMI expression_opt RPAREN statement """ | |
p[0] = c_ast.For(p[3], p[5], p[7], p[9], self._coord(p.lineno(1))) | |
def p_iteration_statement_4(self, p): | |
""" iteration_statement : FOR LPAREN declaration expression_opt SEMI expression_opt RPAREN statement """ | |
p[0] = c_ast.For(c_ast.DeclList(p[3]), p[4], p[6], p[8], self._coord(p.lineno(1))) | |
def p_jump_statement_1(self, p): | |
""" jump_statement : GOTO ID SEMI """ | |
p[0] = c_ast.Goto(p[2], self._coord(p.lineno(1))) | |
def p_jump_statement_2(self, p): | |
""" jump_statement : BREAK SEMI """ | |
p[0] = c_ast.Break(self._coord(p.lineno(1))) | |
def p_jump_statement_3(self, p): | |
""" jump_statement : CONTINUE SEMI """ | |
p[0] = c_ast.Continue(self._coord(p.lineno(1))) | |
def p_jump_statement_4(self, p): | |
""" jump_statement : RETURN expression SEMI | |
| RETURN SEMI | |
""" | |
p[0] = c_ast.Return(p[2] if len(p) == 4 else None, self._coord(p.lineno(1))) | |
def p_expression_statement(self, p): | |
""" expression_statement : expression_opt SEMI """ | |
p[0] = p[1] | |
def p_expression(self, p): | |
""" expression : assignment_expression | |
| expression COMMA assignment_expression | |
""" | |
if len(p) == 2: | |
p[0] = p[1] | |
else: | |
if not isinstance(p[1], c_ast.ExprList): | |
p[1] = c_ast.ExprList([p[1]], p[1].coord) | |
p[1].exprs.append(p[3]) | |
p[0] = p[1] | |
def p_typedef_name(self, p): | |
""" typedef_name : TYPEID """ | |
p[0] = p[1] | |
def p_assignment_expression(self, p): | |
""" assignment_expression : conditional_expression | |
| unary_expression assignment_operator assignment_expression | |
""" | |
if len(p) == 2: | |
p[0] = p[1] | |
else: | |
p[0] = c_ast.Assignment(p[2], p[1], p[3], p[1].coord) | |
# K&R2 defines these as many separate rules, to encode | |
# precedence and associativity. Why work hard ? I'll just use | |
# the built in precedence/associativity specification feature | |
# of PLY. (see precedence declaration above) | |
# | |
def p_assignment_operator(self, p): | |
""" assignment_operator : EQUALS | |
| XOREQUAL | |
| TIMESEQUAL | |
| DIVEQUAL | |
| MODEQUAL | |
| PLUSEQUAL | |
| MINUSEQUAL | |
| LSHIFTEQUAL | |
| RSHIFTEQUAL | |
| ANDEQUAL | |
| OREQUAL | |
""" | |
p[0] = p[1] | |
def p_constant_expression(self, p): | |
""" constant_expression : conditional_expression """ | |
p[0] = p[1] | |
def p_conditional_expression(self, p): | |
""" conditional_expression : binary_expression | |
| binary_expression CONDOP expression COLON conditional_expression | |
""" | |
if len(p) == 2: | |
p[0] = p[1] | |
else: | |
p[0] = c_ast.TernaryOp(p[1], p[3], p[5], p[1].coord) | |
def p_binary_expression(self, p): | |
""" binary_expression : cast_expression | |
| binary_expression TIMES binary_expression | |
| binary_expression DIVIDE binary_expression | |
| binary_expression MOD binary_expression | |
| binary_expression PLUS binary_expression | |
| binary_expression MINUS binary_expression | |
| binary_expression RSHIFT binary_expression | |
| binary_expression LSHIFT binary_expression | |
| binary_expression LT binary_expression | |
| binary_expression LE binary_expression | |
| binary_expression GE binary_expression | |
| binary_expression GT binary_expression | |
| binary_expression EQ binary_expression | |
| binary_expression NE binary_expression | |
| binary_expression AND binary_expression | |
| binary_expression OR binary_expression | |
| binary_expression XOR binary_expression | |
| binary_expression LAND binary_expression | |
| binary_expression LOR binary_expression | |
""" | |
if len(p) == 2: | |
p[0] = p[1] | |
else: | |
p[0] = c_ast.BinaryOp(p[2], p[1], p[3], p[1].coord) | |
def p_cast_expression_1(self, p): | |
""" cast_expression : unary_expression """ | |
p[0] = p[1] | |
def p_cast_expression_2(self, p): | |
""" cast_expression : LPAREN type_name RPAREN cast_expression """ | |
p[0] = c_ast.Cast(p[2], p[4], p[2].coord) | |
def p_unary_expression_1(self, p): | |
""" unary_expression : postfix_expression """ | |
p[0] = p[1] | |
def p_unary_expression_2(self, p): | |
""" unary_expression : PLUSPLUS unary_expression | |
| MINUSMINUS unary_expression | |
| unary_operator cast_expression | |
""" | |
p[0] = c_ast.UnaryOp(p[1], p[2], p[2].coord) | |
def p_unary_expression_3(self, p): | |
""" unary_expression : SIZEOF unary_expression | |
| SIZEOF LPAREN type_name RPAREN | |
""" | |
p[0] = c_ast.UnaryOp( | |
p[1], | |
p[2] if len(p) == 3 else p[3], | |
self._coord(p.lineno(1))) | |
def p_unary_operator(self, p): | |
""" unary_operator : AND | |
| TIMES | |
| PLUS | |
| MINUS | |
| NOT | |
| LNOT | |
""" | |
p[0] = p[1] | |
def p_postfix_exptession_1(self, p): | |
""" postfix_expression : primary_expression """ | |
p[0] = p[1] | |
def p_postfix_exptession_2(self, p): | |
""" postfix_expression : postfix_expression LBRACKET expression RBRACKET """ | |
p[0] = c_ast.ArrayRef(p[1], p[3], p[1].coord) | |
def p_postfix_exptession_3(self, p): | |
""" postfix_expression : postfix_expression LPAREN argument_expression_list RPAREN | |
| postfix_expression LPAREN RPAREN | |
""" | |
p[0] = c_ast.FuncCall(p[1], p[3] if len(p) == 5 else None, p[1].coord) | |
def p_postfix_expression_4(self, p): | |
""" postfix_expression : postfix_expression PERIOD identifier | |
| postfix_expression ARROW identifier | |
""" | |
p[0] = c_ast.StructRef(p[1], p[2], p[3], p[1].coord) | |
def p_postfix_expression_5(self, p): | |
""" postfix_expression : postfix_expression PLUSPLUS | |
| postfix_expression MINUSMINUS | |
""" | |
p[0] = c_ast.UnaryOp('p' + p[2], p[1], p[1].coord) | |
def p_postfix_expression_6(self, p): | |
""" postfix_expression : LPAREN type_name RPAREN LBRACE initializer_list RBRACE | |
| LPAREN type_name RPAREN LBRACE initializer_list COMMA RBRACE | |
""" | |
p[0] = c_ast.CompoundLiteral(p[2], p[5]) | |
def p_primary_expression_1(self, p): | |
""" primary_expression : identifier """ | |
p[0] = p[1] | |
def p_primary_expression_2(self, p): | |
""" primary_expression : constant """ | |
p[0] = p[1] | |
def p_primary_expression_3(self, p): | |
""" primary_expression : unified_string_literal | |
| unified_wstring_literal | |
""" | |
p[0] = p[1] | |
def p_primary_expression_4(self, p): | |
""" primary_expression : LPAREN expression RPAREN """ | |
p[0] = p[2] | |
def p_argument_expression_list(self, p): | |
""" argument_expression_list : assignment_expression | |
| argument_expression_list COMMA assignment_expression | |
""" | |
if len(p) == 2: # single expr | |
p[0] = c_ast.ExprList([p[1]], p[1].coord) | |
else: | |
p[1].exprs.append(p[3]) | |
p[0] = p[1] | |
def p_identifier(self, p): | |
""" identifier : ID """ | |
p[0] = c_ast.ID(p[1], self._coord(p.lineno(1))) | |
def p_constant_1(self, p): | |
""" constant : INT_CONST_DEC | |
| INT_CONST_OCT | |
| INT_CONST_HEX | |
""" | |
p[0] = c_ast.Constant( | |
'int', p[1], self._coord(p.lineno(1))) | |
def p_constant_2(self, p): | |
""" constant : FLOAT_CONST """ | |
p[0] = c_ast.Constant( | |
'float', p[1], self._coord(p.lineno(1))) | |
def p_constant_3(self, p): | |
""" constant : CHAR_CONST | |
| WCHAR_CONST | |
""" | |
p[0] = c_ast.Constant( | |
'char', p[1], self._coord(p.lineno(1))) | |
# The "unified" string and wstring literal rules are for supporting | |
# concatenation of adjacent string literals. | |
# I.e. "hello " "world" is seen by the C compiler as a single string literal | |
# with the value "hello world" | |
# | |
def p_unified_string_literal(self, p): | |
""" unified_string_literal : STRING_LITERAL | |
| unified_string_literal STRING_LITERAL | |
""" | |
if len(p) == 2: # single literal | |
p[0] = c_ast.Constant( | |
'string', p[1], self._coord(p.lineno(1))) | |
else: | |
p[1].value = p[1].value[:-1] + p[2][1:] | |
p[0] = p[1] | |
def p_unified_wstring_literal(self, p): | |
""" unified_wstring_literal : WSTRING_LITERAL | |
| unified_wstring_literal WSTRING_LITERAL | |
""" | |
if len(p) == 2: # single literal | |
p[0] = c_ast.Constant( | |
'string', p[1], self._coord(p.lineno(1))) | |
else: | |
p[1].value = p[1].value.rstrip[:-1] + p[2][1:] | |
p[0] = p[1] | |
def p_empty(self, p): | |
'empty : ' | |
p[0] = None | |
def p_error(self, p): | |
if p: | |
self._parse_error( | |
'before: %s' % p.value, | |
self._coord(p.lineno)) | |
else: | |
self._parse_error('At end of input', '') | |
if __name__ == "__main__": | |
import pprint | |
import time | |
from portability import printme | |
t1 = time.time() | |
parser = CParser(lex_optimize=True, yacc_debug=True, yacc_optimize=False) | |
printme(time.time() - t1) | |
buf = ''' | |
int (*k)(int); | |
''' | |
# set debuglevel to 2 for debugging | |
t = parser.parse(buf, 'x.c', debuglevel=0) | |
t.show(showcoord=True) |