blob: 7f5f9117bf8a9541114b9f81b703ca9c5211cc15 [file] [log] [blame]
//! Determining which types has vtable
use super::{generate_dependencies, ConstrainResult, MonotoneFramework};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::traversal::EdgeKind;
use crate::ir::ty::TypeKind;
use crate::{Entry, HashMap};
use std::cmp;
use std::ops;
/// The result of the `HasVtableAnalysis` for an individual item.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum HasVtableResult {
/// The item does not have a vtable pointer.
No,
/// The item has a vtable and the actual vtable pointer is within this item.
SelfHasVtable,
/// The item has a vtable, but the actual vtable pointer is in a base
/// member.
BaseHasVtable,
}
impl Default for HasVtableResult {
fn default() -> Self {
HasVtableResult::No
}
}
impl HasVtableResult {
/// Take the least upper bound of `self` and `rhs`.
pub fn join(self, rhs: Self) -> Self {
cmp::max(self, rhs)
}
}
impl ops::BitOr for HasVtableResult {
type Output = Self;
fn bitor(self, rhs: HasVtableResult) -> Self::Output {
self.join(rhs)
}
}
impl ops::BitOrAssign for HasVtableResult {
fn bitor_assign(&mut self, rhs: HasVtableResult) {
*self = self.join(rhs)
}
}
/// An analysis that finds for each IR item whether it has vtable or not
///
/// We use the monotone function `has vtable`, defined as follows:
///
/// * If T is a type alias, a templated alias, an indirection to another type,
/// or a reference of a type, T has vtable if the type T refers to has vtable.
/// * If T is a compound type, T has vtable if we saw a virtual function when
/// parsing it or any of its base member has vtable.
/// * If T is an instantiation of an abstract template definition, T has
/// vtable if template definition has vtable
#[derive(Debug, Clone)]
pub struct HasVtableAnalysis<'ctx> {
ctx: &'ctx BindgenContext,
// The incremental result of this analysis's computation. Everything in this
// set definitely has a vtable.
have_vtable: HashMap<ItemId, HasVtableResult>,
// Dependencies saying that if a key ItemId has been inserted into the
// `have_vtable` set, then each of the ids in Vec<ItemId> need to be
// considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// has a vtable or not.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}
impl<'ctx> HasVtableAnalysis<'ctx> {
fn consider_edge(kind: EdgeKind) -> bool {
match kind {
// These are the only edges that can affect whether a type has a
// vtable or not.
EdgeKind::TypeReference |
EdgeKind::BaseMember |
EdgeKind::TemplateDeclaration => true,
_ => false,
}
}
fn insert<Id: Into<ItemId>>(
&mut self,
id: Id,
result: HasVtableResult,
) -> ConstrainResult {
if let HasVtableResult::No = result {
return ConstrainResult::Same;
}
let id = id.into();
match self.have_vtable.entry(id) {
Entry::Occupied(mut entry) => {
if *entry.get() < result {
entry.insert(result);
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
Entry::Vacant(entry) => {
entry.insert(result);
ConstrainResult::Changed
}
}
}
fn forward<Id1, Id2>(&mut self, from: Id1, to: Id2) -> ConstrainResult
where
Id1: Into<ItemId>,
Id2: Into<ItemId>,
{
let from = from.into();
let to = to.into();
match self.have_vtable.get(&from).cloned() {
None => ConstrainResult::Same,
Some(r) => self.insert(to, r),
}
}
}
impl<'ctx> MonotoneFramework for HasVtableAnalysis<'ctx> {
type Node = ItemId;
type Extra = &'ctx BindgenContext;
type Output = HashMap<ItemId, HasVtableResult>;
fn new(ctx: &'ctx BindgenContext) -> HasVtableAnalysis<'ctx> {
let have_vtable = HashMap::default();
let dependencies = generate_dependencies(ctx, Self::consider_edge);
HasVtableAnalysis {
ctx,
have_vtable,
dependencies,
}
}
fn initial_worklist(&self) -> Vec<ItemId> {
self.ctx.allowlisted_items().iter().cloned().collect()
}
fn constrain(&mut self, id: ItemId) -> ConstrainResult {
trace!("constrain {:?}", id);
let item = self.ctx.resolve_item(id);
let ty = match item.as_type() {
None => return ConstrainResult::Same,
Some(ty) => ty,
};
// TODO #851: figure out a way to handle deriving from template type parameters.
match *ty.kind() {
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) |
TypeKind::ResolvedTypeRef(t) |
TypeKind::Reference(t) => {
trace!(
" aliases and references forward to their inner type"
);
self.forward(t, id)
}
TypeKind::Comp(ref info) => {
trace!(" comp considers its own methods and bases");
let mut result = HasVtableResult::No;
if info.has_own_virtual_method() {
trace!(" comp has its own virtual method");
result |= HasVtableResult::SelfHasVtable;
}
let bases_has_vtable = info.base_members().iter().any(|base| {
trace!(" comp has a base with a vtable: {:?}", base);
self.have_vtable.contains_key(&base.ty.into())
});
if bases_has_vtable {
result |= HasVtableResult::BaseHasVtable;
}
self.insert(id, result)
}
TypeKind::TemplateInstantiation(ref inst) => {
self.forward(inst.template_definition(), id)
}
_ => ConstrainResult::Same,
}
}
fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where
F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}
impl<'ctx> From<HasVtableAnalysis<'ctx>> for HashMap<ItemId, HasVtableResult> {
fn from(analysis: HasVtableAnalysis<'ctx>) -> Self {
// We let the lack of an entry mean "No" to save space.
extra_assert!(analysis
.have_vtable
.values()
.all(|v| { *v != HasVtableResult::No }));
analysis.have_vtable
}
}
/// A convenience trait for the things for which we might wonder if they have a
/// vtable during codegen.
///
/// This is not for _computing_ whether the thing has a vtable, it is for
/// looking up the results of the HasVtableAnalysis's computations for a
/// specific thing.
pub trait HasVtable {
/// Return `true` if this thing has vtable, `false` otherwise.
fn has_vtable(&self, ctx: &BindgenContext) -> bool;
/// Return `true` if this thing has an actual vtable pointer in itself, as
/// opposed to transitively in a base member.
fn has_vtable_ptr(&self, ctx: &BindgenContext) -> bool;
}