blob: 7fac5ffbe9a60c9604e8e3d990cc86b8bfbee249 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers and Eric Kidd. See the
// COPYRIGHT-RUST.txt file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed except
// according to those terms.
//! A simple library implementing the [CESU-8 compatibility encoding
//! scheme](http://www.unicode.org/reports/tr26/tr26-2.html). This is a
//! non-standard variant of UTF-8 that is used internally by some systems
//! that need to represent UTF-16 data as 8-bit characters. Yes, this is
//! ugly.
//!
//! Use of this encoding is discouraged by the Unicode Consortium. It's OK
//! for working with existing internal APIs, but it should not be used for
//! transmitting or storing data.
//!
//! ```
//! use std::borrow::Cow;
//! use cesu8::{from_cesu8, to_cesu8};
//!
//! // 16-bit Unicode characters are the same in UTF-8 and CESU-8.
//! assert_eq!(Cow::Borrowed("aé日".as_bytes()),
//! to_cesu8("aé日"));
//! assert_eq!(Cow::Borrowed("aé日"),
//! from_cesu8("aé日".as_bytes()).unwrap());
//!
//! // This string is CESU-8 data containing a 6-byte surrogate pair,
//! // which decodes to a 4-byte UTF-8 string.
//! let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81];
//! assert_eq!(Cow::Borrowed("\u{10401}"),
//! from_cesu8(data).unwrap());
//! ```
//!
//! ### A note about security
//!
//! As a general rule, this library is intended to fail on malformed or
//! unexpected input. CESU-8 is supposed to be an internal-only format,
//! and if we're seeing malformed data, we assume that it's either a bug in
//! somebody's code, or an attacker is trying to improperly encode data to
//! evade security checks.
//!
//! If you have a use case for lossy conversion to UTF-8, or conversion
//! from mixed UTF-8/CESU-8 data, please feel free to submit a pull request
//! for `from_cesu8_lossy_permissive` with appropriate behavior.
//!
//! ### Java and U+0000, and other variants
//!
//! Java uses the CESU-8 encoding as described above, but with one
//! difference: The null character U+0000 is represented as an overlong
//! UTF-8 sequence `C0 80`. This is supported by the `from_java_cesu8` and
//! `to_java_cesu8` methods.
//!
//! ### Surrogate pairs and UTF-8
//!
//! The UTF-16 encoding uses "surrogate pairs" to represent Unicode code
//! points in the range from U+10000 to U+10FFFF. These are 16-bit numbers
//! in the range 0xD800 to 0xDFFF.
//!
//! * 0xD800 to 0xDBFF: First half of surrogate pair. When encoded as
//! CESU-8, these become **1110**1101 **10**100000 **10**000000 to
//! **1110**1101 **10**101111 **10**111111.
//!
//! * 0xDC00 to 0xDFFF: Second half of surrogate pair. These become
//! **1110**1101 **10**110000 **10**000000 to
//! **1110**1101 **10**111111 **10**111111.
//!
//! Wikipedia [explains](http://en.wikipedia.org/wiki/UTF-16) the
//! code point to UTF-16 conversion process:
//!
//! > Consider the encoding of U+10437 (𐐷):
//! >
//! > * Subtract 0x10000 from 0x10437. The result is 0x00437, 0000 0000 0100
//! > 0011 0111.
//! > * Split this into the high 10-bit value and the low 10-bit value:
//! > 0000000001 and 0000110111.
//! > * Add 0xD800 to the high value to form the high surrogate: 0xD800 +
//! > 0x0001 = 0xD801.
//! > * Add 0xDC00 to the low value to form the low surrogate: 0xDC00 +
//! > 0x0037 = 0xDC37.
#![warn(missing_docs)]
use std::borrow::Cow;
use std::error::Error;
use std::fmt;
use std::result::Result;
use std::slice;
use std::str::{from_utf8, from_utf8_unchecked};
use unicode::utf8_char_width;
mod unicode;
/// Mask of the value bits of a continuation byte.
const CONT_MASK: u8 = 0b0011_1111u8;
/// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte.
const TAG_CONT_U8: u8 = 0b1000_0000u8;
/// The CESU-8 data could not be decoded as valid UTF-8 data.
#[derive(Clone, Copy, Debug)]
pub struct Cesu8DecodingError;
impl Error for Cesu8DecodingError {
fn description(&self) -> &str { "decoding error" }
fn cause(&self) -> Option<&Error> { None }
}
impl fmt::Display for Cesu8DecodingError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "could not convert CESU-8 data to UTF-8")
}
}
/// Which variant of the encoding are we working with?
#[derive(PartialEq, Eq)]
enum Variant {
/// Regular CESU-8, with '\0' represented by itself.
Standard,
/// This is technically Java's "Modified UTF-8", which is supposedly
/// like CESU-8, except that it UTF-8 encodes the '\0' byte. I'm sure
/// it seemed like a good idea at the time.
Java,
}
/// Convert CESU-8 data to a Rust string, re-encoding only if necessary.
/// Returns an error if the data cannot be represented as valid UTF-8.
///
/// ```
/// use std::borrow::Cow;
/// use cesu8::from_cesu8;
///
/// // This string is valid as UTF-8 or CESU-8, so it doesn't change,
/// // and we can convert it without allocating memory.
/// assert_eq!(Cow::Borrowed("aé日"),
/// from_cesu8("aé日".as_bytes()).unwrap());
///
/// // This string is CESU-8 data containing a 6-byte surrogate pair,
/// // which becomes a 4-byte UTF-8 string.
/// let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81];
/// assert_eq!(Cow::Borrowed("\u{10401}"),
/// from_cesu8(data).unwrap());
/// ```
pub fn from_cesu8(bytes: &[u8]) -> Result<Cow<str>, Cesu8DecodingError> {
from_cesu8_internal(bytes, Variant::Standard)
}
/// Convert Java's modified UTF-8 data to a Rust string, re-encoding only if
/// necessary. Returns an error if the data cannot be represented as valid
/// UTF-8.
///
/// ```
/// use std::borrow::Cow;
/// use cesu8::from_java_cesu8;
///
/// // This string is valid as UTF-8 or modified UTF-8, so it doesn't change,
/// // and we can convert it without allocating memory.
/// assert_eq!(Cow::Borrowed("aé日"),
/// from_java_cesu8("aé日".as_bytes()).unwrap());
///
/// // This string is modified UTF-8 data containing a 6-byte surrogate pair,
/// // which becomes a 4-byte UTF-8 string.
/// let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81];
/// assert_eq!(Cow::Borrowed("\u{10401}"),
/// from_java_cesu8(data).unwrap());
///
/// // This string is modified UTF-8 data containing null code-points.
/// let data = &[0xC0, 0x80, 0xC0, 0x80];
/// assert_eq!(Cow::Borrowed("\0\0"),
/// from_java_cesu8(data).unwrap());
/// ```
pub fn from_java_cesu8(bytes: &[u8]) -> Result<Cow<str>, Cesu8DecodingError> {
from_cesu8_internal(bytes, Variant::Java)
}
/// Do the actual work of decoding.
fn from_cesu8_internal(bytes: &[u8], variant: Variant) ->
Result<Cow<str>, Cesu8DecodingError>
{
match from_utf8(bytes) {
Ok(str) => Ok(Cow::Borrowed(str)),
_ => {
let mut decoded = Vec::with_capacity(bytes.len());
if decode_from_iter(&mut decoded, &mut bytes.iter(), variant) {
// Keep this assertion in debug mode only. It's important
// that this assertion is true, because Rust assumes that
// all UTF-8 strings are valid.
debug_assert!(from_utf8(&decoded[..]).is_ok());
Ok(Cow::Owned(unsafe { String::from_utf8_unchecked(decoded) }))
} else {
Err(Cesu8DecodingError)
}
}
}
}
#[test]
fn test_from_cesu8() {
// The surrogate-encoded character below is from the ICU library's
// icu/source/test/testdata/conversion.txt test case.
let data = &[0x4D, 0xE6, 0x97, 0xA5, 0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81, 0x7F];
assert_eq!(Cow::Borrowed("M日\u{10401}\u{7F}"),
from_cesu8(data).unwrap());
// We used to have test data from the CESU-8 specification, but when we
// worked it through manually, we got the wrong answer:
//
// Input: [0xED, 0xAE, 0x80, 0xED, 0xB0, 0x80]
// Binary: 11101101 10101110 10000000 11101101 10110000 10000000
//
// 0b1101_101110_000000 -> 0xDB80
// 0b1101_110000_000000 -> 0xDC00
//
// ((0xDB80 - 0xD800) << 10) | (0xDC00 - 0xDC00) -> 0xE0000
// 0x10000 + 0xE0000 -> 0xF0000
//
// The spec claims that we are supposed to get 0x10000, not 0xF0000.
// Since I can't reconcile this example data with the text of the
// specification, I decided to use a test character from ICU instead.
}
// Our internal decoder, based on Rust's is_utf8 implementation.
fn decode_from_iter(
decoded: &mut Vec<u8>, iter: &mut slice::Iter<u8>, variant: Variant)
-> bool
{
macro_rules! err {
() => { return false }
}
macro_rules! next {
() => {
match iter.next() {
Some(a) => *a,
// We needed data, but there was none: error!
None => err!()
}
}
}
macro_rules! next_cont {
() => {
{
let byte = next!();
if (byte) & !CONT_MASK == TAG_CONT_U8 { byte } else { err!() }
}
}
}
loop {
let first = match iter.next() {
Some(&b) => b,
// We're at the end of the iterator and a codepoint boundary at
// the same time, so this string is valid.
None => return true
};
if variant == Variant::Java && first == 0 {
// Java's modified UTF-8 should never contain \0 directly.
err!();
} else if first < 128 {
// Pass ASCII through directly.
decoded.push(first);
} else if first == 0xc0 && variant == Variant::Java {
match next!() {
0x80 => decoded.push(0),
_ => err!(),
}
} else {
let w = utf8_char_width(first);
let second = next_cont!();
match w {
// Two-byte sequences can be used directly.
2 => { decoded.extend([first, second].iter().cloned()); }
3 => {
let third = next_cont!();
match (first, second) {
// These are valid UTF-8, so pass them through.
(0xE0 , 0xA0 ... 0xBF) |
(0xE1 ... 0xEC, 0x80 ... 0xBF) |
(0xED , 0x80 ... 0x9F) |
(0xEE ... 0xEF, 0x80 ... 0xBF) => {
decoded.extend([first, second, third].iter()
.cloned())
}
// First half a surrogate pair, so decode.
(0xED , 0xA0 ... 0xAF) => {
if next!() != 0xED { err!() }
let fifth = next_cont!();
if fifth < 0xB0 || 0xBF < fifth { err!() }
let sixth = next_cont!();
let s = dec_surrogates(second, third, fifth, sixth);
decoded.extend(s.iter().cloned());
}
_ => err!()
}
}
_ => err!()
}
}
}
}
/// Convert the two trailing bytes from a CESU-8 surrogate to a regular
/// surrogate value.
fn dec_surrogate(second: u8, third: u8) -> u32 {
0xD000u32 | ((second & CONT_MASK) as u32) << 6 | (third & CONT_MASK) as u32
}
/// Convert the bytes from a CESU-8 surrogate pair into a valid UTF-8
/// sequence. Assumes input is valid.
fn dec_surrogates(second: u8, third: u8, fifth: u8, sixth: u8) -> [u8; 4] {
// Convert to a 32-bit code point.
let s1 = dec_surrogate(second, third);
let s2 = dec_surrogate(fifth, sixth);
let c = 0x10000 + (((s1 - 0xD800) << 10) | (s2 - 0xDC00));
//println!("{:0>8b} {:0>8b} {:0>8b} -> {:0>16b}", 0xEDu8, second, third, s1);
//println!("{:0>8b} {:0>8b} {:0>8b} -> {:0>16b}", 0xEDu8, fifth, sixth, s2);
//println!("-> {:0>32b}", c);
assert!(0x010000 <= c && c <= 0x10FFFF);
// Convert to UTF-8.
// 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
[0b1111_0000u8 | ((c & 0b1_1100_0000_0000_0000_0000) >> 18) as u8,
TAG_CONT_U8 | ((c & 0b0_0011_1111_0000_0000_0000) >> 12) as u8,
TAG_CONT_U8 | ((c & 0b0_0000_0000_1111_1100_0000) >> 6) as u8,
TAG_CONT_U8 | ((c & 0b0_0000_0000_0000_0011_1111) ) as u8]
}
/// Convert a Rust `&str` to CESU-8 bytes.
///
/// ```
/// use std::borrow::Cow;
/// use cesu8::to_cesu8;
///
/// // This string is valid as UTF-8 or CESU-8, so it doesn't change,
/// // and we can convert it without allocating memory.
/// assert_eq!(Cow::Borrowed("aé日".as_bytes()), to_cesu8("aé日"));
///
/// // This string is a 4-byte UTF-8 string, which becomes a 6-byte CESU-8
/// // vector.
/// assert_eq!(Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]),
/// to_cesu8("\u{10401}"));
/// ```
pub fn to_cesu8(text: &str) -> Cow<[u8]> {
if is_valid_cesu8(text) {
Cow::Borrowed(text.as_bytes())
} else {
Cow::Owned(to_cesu8_internal(text, Variant::Standard))
}
}
/// Convert a Rust `&str` to Java's modified UTF-8 bytes.
///
/// ```
/// use std::borrow::Cow;
/// use cesu8::to_java_cesu8;
///
/// // This string is valid as UTF-8 or CESU-8, so it doesn't change,
/// // and we can convert it without allocating memory.
/// assert_eq!(Cow::Borrowed("aé日".as_bytes()), to_java_cesu8("aé日"));
///
/// // This string is a 4-byte UTF-8 string, which becomes a 6-byte modified
/// // UTF-8 vector.
/// assert_eq!(Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]),
/// to_java_cesu8("\u{10401}"));
///
/// // This string contains null, which becomes 2-byte modified UTF-8 encoding
/// assert_eq!(Cow::Borrowed(&[0xC0, 0x80, 0xC0, 0x80]),
/// to_java_cesu8("\0\0"));
/// ```
pub fn to_java_cesu8(text: &str) -> Cow<[u8]> {
if is_valid_java_cesu8(text) {
Cow::Borrowed(text.as_bytes())
} else {
Cow::Owned(to_cesu8_internal(text, Variant::Java))
}
}
fn to_cesu8_internal(text: &str, variant: Variant) -> Vec<u8> {
let bytes = text.as_bytes();
let mut encoded = Vec::with_capacity(bytes.len() + bytes.len() >> 2);
let mut i = 0;
while i < bytes.len() {
let b = bytes[i];
if variant == Variant::Java && b == 0 {
encoded.push(0xc0);
encoded.push(0x80);
i += 1;
} else if b < 128 {
// Pass ASCII through quickly.
encoded.push(b);
i += 1;
} else {
// Figure out how many bytes we need for this character.
let w = utf8_char_width(b);
assert!(w <= 4);
assert!(i + w <= bytes.len());
if w != 4 {
// Pass through short UTF-8 sequences unmodified.
encoded.extend(bytes[i..i+w].iter().cloned());
} else {
// Encode 4-byte sequences as 6 bytes.
let s = unsafe { from_utf8_unchecked(&bytes[i..i+w]) };
let c = s.chars().next().unwrap() as u32 - 0x10000;
let mut s: [u16; 2] = [0; 2];
s[0] = ((c >> 10) as u16) | 0xD800;
s[1] = ((c & 0x3FF) as u16) | 0xDC00;
encoded.extend(enc_surrogate(s[0]).iter().cloned());
encoded.extend(enc_surrogate(s[1]).iter().cloned());
}
i += w;
}
}
encoded
}
/// Check whether a Rust string contains valid CESU-8 data.
pub fn is_valid_cesu8(text: &str) -> bool {
// We rely on the fact that Rust strings are guaranteed to be valid
// UTF-8.
for b in text.bytes() {
if (b & !CONT_MASK) == TAG_CONT_U8 { continue; }
if utf8_char_width(b) > 3 { return false; }
}
true
}
/// Check whether a Rust string contains valid Java's modified UTF-8 data.
pub fn is_valid_java_cesu8(text: &str) -> bool {
!text.contains('\0') && is_valid_cesu8(text)
}
#[test]
fn test_valid_cesu8() {
assert!(is_valid_cesu8("aé日"));
assert!(is_valid_java_cesu8("aé日"));
assert!(!is_valid_cesu8("\u{10401}"));
assert!(!is_valid_java_cesu8("\u{10401}"));
assert!(is_valid_cesu8("\0\0"));
assert!(!is_valid_java_cesu8("\0\0"));
}
/// Encode a single surrogate as CESU-8.
fn enc_surrogate(surrogate: u16) -> [u8; 3] {
assert!(0xD800 <= surrogate && surrogate <= 0xDFFF);
// 1110xxxx 10xxxxxx 10xxxxxx
[0b11100000 | ((surrogate & 0b11110000_00000000) >> 12) as u8,
TAG_CONT_U8 | ((surrogate & 0b00001111_11000000) >> 6) as u8,
TAG_CONT_U8 | ((surrogate & 0b00000000_00111111) ) as u8]
}