blob: 05bf8c82bb6b41d654c82985f967db44a0ef1548 [file] [log] [blame]
# Copyright (C) Frederick Dean 2009, All rights reserved
"""
Unit tests for L{OpenSSL.rand}.
"""
from unittest import main
import os
import stat
from OpenSSL.test.util import TestCase
from OpenSSL import rand
class RandTests(TestCase):
def test_bytes(self):
"""
Verify that we can obtain bytes from rand_bytes() and
that they are different each time. Test the parameter
of rand_bytes() for bad values.
"""
b1 = rand.bytes(50)
self.assertEqual(len(b1), 50)
b2 = rand.bytes(num_bytes=50) # parameter by name
self.assertNotEqual(b1, b2) # Hip, Hip, Horay! FIPS complaince
b3 = rand.bytes(num_bytes=0)
self.assertEqual(len(b3), 0)
exc = self.assertRaises(ValueError, rand.bytes, -1)
self.assertEqual(str(exc), "num_bytes must not be negative")
def test_add(self):
"""
L{OpenSSL.rand.add} adds entropy to the PRNG.
"""
rand.add('hamburger', 3)
def test_seed(self):
"""
L{OpenSSL.rand.seed} adds entropy to the PRNG.
"""
rand.seed('milk shake')
def test_status(self):
"""
L{OpenSSL.rand.status} returns C{True} if the PRNG has sufficient
entropy, C{False} otherwise.
"""
# It's hard to know what it is actually going to return. Different
# OpenSSL random engines decide differently whether they have enough
# entropy or not.
self.assertTrue(rand.status() in (1, 2))
def test_files(self):
"""
Test reading and writing of files via rand functions.
"""
# Write random bytes to a file
tmpfile = self.mktemp()
# Make sure it exists (so cleanup definitely succeeds)
fObj = file(tmpfile, 'w')
fObj.close()
try:
rand.write_file(tmpfile)
# Verify length of written file
size = os.stat(tmpfile)[stat.ST_SIZE]
self.assertEquals(size, 1024)
# Read random bytes from file
rand.load_file(tmpfile)
rand.load_file(tmpfile, 4) # specify a length
finally:
# Cleanup
os.unlink(tmpfile)
if __name__ == '__main__':
main()