blob: df95e19ba8e29077069791d4bd9a9c4626b796d6 [file] [log] [blame]
Jakub Kotura425e552020-12-21 17:28:15 +01001#![warn(missing_docs)]
2#![crate_name="itertools"]
3#![cfg_attr(not(feature = "use_std"), no_std)]
4
5//! Extra iterator adaptors, functions and macros.
6//!
7//! To extend [`Iterator`] with methods in this crate, import
Joel Galensonb593e252021-06-21 13:15:57 -07008//! the [`Itertools`] trait:
Jakub Kotura425e552020-12-21 17:28:15 +01009//!
10//! ```
11//! use itertools::Itertools;
12//! ```
13//!
Joel Galensonb593e252021-06-21 13:15:57 -070014//! Now, new methods like [`interleave`](Itertools::interleave)
Jakub Kotura425e552020-12-21 17:28:15 +010015//! are available on all iterators:
16//!
17//! ```
18//! use itertools::Itertools;
19//!
20//! let it = (1..3).interleave(vec![-1, -2]);
21//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
22//! ```
23//!
24//! Most iterator methods are also provided as functions (with the benefit
25//! that they convert parameters using [`IntoIterator`]):
26//!
27//! ```
28//! use itertools::interleave;
29//!
30//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
31//! /* loop body */
32//! }
33//! ```
34//!
35//! ## Crate Features
36//!
37//! - `use_std`
38//! - Enabled by default.
39//! - Disable to compile itertools using `#![no_std]`. This disables
40//! any items that depend on collections (like `group_by`, `unique`,
41//! `kmerge`, `join` and many more).
42//!
43//! ## Rust Version
44//!
45//! This version of itertools requires Rust 1.32 or later.
Jakub Kotura425e552020-12-21 17:28:15 +010046#![doc(html_root_url="https://docs.rs/itertools/0.8/")]
47
48#[cfg(not(feature = "use_std"))]
49extern crate core as std;
50
Joel Galenson6f798712021-04-01 17:03:06 -070051#[cfg(feature = "use_alloc")]
52extern crate alloc;
53
54#[cfg(feature = "use_alloc")]
55use alloc::{
56 string::String,
57 vec::Vec,
58};
59
Jakub Kotura425e552020-12-21 17:28:15 +010060pub use either::Either;
61
Joel Galensonb593e252021-06-21 13:15:57 -070062use core::borrow::Borrow;
Jakub Kotura425e552020-12-21 17:28:15 +010063#[cfg(feature = "use_std")]
64use std::collections::HashMap;
65use std::iter::{IntoIterator, once};
66use std::cmp::Ordering;
67use std::fmt;
68#[cfg(feature = "use_std")]
Joel Galensonb593e252021-06-21 13:15:57 -070069use std::collections::HashSet;
70#[cfg(feature = "use_std")]
Jakub Kotura425e552020-12-21 17:28:15 +010071use std::hash::Hash;
Joel Galenson6f798712021-04-01 17:03:06 -070072#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +010073use std::fmt::Write;
Joel Galenson6f798712021-04-01 17:03:06 -070074#[cfg(feature = "use_alloc")]
75type VecIntoIter<T> = alloc::vec::IntoIter<T>;
76#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +010077use std::iter::FromIterator;
78
79#[macro_use]
80mod impl_macros;
81
82// for compatibility with no std and macros
83#[doc(hidden)]
84pub use std::iter as __std_iter;
85
86/// The concrete iterator types.
87pub mod structs {
88 pub use crate::adaptors::{
89 Dedup,
90 DedupBy,
Joel Galenson6f798712021-04-01 17:03:06 -070091 DedupWithCount,
92 DedupByWithCount,
Jakub Kotura425e552020-12-21 17:28:15 +010093 Interleave,
94 InterleaveShortest,
Joel Galenson6f798712021-04-01 17:03:06 -070095 FilterMapOk,
96 FilterOk,
Jakub Kotura425e552020-12-21 17:28:15 +010097 Product,
98 PutBack,
99 Batching,
100 MapInto,
Joel Galenson6f798712021-04-01 17:03:06 -0700101 MapOk,
Jakub Kotura425e552020-12-21 17:28:15 +0100102 Merge,
103 MergeBy,
104 TakeWhileRef,
105 WhileSome,
106 Coalesce,
107 TupleCombinations,
108 Positions,
109 Update,
110 };
111 #[allow(deprecated)]
Joel Galenson6f798712021-04-01 17:03:06 -0700112 pub use crate::adaptors::{MapResults, Step};
113 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100114 pub use crate::adaptors::MultiProduct;
Joel Galenson6f798712021-04-01 17:03:06 -0700115 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100116 pub use crate::combinations::Combinations;
Joel Galenson6f798712021-04-01 17:03:06 -0700117 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100118 pub use crate::combinations_with_replacement::CombinationsWithReplacement;
119 pub use crate::cons_tuples_impl::ConsTuples;
120 pub use crate::exactly_one_err::ExactlyOneError;
121 pub use crate::format::{Format, FormatWith};
Joel Galensonb593e252021-06-21 13:15:57 -0700122 pub use crate::flatten_ok::FlattenOk;
Jakub Kotura425e552020-12-21 17:28:15 +0100123 #[cfg(feature = "use_std")]
Joel Galenson6f798712021-04-01 17:03:06 -0700124 pub use crate::grouping_map::{GroupingMap, GroupingMapBy};
125 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100126 pub use crate::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
Joel Galenson6f798712021-04-01 17:03:06 -0700127 pub use crate::intersperse::{Intersperse, IntersperseWith};
128 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100129 pub use crate::kmerge_impl::{KMerge, KMergeBy};
130 pub use crate::merge_join::MergeJoinBy;
Joel Galenson6f798712021-04-01 17:03:06 -0700131 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100132 pub use crate::multipeek_impl::MultiPeek;
Joel Galenson6f798712021-04-01 17:03:06 -0700133 #[cfg(feature = "use_alloc")]
134 pub use crate::peek_nth::PeekNth;
Jakub Kotura425e552020-12-21 17:28:15 +0100135 pub use crate::pad_tail::PadUsing;
136 pub use crate::peeking_take_while::PeekingTakeWhile;
Joel Galenson6f798712021-04-01 17:03:06 -0700137 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100138 pub use crate::permutations::Permutations;
139 pub use crate::process_results_impl::ProcessResults;
Joel Galenson6f798712021-04-01 17:03:06 -0700140 #[cfg(feature = "use_alloc")]
141 pub use crate::powerset::Powerset;
142 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100143 pub use crate::put_back_n_impl::PutBackN;
Joel Galenson6f798712021-04-01 17:03:06 -0700144 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100145 pub use crate::rciter_impl::RcIter;
146 pub use crate::repeatn::RepeatN;
147 #[allow(deprecated)]
148 pub use crate::sources::{RepeatCall, Unfold, Iterate};
Joel Galenson6f798712021-04-01 17:03:06 -0700149 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100150 pub use crate::tee::Tee;
Joel Galenson6f798712021-04-01 17:03:06 -0700151 pub use crate::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples};
Jakub Kotura425e552020-12-21 17:28:15 +0100152 #[cfg(feature = "use_std")]
Joel Galensonb593e252021-06-21 13:15:57 -0700153 pub use crate::duplicates_impl::{Duplicates, DuplicatesBy};
154 #[cfg(feature = "use_std")]
Jakub Kotura425e552020-12-21 17:28:15 +0100155 pub use crate::unique_impl::{Unique, UniqueBy};
156 pub use crate::with_position::WithPosition;
157 pub use crate::zip_eq_impl::ZipEq;
158 pub use crate::zip_longest::ZipLongest;
159 pub use crate::ziptuple::Zip;
160}
161
162/// Traits helpful for using certain `Itertools` methods in generic contexts.
163pub mod traits {
164 pub use crate::tuple_impl::HomogeneousTuple;
165}
166
167#[allow(deprecated)]
168pub use crate::structs::*;
169pub use crate::concat_impl::concat;
170pub use crate::cons_tuples_impl::cons_tuples;
171pub use crate::diff::diff_with;
172pub use crate::diff::Diff;
Joel Galenson6f798712021-04-01 17:03:06 -0700173#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100174pub use crate::kmerge_impl::{kmerge_by};
175pub use crate::minmax::MinMaxResult;
176pub use crate::peeking_take_while::PeekingNext;
177pub use crate::process_results_impl::process_results;
178pub use crate::repeatn::repeat_n;
179#[allow(deprecated)]
180pub use crate::sources::{repeat_call, unfold, iterate};
181pub use crate::with_position::Position;
David LeGareb72e9052022-03-02 16:21:08 +0000182pub use crate::unziptuple::{multiunzip, MultiUnzip};
Jakub Kotura425e552020-12-21 17:28:15 +0100183pub use crate::ziptuple::multizip;
184mod adaptors;
185mod either_or_both;
186pub use crate::either_or_both::EitherOrBoth;
187#[doc(hidden)]
188pub mod free;
189#[doc(inline)]
190pub use crate::free::*;
191mod concat_impl;
192mod cons_tuples_impl;
Joel Galenson6f798712021-04-01 17:03:06 -0700193#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100194mod combinations;
Joel Galenson6f798712021-04-01 17:03:06 -0700195#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100196mod combinations_with_replacement;
197mod exactly_one_err;
198mod diff;
Joel Galensonb593e252021-06-21 13:15:57 -0700199mod flatten_ok;
Jakub Kotura425e552020-12-21 17:28:15 +0100200mod format;
201#[cfg(feature = "use_std")]
Joel Galenson6f798712021-04-01 17:03:06 -0700202mod grouping_map;
203#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100204mod group_map;
Joel Galenson6f798712021-04-01 17:03:06 -0700205#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100206mod groupbylazy;
207mod intersperse;
Joel Galenson6f798712021-04-01 17:03:06 -0700208#[cfg(feature = "use_alloc")]
209mod k_smallest;
210#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100211mod kmerge_impl;
Joel Galenson6f798712021-04-01 17:03:06 -0700212#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100213mod lazy_buffer;
214mod merge_join;
215mod minmax;
Joel Galenson6f798712021-04-01 17:03:06 -0700216#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100217mod multipeek_impl;
218mod pad_tail;
Joel Galenson6f798712021-04-01 17:03:06 -0700219#[cfg(feature = "use_alloc")]
220mod peek_nth;
Jakub Kotura425e552020-12-21 17:28:15 +0100221mod peeking_take_while;
Joel Galenson6f798712021-04-01 17:03:06 -0700222#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100223mod permutations;
Joel Galenson6f798712021-04-01 17:03:06 -0700224#[cfg(feature = "use_alloc")]
225mod powerset;
Jakub Kotura425e552020-12-21 17:28:15 +0100226mod process_results_impl;
Joel Galenson6f798712021-04-01 17:03:06 -0700227#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100228mod put_back_n_impl;
Joel Galenson6f798712021-04-01 17:03:06 -0700229#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100230mod rciter_impl;
231mod repeatn;
232mod size_hint;
233mod sources;
Joel Galenson6f798712021-04-01 17:03:06 -0700234#[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100235mod tee;
236mod tuple_impl;
237#[cfg(feature = "use_std")]
Joel Galensonb593e252021-06-21 13:15:57 -0700238mod duplicates_impl;
239#[cfg(feature = "use_std")]
Jakub Kotura425e552020-12-21 17:28:15 +0100240mod unique_impl;
David LeGareb72e9052022-03-02 16:21:08 +0000241mod unziptuple;
Jakub Kotura425e552020-12-21 17:28:15 +0100242mod with_position;
243mod zip_eq_impl;
244mod zip_longest;
245mod ziptuple;
246
247#[macro_export]
248/// Create an iterator over the “cartesian product” of iterators.
249///
250/// Iterator element type is like `(A, B, ..., E)` if formed
251/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
252///
253/// ```
254/// # use itertools::iproduct;
255/// #
256/// # fn main() {
257/// // Iterate over the coordinates of a 4 x 4 x 4 grid
258/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
259/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
260/// // ..
261/// }
262/// # }
263/// ```
264macro_rules! iproduct {
265 (@flatten $I:expr,) => (
266 $I
267 );
268 (@flatten $I:expr, $J:expr, $($K:expr,)*) => (
Joel Galenson6f798712021-04-01 17:03:06 -0700269 $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*)
Jakub Kotura425e552020-12-21 17:28:15 +0100270 );
271 ($I:expr) => (
272 $crate::__std_iter::IntoIterator::into_iter($I)
273 );
274 ($I:expr, $J:expr) => (
Joel Galenson6f798712021-04-01 17:03:06 -0700275 $crate::Itertools::cartesian_product($crate::iproduct!($I), $crate::iproduct!($J))
Jakub Kotura425e552020-12-21 17:28:15 +0100276 );
277 ($I:expr, $J:expr, $($K:expr),+) => (
Joel Galenson6f798712021-04-01 17:03:06 -0700278 $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+)
Jakub Kotura425e552020-12-21 17:28:15 +0100279 );
280}
281
282#[macro_export]
283/// Create an iterator running multiple iterators in lockstep.
284///
285/// The `izip!` iterator yields elements until any subiterator
286/// returns `None`.
287///
288/// This is a version of the standard ``.zip()`` that's supporting more than
289/// two iterators. The iterator element type is a tuple with one element
290/// from each of the input iterators. Just like ``.zip()``, the iteration stops
291/// when the shortest of the inputs reaches its end.
292///
293/// **Note:** The result of this macro is in the general case an iterator
294/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
295/// The special cases of one and two arguments produce the equivalent of
296/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
297///
298/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
299/// of using the standard library `.zip()`.
300///
Jakub Kotura425e552020-12-21 17:28:15 +0100301/// ```
302/// # use itertools::izip;
303/// #
304/// # fn main() {
305///
306/// // iterate over three sequences side-by-side
307/// let mut results = [0, 0, 0, 0];
308/// let inputs = [3, 7, 9, 6];
309///
310/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) {
311/// *r = index * 10 + input;
312/// }
313///
314/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
315/// # }
316/// ```
317macro_rules! izip {
318 // @closure creates a tuple-flattening closure for .map() call. usage:
319 // @closure partial_pattern => partial_tuple , rest , of , iterators
320 // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee )
321 ( @closure $p:pat => $tup:expr ) => {
322 |$p| $tup
323 };
324
325 // The "b" identifier is a different identifier on each recursion level thanks to hygiene.
326 ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => {
Joel Galenson6f798712021-04-01 17:03:06 -0700327 $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*)
Jakub Kotura425e552020-12-21 17:28:15 +0100328 };
329
330 // unary
331 ($first:expr $(,)*) => {
332 $crate::__std_iter::IntoIterator::into_iter($first)
333 };
334
335 // binary
336 ($first:expr, $second:expr $(,)*) => {
Joel Galenson6f798712021-04-01 17:03:06 -0700337 $crate::izip!($first)
Jakub Kotura425e552020-12-21 17:28:15 +0100338 .zip($second)
339 };
340
341 // n-ary where n > 2
342 ( $first:expr $( , $rest:expr )* $(,)* ) => {
Joel Galenson6f798712021-04-01 17:03:06 -0700343 $crate::izip!($first)
Jakub Kotura425e552020-12-21 17:28:15 +0100344 $(
345 .zip($rest)
346 )*
347 .map(
Joel Galenson6f798712021-04-01 17:03:06 -0700348 $crate::izip!(@closure a => (a) $( , $rest )*)
Jakub Kotura425e552020-12-21 17:28:15 +0100349 )
350 };
351}
352
Joel Galensonb593e252021-06-21 13:15:57 -0700353#[macro_export]
354/// [Chain][`chain`] zero or more iterators together into one sequence.
355///
356/// The comma-separated arguments must implement [`IntoIterator`].
357/// The final argument may be followed by a trailing comma.
358///
359/// [`chain`]: Iterator::chain
360///
361/// # Examples
362///
363/// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]:
364/// ```
365/// use std::iter;
366/// use itertools::chain;
367///
368/// let _: iter::Empty<()> = chain!();
369/// let _: iter::Empty<i8> = chain!();
370/// ```
371///
372/// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator):
373/// ```
374/// use std::{ops::Range, slice};
375/// use itertools::chain;
376/// let _: <Range<_> as IntoIterator>::IntoIter = chain!((2..6),); // trailing comma optional!
377/// let _: <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]);
378/// ```
379///
380/// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each
381/// argument, and then [`chain`] them together:
382/// ```
383/// use std::{iter::*, ops::Range, slice};
384/// use itertools::{assert_equal, chain};
385///
386/// // e.g., this:
387/// let with_macro: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> =
388/// chain![once(&0), repeat(&1).take(2), &[2, 3, 5],];
389///
390/// // ...is equivalant to this:
391/// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> =
392/// once(&0)
393/// .chain(repeat(&1).take(2))
394/// .chain(&[2, 3, 5]);
395///
396/// assert_equal(with_macro, with_method);
397/// ```
398macro_rules! chain {
399 () => {
400 core::iter::empty()
401 };
402 ($first:expr $(, $rest:expr )* $(,)?) => {
403 {
404 let iter = core::iter::IntoIterator::into_iter($first);
405 $(
406 let iter =
407 core::iter::Iterator::chain(
408 iter,
409 core::iter::IntoIterator::into_iter($rest));
410 )*
411 iter
412 }
413 };
414}
415
Jakub Kotura425e552020-12-21 17:28:15 +0100416/// An [`Iterator`] blanket implementation that provides extra adaptors and
417/// methods.
418///
419/// This trait defines a number of methods. They are divided into two groups:
420///
421/// * *Adaptors* take an iterator and parameter as input, and return
422/// a new iterator value. These are listed first in the trait. An example
Joel Galensonb593e252021-06-21 13:15:57 -0700423/// of an adaptor is [`.interleave()`](Itertools::interleave)
Jakub Kotura425e552020-12-21 17:28:15 +0100424///
425/// * *Regular methods* are those that don't return iterators and instead
426/// return a regular value of some other kind.
Joel Galensonb593e252021-06-21 13:15:57 -0700427/// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular
Jakub Kotura425e552020-12-21 17:28:15 +0100428/// method in the list.
Jakub Kotura425e552020-12-21 17:28:15 +0100429pub trait Itertools : Iterator {
430 // adaptors
431
432 /// Alternate elements from two iterators until both have run out.
433 ///
434 /// Iterator element type is `Self::Item`.
435 ///
436 /// This iterator is *fused*.
437 ///
438 /// ```
439 /// use itertools::Itertools;
440 ///
441 /// let it = (1..7).interleave(vec![-1, -2]);
442 /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
443 /// ```
444 fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
445 where J: IntoIterator<Item = Self::Item>,
446 Self: Sized
447 {
448 interleave(self, other)
449 }
450
451 /// Alternate elements from two iterators until at least one of them has run
452 /// out.
453 ///
454 /// Iterator element type is `Self::Item`.
455 ///
456 /// ```
457 /// use itertools::Itertools;
458 ///
459 /// let it = (1..7).interleave_shortest(vec![-1, -2]);
460 /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
461 /// ```
462 fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter>
463 where J: IntoIterator<Item = Self::Item>,
464 Self: Sized
465 {
466 adaptors::interleave_shortest(self, other.into_iter())
467 }
468
469 /// An iterator adaptor to insert a particular value
470 /// between each element of the adapted iterator.
471 ///
472 /// Iterator element type is `Self::Item`.
473 ///
474 /// This iterator is *fused*.
475 ///
476 /// ```
477 /// use itertools::Itertools;
478 ///
479 /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
480 /// ```
481 fn intersperse(self, element: Self::Item) -> Intersperse<Self>
482 where Self: Sized,
483 Self::Item: Clone
484 {
485 intersperse::intersperse(self, element)
486 }
487
Joel Galenson6f798712021-04-01 17:03:06 -0700488 /// An iterator adaptor to insert a particular value created by a function
489 /// between each element of the adapted iterator.
490 ///
491 /// Iterator element type is `Self::Item`.
492 ///
493 /// This iterator is *fused*.
494 ///
495 /// ```
496 /// use itertools::Itertools;
497 ///
498 /// let mut i = 10;
499 /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]);
500 /// assert_eq!(i, 8);
501 /// ```
502 fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F>
503 where Self: Sized,
504 F: FnMut() -> Self::Item
505 {
506 intersperse::intersperse_with(self, element)
507 }
508
Jakub Kotura425e552020-12-21 17:28:15 +0100509 /// Create an iterator which iterates over both this and the specified
510 /// iterator simultaneously, yielding pairs of two optional elements.
511 ///
512 /// This iterator is *fused*.
513 ///
514 /// As long as neither input iterator is exhausted yet, it yields two values
515 /// via `EitherOrBoth::Both`.
516 ///
517 /// When the parameter iterator is exhausted, it only yields a value from the
518 /// `self` iterator via `EitherOrBoth::Left`.
519 ///
520 /// When the `self` iterator is exhausted, it only yields a value from the
521 /// parameter iterator via `EitherOrBoth::Right`.
522 ///
523 /// When both iterators return `None`, all further invocations of `.next()`
524 /// will return `None`.
525 ///
526 /// Iterator element type is
Joel Galensonb593e252021-06-21 13:15:57 -0700527 /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth).
Jakub Kotura425e552020-12-21 17:28:15 +0100528 ///
529 /// ```rust
530 /// use itertools::EitherOrBoth::{Both, Right};
531 /// use itertools::Itertools;
532 /// let it = (0..1).zip_longest(1..3);
533 /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
534 /// ```
535 #[inline]
536 fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
537 where J: IntoIterator,
538 Self: Sized
539 {
540 zip_longest::zip_longest(self, other.into_iter())
541 }
542
543 /// Create an iterator which iterates over both this and the specified
544 /// iterator simultaneously, yielding pairs of elements.
545 ///
546 /// **Panics** if the iterators reach an end and they are not of equal
547 /// lengths.
548 #[inline]
549 fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
550 where J: IntoIterator,
551 Self: Sized
552 {
553 zip_eq(self, other)
554 }
555
556 /// A “meta iterator adaptor”. Its closure receives a reference to the
557 /// iterator and may pick off as many elements as it likes, to produce the
558 /// next iterator element.
559 ///
560 /// Iterator element type is `B`.
561 ///
562 /// ```
563 /// use itertools::Itertools;
564 ///
565 /// // An adaptor that gathers elements in pairs
566 /// let pit = (0..4).batching(|it| {
567 /// match it.next() {
568 /// None => None,
569 /// Some(x) => match it.next() {
570 /// None => None,
571 /// Some(y) => Some((x, y)),
572 /// }
573 /// }
574 /// });
575 ///
576 /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
577 /// ```
578 ///
579 fn batching<B, F>(self, f: F) -> Batching<Self, F>
580 where F: FnMut(&mut Self) -> Option<B>,
581 Self: Sized
582 {
583 adaptors::batching(self, f)
584 }
585
586 /// Return an *iterable* that can group iterator elements.
587 /// Consecutive elements that map to the same key (“runs”), are assigned
588 /// to the same group.
589 ///
590 /// `GroupBy` is the storage for the lazy grouping operation.
591 ///
592 /// If the groups are consumed in order, or if each group's iterator is
593 /// dropped without keeping it around, then `GroupBy` uses no
594 /// allocations. It needs allocations only if several group iterators
595 /// are alive at the same time.
596 ///
Joel Galensonb593e252021-06-21 13:15:57 -0700597 /// This type implements [`IntoIterator`] (it is **not** an iterator
Jakub Kotura425e552020-12-21 17:28:15 +0100598 /// itself), because the group iterators need to borrow from this
599 /// value. It should be stored in a local variable or temporary and
600 /// iterated.
601 ///
602 /// Iterator element type is `(K, Group)`: the group's key and the
603 /// group iterator.
604 ///
605 /// ```
606 /// use itertools::Itertools;
607 ///
608 /// // group data into runs of larger than zero or not.
609 /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
610 /// // groups: |---->|------>|--------->|
611 ///
612 /// // Note: The `&` is significant here, `GroupBy` is iterable
613 /// // only by reference. You can also call `.into_iter()` explicitly.
614 /// let mut data_grouped = Vec::new();
615 /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) {
616 /// data_grouped.push((key, group.collect()));
617 /// }
618 /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
619 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -0700620 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100621 fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
622 where Self: Sized,
623 F: FnMut(&Self::Item) -> K,
624 K: PartialEq,
625 {
626 groupbylazy::new(self, key)
627 }
628
629 /// Return an *iterable* that can chunk the iterator.
630 ///
631 /// Yield subiterators (chunks) that each yield a fixed number elements,
632 /// determined by `size`. The last chunk will be shorter if there aren't
633 /// enough elements.
634 ///
635 /// `IntoChunks` is based on `GroupBy`: it is iterable (implements
636 /// `IntoIterator`, **not** `Iterator`), and it only buffers if several
637 /// chunk iterators are alive at the same time.
638 ///
639 /// Iterator element type is `Chunk`, each chunk's iterator.
640 ///
641 /// **Panics** if `size` is 0.
642 ///
643 /// ```
644 /// use itertools::Itertools;
645 ///
646 /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
647 /// //chunk size=3 |------->|-------->|--->|
648 ///
649 /// // Note: The `&` is significant here, `IntoChunks` is iterable
650 /// // only by reference. You can also call `.into_iter()` explicitly.
651 /// for chunk in &data.into_iter().chunks(3) {
652 /// // Check that the sum of each chunk is 4.
653 /// assert_eq!(4, chunk.sum());
654 /// }
655 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -0700656 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100657 fn chunks(self, size: usize) -> IntoChunks<Self>
658 where Self: Sized,
659 {
660 assert!(size != 0);
661 groupbylazy::new_chunks(self, size)
662 }
663
664 /// Return an iterator over all contiguous windows producing tuples of
David LeGareb72e9052022-03-02 16:21:08 +0000665 /// a specific size (up to 12).
Jakub Kotura425e552020-12-21 17:28:15 +0100666 ///
667 /// `tuple_windows` clones the iterator elements so that they can be
668 /// part of successive windows, this makes it most suited for iterators
669 /// of references and other values that are cheap to copy.
670 ///
671 /// ```
672 /// use itertools::Itertools;
673 /// let mut v = Vec::new();
Joel Galenson6f798712021-04-01 17:03:06 -0700674 ///
675 /// // pairwise iteration
Jakub Kotura425e552020-12-21 17:28:15 +0100676 /// for (a, b) in (1..5).tuple_windows() {
677 /// v.push((a, b));
678 /// }
679 /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
680 ///
681 /// let mut it = (1..5).tuple_windows();
682 /// assert_eq!(Some((1, 2, 3)), it.next());
683 /// assert_eq!(Some((2, 3, 4)), it.next());
684 /// assert_eq!(None, it.next());
685 ///
686 /// // this requires a type hint
687 /// let it = (1..5).tuple_windows::<(_, _, _)>();
688 /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
689 ///
690 /// // you can also specify the complete type
691 /// use itertools::TupleWindows;
692 /// use std::ops::Range;
693 ///
694 /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows();
695 /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
696 /// ```
697 fn tuple_windows<T>(self) -> TupleWindows<Self, T>
698 where Self: Sized + Iterator<Item = T::Item>,
699 T: traits::HomogeneousTuple,
700 T::Item: Clone
701 {
702 tuple_impl::tuple_windows(self)
703 }
704
Joel Galenson6f798712021-04-01 17:03:06 -0700705 /// Return an iterator over all windows, wrapping back to the first
706 /// elements when the window would otherwise exceed the length of the
David LeGareb72e9052022-03-02 16:21:08 +0000707 /// iterator, producing tuples of a specific size (up to 12).
Joel Galenson6f798712021-04-01 17:03:06 -0700708 ///
709 /// `circular_tuple_windows` clones the iterator elements so that they can be
710 /// part of successive windows, this makes it most suited for iterators
711 /// of references and other values that are cheap to copy.
712 ///
713 /// ```
714 /// use itertools::Itertools;
715 /// let mut v = Vec::new();
716 /// for (a, b) in (1..5).circular_tuple_windows() {
717 /// v.push((a, b));
718 /// }
719 /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]);
720 ///
721 /// let mut it = (1..5).circular_tuple_windows();
722 /// assert_eq!(Some((1, 2, 3)), it.next());
723 /// assert_eq!(Some((2, 3, 4)), it.next());
724 /// assert_eq!(Some((3, 4, 1)), it.next());
725 /// assert_eq!(Some((4, 1, 2)), it.next());
726 /// assert_eq!(None, it.next());
727 ///
728 /// // this requires a type hint
729 /// let it = (1..5).circular_tuple_windows::<(_, _, _)>();
730 /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]);
731 /// ```
732 fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T>
733 where Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator,
734 T: tuple_impl::TupleCollect + Clone,
735 T::Item: Clone
736 {
737 tuple_impl::circular_tuple_windows(self)
738 }
Jakub Kotura425e552020-12-21 17:28:15 +0100739 /// Return an iterator that groups the items in tuples of a specific size
David LeGareb72e9052022-03-02 16:21:08 +0000740 /// (up to 12).
Jakub Kotura425e552020-12-21 17:28:15 +0100741 ///
Joel Galensonb593e252021-06-21 13:15:57 -0700742 /// See also the method [`.next_tuple()`](Itertools::next_tuple).
Jakub Kotura425e552020-12-21 17:28:15 +0100743 ///
744 /// ```
745 /// use itertools::Itertools;
746 /// let mut v = Vec::new();
747 /// for (a, b) in (1..5).tuples() {
748 /// v.push((a, b));
749 /// }
750 /// assert_eq!(v, vec![(1, 2), (3, 4)]);
751 ///
752 /// let mut it = (1..7).tuples();
753 /// assert_eq!(Some((1, 2, 3)), it.next());
754 /// assert_eq!(Some((4, 5, 6)), it.next());
755 /// assert_eq!(None, it.next());
756 ///
757 /// // this requires a type hint
758 /// let it = (1..7).tuples::<(_, _, _)>();
759 /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
760 ///
761 /// // you can also specify the complete type
762 /// use itertools::Tuples;
763 /// use std::ops::Range;
764 ///
765 /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples();
766 /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
767 /// ```
768 ///
Joel Galensonb593e252021-06-21 13:15:57 -0700769 /// See also [`Tuples::into_buffer`].
Jakub Kotura425e552020-12-21 17:28:15 +0100770 fn tuples<T>(self) -> Tuples<Self, T>
771 where Self: Sized + Iterator<Item = T::Item>,
772 T: traits::HomogeneousTuple
773 {
774 tuple_impl::tuples(self)
775 }
776
777 /// Split into an iterator pair that both yield all elements from
778 /// the original iterator.
779 ///
780 /// **Note:** If the iterator is clonable, prefer using that instead
781 /// of using this method. It is likely to be more efficient.
782 ///
783 /// Iterator element type is `Self::Item`.
784 ///
785 /// ```
786 /// use itertools::Itertools;
787 /// let xs = vec![0, 1, 2, 3];
788 ///
789 /// let (mut t1, t2) = xs.into_iter().tee();
790 /// itertools::assert_equal(t1.next(), Some(0));
791 /// itertools::assert_equal(t2, 0..4);
792 /// itertools::assert_equal(t1, 1..4);
793 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -0700794 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +0100795 fn tee(self) -> (Tee<Self>, Tee<Self>)
796 where Self: Sized,
797 Self::Item: Clone
798 {
799 tee::new(self)
800 }
801
802 /// Return an iterator adaptor that steps `n` elements in the base iterator
803 /// for each iteration.
804 ///
805 /// The iterator steps by yielding the next element from the base iterator,
806 /// then skipping forward `n - 1` elements.
807 ///
808 /// Iterator element type is `Self::Item`.
809 ///
810 /// **Panics** if the step is 0.
811 ///
812 /// ```
813 /// use itertools::Itertools;
814 ///
815 /// let it = (0..8).step(3);
816 /// itertools::assert_equal(it, vec![0, 3, 6]);
817 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -0700818 #[deprecated(note="Use std .step_by() instead", since="0.8.0")]
Jakub Kotura425e552020-12-21 17:28:15 +0100819 #[allow(deprecated)]
820 fn step(self, n: usize) -> Step<Self>
821 where Self: Sized
822 {
823 adaptors::step(self, n)
824 }
825
Joel Galensonb593e252021-06-21 13:15:57 -0700826 /// Convert each item of the iterator using the [`Into`] trait.
Jakub Kotura425e552020-12-21 17:28:15 +0100827 ///
828 /// ```rust
829 /// use itertools::Itertools;
830 ///
831 /// (1i32..42i32).map_into::<f64>().collect_vec();
832 /// ```
833 fn map_into<R>(self) -> MapInto<Self, R>
834 where Self: Sized,
835 Self::Item: Into<R>,
836 {
837 adaptors::map_into(self)
838 }
839
Joel Galensonb593e252021-06-21 13:15:57 -0700840 /// See [`.map_ok()`](Itertools::map_ok).
Joel Galenson6f798712021-04-01 17:03:06 -0700841 #[deprecated(note="Use .map_ok() instead", since="0.10.0")]
842 fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F>
843 where Self: Iterator<Item = Result<T, E>> + Sized,
844 F: FnMut(T) -> U,
845 {
846 self.map_ok(f)
847 }
848
Jakub Kotura425e552020-12-21 17:28:15 +0100849 /// Return an iterator adaptor that applies the provided closure
850 /// to every `Result::Ok` value. `Result::Err` values are
851 /// unchanged.
852 ///
853 /// ```
854 /// use itertools::Itertools;
855 ///
856 /// let input = vec![Ok(41), Err(false), Ok(11)];
Joel Galenson6f798712021-04-01 17:03:06 -0700857 /// let it = input.into_iter().map_ok(|i| i + 1);
Jakub Kotura425e552020-12-21 17:28:15 +0100858 /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
859 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -0700860 fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F>
Jakub Kotura425e552020-12-21 17:28:15 +0100861 where Self: Iterator<Item = Result<T, E>> + Sized,
862 F: FnMut(T) -> U,
863 {
Joel Galenson6f798712021-04-01 17:03:06 -0700864 adaptors::map_ok(self, f)
865 }
866
867 /// Return an iterator adaptor that filters every `Result::Ok`
868 /// value with the provided closure. `Result::Err` values are
869 /// unchanged.
870 ///
871 /// ```
872 /// use itertools::Itertools;
873 ///
874 /// let input = vec![Ok(22), Err(false), Ok(11)];
875 /// let it = input.into_iter().filter_ok(|&i| i > 20);
876 /// itertools::assert_equal(it, vec![Ok(22), Err(false)]);
877 /// ```
878 fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F>
879 where Self: Iterator<Item = Result<T, E>> + Sized,
880 F: FnMut(&T) -> bool,
881 {
882 adaptors::filter_ok(self, f)
883 }
884
885 /// Return an iterator adaptor that filters and transforms every
886 /// `Result::Ok` value with the provided closure. `Result::Err`
887 /// values are unchanged.
888 ///
889 /// ```
890 /// use itertools::Itertools;
891 ///
892 /// let input = vec![Ok(22), Err(false), Ok(11)];
893 /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None });
894 /// itertools::assert_equal(it, vec![Ok(44), Err(false)]);
895 /// ```
896 fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F>
897 where Self: Iterator<Item = Result<T, E>> + Sized,
898 F: FnMut(T) -> Option<U>,
899 {
900 adaptors::filter_map_ok(self, f)
Jakub Kotura425e552020-12-21 17:28:15 +0100901 }
902
Joel Galensonb593e252021-06-21 13:15:57 -0700903 /// Return an iterator adaptor that flattens every `Result::Ok` value into
904 /// a series of `Result::Ok` values. `Result::Err` values are unchanged.
905 ///
906 /// This is useful when you have some common error type for your crate and
907 /// need to propogate it upwards, but the `Result::Ok` case needs to be flattened.
908 ///
909 /// ```
910 /// use itertools::Itertools;
911 ///
912 /// let input = vec![Ok(0..2), Err(false), Ok(2..4)];
913 /// let it = input.iter().cloned().flatten_ok();
914 /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]);
915 ///
916 /// // This can also be used to propogate errors when collecting.
917 /// let output_result: Result<Vec<i32>, bool> = it.collect();
918 /// assert_eq!(output_result, Err(false));
919 /// ```
920 fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E>
921 where Self: Iterator<Item = Result<T, E>> + Sized,
922 T: IntoIterator
923 {
924 flatten_ok::flatten_ok(self)
925 }
926
Jakub Kotura425e552020-12-21 17:28:15 +0100927 /// Return an iterator adaptor that merges the two base iterators in
928 /// ascending order. If both base iterators are sorted (ascending), the
929 /// result is sorted.
930 ///
931 /// Iterator element type is `Self::Item`.
932 ///
933 /// ```
934 /// use itertools::Itertools;
935 ///
936 /// let a = (0..11).step(3);
937 /// let b = (0..11).step(5);
938 /// let it = a.merge(b);
939 /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
940 /// ```
941 fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
942 where Self: Sized,
943 Self::Item: PartialOrd,
944 J: IntoIterator<Item = Self::Item>
945 {
946 merge(self, other)
947 }
948
949 /// Return an iterator adaptor that merges the two base iterators in order.
Joel Galensonb593e252021-06-21 13:15:57 -0700950 /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering.
Jakub Kotura425e552020-12-21 17:28:15 +0100951 ///
952 /// This can be especially useful for sequences of tuples.
953 ///
954 /// Iterator element type is `Self::Item`.
955 ///
956 /// ```
957 /// use itertools::Itertools;
958 ///
959 /// let a = (0..).zip("bc".chars());
960 /// let b = (0..).zip("ad".chars());
961 /// let it = a.merge_by(b, |x, y| x.1 <= y.1);
962 /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
963 /// ```
964
965 fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F>
966 where Self: Sized,
967 J: IntoIterator<Item = Self::Item>,
968 F: FnMut(&Self::Item, &Self::Item) -> bool
969 {
970 adaptors::merge_by_new(self, other.into_iter(), is_first)
971 }
972
973 /// Create an iterator that merges items from both this and the specified
974 /// iterator in ascending order.
975 ///
976 /// It chooses whether to pair elements based on the `Ordering` returned by the
977 /// specified compare function. At any point, inspecting the tip of the
978 /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
979 /// `J::Item` respectively, the resulting iterator will:
980 ///
981 /// - Emit `EitherOrBoth::Left(i)` when `i < j`,
982 /// and remove `i` from its source iterator
983 /// - Emit `EitherOrBoth::Right(j)` when `i > j`,
984 /// and remove `j` from its source iterator
985 /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`,
986 /// and remove both `i` and `j` from their respective source iterators
987 ///
988 /// ```
989 /// use itertools::Itertools;
990 /// use itertools::EitherOrBoth::{Left, Right, Both};
991 ///
Joel Galenson6f798712021-04-01 17:03:06 -0700992 /// let multiples_of_2 = (0..10).step(2);
993 /// let multiples_of_3 = (0..10).step(3);
Jakub Kotura425e552020-12-21 17:28:15 +0100994 ///
Joel Galenson6f798712021-04-01 17:03:06 -0700995 /// itertools::assert_equal(
996 /// multiples_of_2.merge_join_by(multiples_of_3, |i, j| i.cmp(j)),
997 /// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(8), Right(9)]
998 /// );
Jakub Kotura425e552020-12-21 17:28:15 +0100999 /// ```
1000 #[inline]
1001 fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F>
1002 where J: IntoIterator,
1003 F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering,
1004 Self: Sized
1005 {
1006 merge_join_by(self, other, cmp_fn)
1007 }
1008
Jakub Kotura425e552020-12-21 17:28:15 +01001009 /// Return an iterator adaptor that flattens an iterator of iterators by
1010 /// merging them in ascending order.
1011 ///
1012 /// If all base iterators are sorted (ascending), the result is sorted.
1013 ///
1014 /// Iterator element type is `Self::Item`.
1015 ///
1016 /// ```
1017 /// use itertools::Itertools;
1018 ///
1019 /// let a = (0..6).step(3);
1020 /// let b = (1..6).step(3);
1021 /// let c = (2..6).step(3);
1022 /// let it = vec![a, b, c].into_iter().kmerge();
1023 /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
1024 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07001025 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001026 fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
1027 where Self: Sized,
1028 Self::Item: IntoIterator,
1029 <Self::Item as IntoIterator>::Item: PartialOrd,
1030 {
1031 kmerge(self)
1032 }
1033
1034 /// Return an iterator adaptor that flattens an iterator of iterators by
1035 /// merging them according to the given closure.
1036 ///
1037 /// The closure `first` is called with two elements *a*, *b* and should
1038 /// return `true` if *a* is ordered before *b*.
1039 ///
1040 /// If all base iterators are sorted according to `first`, the result is
1041 /// sorted.
1042 ///
1043 /// Iterator element type is `Self::Item`.
1044 ///
1045 /// ```
1046 /// use itertools::Itertools;
1047 ///
1048 /// let a = vec![-1f64, 2., 3., -5., 6., -7.];
1049 /// let b = vec![0., 2., -4.];
1050 /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs());
1051 /// assert_eq!(it.next(), Some(0.));
1052 /// assert_eq!(it.last(), Some(-7.));
1053 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07001054 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001055 fn kmerge_by<F>(self, first: F)
1056 -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
1057 where Self: Sized,
1058 Self::Item: IntoIterator,
1059 F: FnMut(&<Self::Item as IntoIterator>::Item,
1060 &<Self::Item as IntoIterator>::Item) -> bool
1061 {
1062 kmerge_by(self, first)
1063 }
1064
1065 /// Return an iterator adaptor that iterates over the cartesian product of
1066 /// the element sets of two iterators `self` and `J`.
1067 ///
1068 /// Iterator element type is `(Self::Item, J::Item)`.
1069 ///
1070 /// ```
1071 /// use itertools::Itertools;
1072 ///
1073 /// let it = (0..2).cartesian_product("αβ".chars());
1074 /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
1075 /// ```
1076 fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
1077 where Self: Sized,
1078 Self::Item: Clone,
1079 J: IntoIterator,
1080 J::IntoIter: Clone
1081 {
1082 adaptors::cartesian_product(self, other.into_iter())
1083 }
1084
1085 /// Return an iterator adaptor that iterates over the cartesian product of
1086 /// all subiterators returned by meta-iterator `self`.
1087 ///
1088 /// All provided iterators must yield the same `Item` type. To generate
1089 /// the product of iterators yielding multiple types, use the
Joel Galensonb593e252021-06-21 13:15:57 -07001090 /// [`iproduct`] macro instead.
Jakub Kotura425e552020-12-21 17:28:15 +01001091 ///
1092 ///
1093 /// The iterator element type is `Vec<T>`, where `T` is the iterator element
1094 /// of the subiterators.
1095 ///
1096 /// ```
1097 /// use itertools::Itertools;
1098 /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
1099 /// .multi_cartesian_product();
1100 /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
1101 /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
1102 /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
1103 /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
1104 /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
1105 /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
1106 /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
1107 /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
1108 /// assert_eq!(multi_prod.next(), None);
1109 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07001110 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001111 fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
1112 where Self: Iterator + Sized,
1113 Self::Item: IntoIterator,
1114 <Self::Item as IntoIterator>::IntoIter: Clone,
1115 <Self::Item as IntoIterator>::Item: Clone
1116 {
1117 adaptors::multi_cartesian_product(self)
1118 }
1119
1120 /// Return an iterator adaptor that uses the passed-in closure to
1121 /// optionally merge together consecutive elements.
1122 ///
1123 /// The closure `f` is passed two elements, `previous` and `current` and may
1124 /// return either (1) `Ok(combined)` to merge the two values or
1125 /// (2) `Err((previous', current'))` to indicate they can't be merged.
1126 /// In (2), the value `previous'` is emitted by the iterator.
1127 /// Either (1) `combined` or (2) `current'` becomes the previous value
1128 /// when coalesce continues with the next pair of elements to merge. The
1129 /// value that remains at the end is also emitted by the iterator.
1130 ///
1131 /// Iterator element type is `Self::Item`.
1132 ///
1133 /// This iterator is *fused*.
1134 ///
1135 /// ```
1136 /// use itertools::Itertools;
1137 ///
1138 /// // sum same-sign runs together
1139 /// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
1140 /// itertools::assert_equal(data.into_iter().coalesce(|x, y|
1141 /// if (x >= 0.) == (y >= 0.) {
1142 /// Ok(x + y)
1143 /// } else {
1144 /// Err((x, y))
1145 /// }),
1146 /// vec![-6., 4., -1.]);
1147 /// ```
1148 fn coalesce<F>(self, f: F) -> Coalesce<Self, F>
1149 where Self: Sized,
1150 F: FnMut(Self::Item, Self::Item)
1151 -> Result<Self::Item, (Self::Item, Self::Item)>
1152 {
1153 adaptors::coalesce(self, f)
1154 }
1155
1156 /// Remove duplicates from sections of consecutive identical elements.
1157 /// If the iterator is sorted, all elements will be unique.
1158 ///
1159 /// Iterator element type is `Self::Item`.
1160 ///
1161 /// This iterator is *fused*.
1162 ///
1163 /// ```
1164 /// use itertools::Itertools;
1165 ///
1166 /// let data = vec![1., 1., 2., 3., 3., 2., 2.];
1167 /// itertools::assert_equal(data.into_iter().dedup(),
1168 /// vec![1., 2., 3., 2.]);
1169 /// ```
1170 fn dedup(self) -> Dedup<Self>
1171 where Self: Sized,
1172 Self::Item: PartialEq,
1173 {
1174 adaptors::dedup(self)
1175 }
1176
1177 /// Remove duplicates from sections of consecutive identical elements,
1178 /// determining equality using a comparison function.
1179 /// If the iterator is sorted, all elements will be unique.
1180 ///
1181 /// Iterator element type is `Self::Item`.
1182 ///
1183 /// This iterator is *fused*.
1184 ///
1185 /// ```
1186 /// use itertools::Itertools;
1187 ///
1188 /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)];
Joel Galenson6f798712021-04-01 17:03:06 -07001189 /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1),
Jakub Kotura425e552020-12-21 17:28:15 +01001190 /// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]);
1191 /// ```
1192 fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp>
1193 where Self: Sized,
1194 Cmp: FnMut(&Self::Item, &Self::Item)->bool,
1195 {
1196 adaptors::dedup_by(self, cmp)
1197 }
1198
Joel Galenson6f798712021-04-01 17:03:06 -07001199 /// Remove duplicates from sections of consecutive identical elements, while keeping a count of
1200 /// how many repeated elements were present.
1201 /// If the iterator is sorted, all elements will be unique.
1202 ///
1203 /// Iterator element type is `(usize, Self::Item)`.
1204 ///
1205 /// This iterator is *fused*.
1206 ///
1207 /// ```
1208 /// use itertools::Itertools;
1209 ///
Joel Galensonb593e252021-06-21 13:15:57 -07001210 /// let data = vec!['a', 'a', 'b', 'c', 'c', 'b', 'b'];
Joel Galenson6f798712021-04-01 17:03:06 -07001211 /// itertools::assert_equal(data.into_iter().dedup_with_count(),
Joel Galensonb593e252021-06-21 13:15:57 -07001212 /// vec![(2, 'a'), (1, 'b'), (2, 'c'), (2, 'b')]);
Joel Galenson6f798712021-04-01 17:03:06 -07001213 /// ```
1214 fn dedup_with_count(self) -> DedupWithCount<Self>
Joel Galensonb593e252021-06-21 13:15:57 -07001215 where
1216 Self: Sized,
Joel Galenson6f798712021-04-01 17:03:06 -07001217 {
1218 adaptors::dedup_with_count(self)
1219 }
1220
1221 /// Remove duplicates from sections of consecutive identical elements, while keeping a count of
1222 /// how many repeated elements were present.
1223 /// This will determine equality using a comparison function.
1224 /// If the iterator is sorted, all elements will be unique.
1225 ///
1226 /// Iterator element type is `(usize, Self::Item)`.
1227 ///
1228 /// This iterator is *fused*.
1229 ///
1230 /// ```
1231 /// use itertools::Itertools;
1232 ///
Joel Galensonb593e252021-06-21 13:15:57 -07001233 /// let data = vec![(0, 'a'), (1, 'a'), (0, 'b'), (0, 'c'), (1, 'c'), (1, 'b'), (2, 'b')];
Joel Galenson6f798712021-04-01 17:03:06 -07001234 /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1),
Joel Galensonb593e252021-06-21 13:15:57 -07001235 /// vec![(2, (0, 'a')), (1, (0, 'b')), (2, (0, 'c')), (2, (1, 'b'))]);
Joel Galenson6f798712021-04-01 17:03:06 -07001236 /// ```
1237 fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp>
Joel Galensonb593e252021-06-21 13:15:57 -07001238 where
1239 Self: Sized,
1240 Cmp: FnMut(&Self::Item, &Self::Item) -> bool,
Joel Galenson6f798712021-04-01 17:03:06 -07001241 {
1242 adaptors::dedup_by_with_count(self, cmp)
1243 }
1244
Joel Galensonb593e252021-06-21 13:15:57 -07001245 /// Return an iterator adaptor that produces elements that appear more than once during the
1246 /// iteration. Duplicates are detected using hash and equality.
1247 ///
1248 /// The iterator is stable, returning the duplicate items in the order in which they occur in
1249 /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
1250 /// than twice, the second item is the item retained and the rest are discarded.
1251 ///
1252 /// ```
1253 /// use itertools::Itertools;
1254 ///
1255 /// let data = vec![10, 20, 30, 20, 40, 10, 50];
1256 /// itertools::assert_equal(data.into_iter().duplicates(),
1257 /// vec![20, 10]);
1258 /// ```
1259 #[cfg(feature = "use_std")]
1260 fn duplicates(self) -> Duplicates<Self>
1261 where Self: Sized,
1262 Self::Item: Eq + Hash
1263 {
1264 duplicates_impl::duplicates(self)
1265 }
1266
1267 /// Return an iterator adaptor that produces elements that appear more than once during the
1268 /// iteration. Duplicates are detected using hash and equality.
1269 ///
1270 /// Duplicates are detected by comparing the key they map to with the keying function `f` by
1271 /// hash and equality. The keys are stored in a hash map in the iterator.
1272 ///
1273 /// The iterator is stable, returning the duplicate items in the order in which they occur in
1274 /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
1275 /// than twice, the second item is the item retained and the rest are discarded.
1276 ///
1277 /// ```
1278 /// use itertools::Itertools;
1279 ///
1280 /// let data = vec!["a", "bb", "aa", "c", "ccc"];
1281 /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()),
1282 /// vec!["aa", "c"]);
1283 /// ```
1284 #[cfg(feature = "use_std")]
1285 fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F>
1286 where Self: Sized,
1287 V: Eq + Hash,
1288 F: FnMut(&Self::Item) -> V
1289 {
1290 duplicates_impl::duplicates_by(self, f)
1291 }
1292
Jakub Kotura425e552020-12-21 17:28:15 +01001293 /// Return an iterator adaptor that filters out elements that have
1294 /// already been produced once during the iteration. Duplicates
1295 /// are detected using hash and equality.
1296 ///
1297 /// Clones of visited elements are stored in a hash set in the
1298 /// iterator.
1299 ///
Joel Galenson6f798712021-04-01 17:03:06 -07001300 /// The iterator is stable, returning the non-duplicate items in the order
1301 /// in which they occur in the adapted iterator. In a set of duplicate
1302 /// items, the first item encountered is the item retained.
1303 ///
Jakub Kotura425e552020-12-21 17:28:15 +01001304 /// ```
1305 /// use itertools::Itertools;
1306 ///
1307 /// let data = vec![10, 20, 30, 20, 40, 10, 50];
1308 /// itertools::assert_equal(data.into_iter().unique(),
1309 /// vec![10, 20, 30, 40, 50]);
1310 /// ```
1311 #[cfg(feature = "use_std")]
1312 fn unique(self) -> Unique<Self>
1313 where Self: Sized,
1314 Self::Item: Clone + Eq + Hash
1315 {
1316 unique_impl::unique(self)
1317 }
1318
1319 /// Return an iterator adaptor that filters out elements that have
1320 /// already been produced once during the iteration.
1321 ///
1322 /// Duplicates are detected by comparing the key they map to
1323 /// with the keying function `f` by hash and equality.
1324 /// The keys are stored in a hash set in the iterator.
1325 ///
Joel Galenson6f798712021-04-01 17:03:06 -07001326 /// The iterator is stable, returning the non-duplicate items in the order
1327 /// in which they occur in the adapted iterator. In a set of duplicate
1328 /// items, the first item encountered is the item retained.
1329 ///
Jakub Kotura425e552020-12-21 17:28:15 +01001330 /// ```
1331 /// use itertools::Itertools;
1332 ///
1333 /// let data = vec!["a", "bb", "aa", "c", "ccc"];
1334 /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()),
1335 /// vec!["a", "bb", "ccc"]);
1336 /// ```
1337 #[cfg(feature = "use_std")]
1338 fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
1339 where Self: Sized,
1340 V: Eq + Hash,
1341 F: FnMut(&Self::Item) -> V
1342 {
1343 unique_impl::unique_by(self, f)
1344 }
1345
1346 /// Return an iterator adaptor that borrows from this iterator and
1347 /// takes items while the closure `accept` returns `true`.
1348 ///
1349 /// This adaptor can only be used on iterators that implement `PeekingNext`
1350 /// like `.peekable()`, `put_back` and a few other collection iterators.
1351 ///
1352 /// The last and rejected element (first `false`) is still available when
1353 /// `peeking_take_while` is done.
1354 ///
1355 ///
Joel Galensonb593e252021-06-21 13:15:57 -07001356 /// See also [`.take_while_ref()`](Itertools::take_while_ref)
Jakub Kotura425e552020-12-21 17:28:15 +01001357 /// which is a similar adaptor.
1358 fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F>
1359 where Self: Sized + PeekingNext,
1360 F: FnMut(&Self::Item) -> bool,
1361 {
1362 peeking_take_while::peeking_take_while(self, accept)
1363 }
1364
1365 /// Return an iterator adaptor that borrows from a `Clone`-able iterator
1366 /// to only pick off elements while the predicate `accept` returns `true`.
1367 ///
1368 /// It uses the `Clone` trait to restore the original iterator so that the
1369 /// last and rejected element (first `false`) is still available when
1370 /// `take_while_ref` is done.
1371 ///
1372 /// ```
1373 /// use itertools::Itertools;
1374 ///
1375 /// let mut hexadecimals = "0123456789abcdef".chars();
1376 ///
1377 /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric())
1378 /// .collect::<String>();
1379 /// assert_eq!(decimals, "0123456789");
1380 /// assert_eq!(hexadecimals.next(), Some('a'));
1381 ///
1382 /// ```
1383 fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F>
1384 where Self: Clone,
1385 F: FnMut(&Self::Item) -> bool
1386 {
1387 adaptors::take_while_ref(self, accept)
1388 }
1389
1390 /// Return an iterator adaptor that filters `Option<A>` iterator elements
1391 /// and produces `A`. Stops on the first `None` encountered.
1392 ///
1393 /// Iterator element type is `A`, the unwrapped element.
1394 ///
1395 /// ```
1396 /// use itertools::Itertools;
1397 ///
1398 /// // List all hexadecimal digits
1399 /// itertools::assert_equal(
1400 /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(),
1401 /// "0123456789abcdef".chars());
1402 ///
1403 /// ```
1404 fn while_some<A>(self) -> WhileSome<Self>
1405 where Self: Sized + Iterator<Item = Option<A>>
1406 {
1407 adaptors::while_some(self)
1408 }
1409
1410 /// Return an iterator adaptor that iterates over the combinations of the
1411 /// elements from an iterator.
1412 ///
1413 /// Iterator element can be any homogeneous tuple of type `Self::Item` with
Joel Galenson6f798712021-04-01 17:03:06 -07001414 /// size up to 12.
Jakub Kotura425e552020-12-21 17:28:15 +01001415 ///
1416 /// ```
1417 /// use itertools::Itertools;
1418 ///
1419 /// let mut v = Vec::new();
1420 /// for (a, b) in (1..5).tuple_combinations() {
1421 /// v.push((a, b));
1422 /// }
1423 /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]);
1424 ///
1425 /// let mut it = (1..5).tuple_combinations();
1426 /// assert_eq!(Some((1, 2, 3)), it.next());
1427 /// assert_eq!(Some((1, 2, 4)), it.next());
1428 /// assert_eq!(Some((1, 3, 4)), it.next());
1429 /// assert_eq!(Some((2, 3, 4)), it.next());
1430 /// assert_eq!(None, it.next());
1431 ///
1432 /// // this requires a type hint
1433 /// let it = (1..5).tuple_combinations::<(_, _, _)>();
1434 /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
1435 ///
1436 /// // you can also specify the complete type
1437 /// use itertools::TupleCombinations;
1438 /// use std::ops::Range;
1439 ///
1440 /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations();
1441 /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
1442 /// ```
1443 fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
1444 where Self: Sized + Clone,
1445 Self::Item: Clone,
1446 T: adaptors::HasCombination<Self>,
1447 {
1448 adaptors::tuple_combinations(self)
1449 }
1450
1451 /// Return an iterator adaptor that iterates over the `k`-length combinations of
1452 /// the elements from an iterator.
1453 ///
1454 /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
1455 /// and clones the iterator elements.
1456 ///
1457 /// ```
1458 /// use itertools::Itertools;
1459 ///
1460 /// let it = (1..5).combinations(3);
1461 /// itertools::assert_equal(it, vec![
1462 /// vec![1, 2, 3],
1463 /// vec![1, 2, 4],
1464 /// vec![1, 3, 4],
1465 /// vec![2, 3, 4],
1466 /// ]);
1467 /// ```
1468 ///
1469 /// Note: Combinations does not take into account the equality of the iterated values.
1470 /// ```
1471 /// use itertools::Itertools;
1472 ///
1473 /// let it = vec![1, 2, 2].into_iter().combinations(2);
1474 /// itertools::assert_equal(it, vec![
1475 /// vec![1, 2], // Note: these are the same
1476 /// vec![1, 2], // Note: these are the same
1477 /// vec![2, 2],
1478 /// ]);
1479 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07001480 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001481 fn combinations(self, k: usize) -> Combinations<Self>
1482 where Self: Sized,
1483 Self::Item: Clone
1484 {
1485 combinations::combinations(self, k)
1486 }
1487
1488 /// Return an iterator that iterates over the `k`-length combinations of
1489 /// the elements from an iterator, with replacement.
1490 ///
1491 /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
1492 /// and clones the iterator elements.
1493 ///
1494 /// ```
1495 /// use itertools::Itertools;
1496 ///
1497 /// let it = (1..4).combinations_with_replacement(2);
1498 /// itertools::assert_equal(it, vec![
1499 /// vec![1, 1],
1500 /// vec![1, 2],
1501 /// vec![1, 3],
1502 /// vec![2, 2],
1503 /// vec![2, 3],
1504 /// vec![3, 3],
1505 /// ]);
1506 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07001507 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001508 fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self>
1509 where
1510 Self: Sized,
1511 Self::Item: Clone,
1512 {
1513 combinations_with_replacement::combinations_with_replacement(self, k)
1514 }
1515
1516 /// Return an iterator adaptor that iterates over all k-permutations of the
1517 /// elements from an iterator.
1518 ///
1519 /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator
1520 /// produces a new Vec per iteration, and clones the iterator elements.
1521 ///
1522 /// If `k` is greater than the length of the input iterator, the resultant
1523 /// iterator adaptor will be empty.
1524 ///
1525 /// ```
1526 /// use itertools::Itertools;
1527 ///
1528 /// let perms = (5..8).permutations(2);
1529 /// itertools::assert_equal(perms, vec![
1530 /// vec![5, 6],
1531 /// vec![5, 7],
1532 /// vec![6, 5],
1533 /// vec![6, 7],
1534 /// vec![7, 5],
1535 /// vec![7, 6],
1536 /// ]);
1537 /// ```
1538 ///
1539 /// Note: Permutations does not take into account the equality of the iterated values.
1540 ///
1541 /// ```
1542 /// use itertools::Itertools;
1543 ///
1544 /// let it = vec![2, 2].into_iter().permutations(2);
1545 /// itertools::assert_equal(it, vec![
1546 /// vec![2, 2], // Note: these are the same
1547 /// vec![2, 2], // Note: these are the same
1548 /// ]);
1549 /// ```
1550 ///
1551 /// Note: The source iterator is collected lazily, and will not be
1552 /// re-iterated if the permutations adaptor is completed and re-iterated.
Joel Galenson6f798712021-04-01 17:03:06 -07001553 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001554 fn permutations(self, k: usize) -> Permutations<Self>
1555 where Self: Sized,
1556 Self::Item: Clone
1557 {
1558 permutations::permutations(self, k)
1559 }
1560
Joel Galenson6f798712021-04-01 17:03:06 -07001561 /// Return an iterator that iterates through the powerset of the elements from an
1562 /// iterator.
1563 ///
1564 /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec`
1565 /// per iteration, and clones the iterator elements.
1566 ///
1567 /// The powerset of a set contains all subsets including the empty set and the full
1568 /// input set. A powerset has length _2^n_ where _n_ is the length of the input
1569 /// set.
1570 ///
1571 /// Each `Vec` produced by this iterator represents a subset of the elements
1572 /// produced by the source iterator.
1573 ///
1574 /// ```
1575 /// use itertools::Itertools;
1576 ///
1577 /// let sets = (1..4).powerset().collect::<Vec<_>>();
1578 /// itertools::assert_equal(sets, vec![
1579 /// vec![],
1580 /// vec![1],
1581 /// vec![2],
1582 /// vec![3],
1583 /// vec![1, 2],
1584 /// vec![1, 3],
1585 /// vec![2, 3],
1586 /// vec![1, 2, 3],
1587 /// ]);
1588 /// ```
1589 #[cfg(feature = "use_alloc")]
1590 fn powerset(self) -> Powerset<Self>
1591 where Self: Sized,
1592 Self::Item: Clone,
1593 {
1594 powerset::powerset(self)
1595 }
1596
Jakub Kotura425e552020-12-21 17:28:15 +01001597 /// Return an iterator adaptor that pads the sequence to a minimum length of
1598 /// `min` by filling missing elements using a closure `f`.
1599 ///
1600 /// Iterator element type is `Self::Item`.
1601 ///
1602 /// ```
1603 /// use itertools::Itertools;
1604 ///
1605 /// let it = (0..5).pad_using(10, |i| 2*i);
1606 /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]);
1607 ///
1608 /// let it = (0..10).pad_using(5, |i| 2*i);
1609 /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
1610 ///
1611 /// let it = (0..5).pad_using(10, |i| 2*i).rev();
1612 /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
1613 /// ```
1614 fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
1615 where Self: Sized,
1616 F: FnMut(usize) -> Self::Item
1617 {
1618 pad_tail::pad_using(self, min, f)
1619 }
1620
1621 /// Return an iterator adaptor that wraps each element in a `Position` to
1622 /// ease special-case handling of the first or last elements.
1623 ///
1624 /// Iterator element type is
Joel Galensonb593e252021-06-21 13:15:57 -07001625 /// [`Position<Self::Item>`](Position)
Jakub Kotura425e552020-12-21 17:28:15 +01001626 ///
1627 /// ```
1628 /// use itertools::{Itertools, Position};
1629 ///
1630 /// let it = (0..4).with_position();
1631 /// itertools::assert_equal(it,
1632 /// vec![Position::First(0),
1633 /// Position::Middle(1),
1634 /// Position::Middle(2),
1635 /// Position::Last(3)]);
1636 ///
1637 /// let it = (0..1).with_position();
1638 /// itertools::assert_equal(it, vec![Position::Only(0)]);
1639 /// ```
1640 fn with_position(self) -> WithPosition<Self>
1641 where Self: Sized,
1642 {
1643 with_position::with_position(self)
1644 }
1645
1646 /// Return an iterator adaptor that yields the indices of all elements
1647 /// satisfying a predicate, counted from the start of the iterator.
1648 ///
1649 /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`.
1650 ///
1651 /// ```
1652 /// use itertools::Itertools;
1653 ///
1654 /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9];
1655 /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]);
1656 ///
1657 /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
1658 /// ```
1659 fn positions<P>(self, predicate: P) -> Positions<Self, P>
1660 where Self: Sized,
1661 P: FnMut(Self::Item) -> bool,
1662 {
1663 adaptors::positions(self, predicate)
1664 }
1665
1666 /// Return an iterator adaptor that applies a mutating function
1667 /// to each element before yielding it.
1668 ///
1669 /// ```
1670 /// use itertools::Itertools;
1671 ///
1672 /// let input = vec![vec![1], vec![3, 2, 1]];
1673 /// let it = input.into_iter().update(|mut v| v.push(0));
1674 /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
1675 /// ```
1676 fn update<F>(self, updater: F) -> Update<Self, F>
1677 where Self: Sized,
1678 F: FnMut(&mut Self::Item),
1679 {
1680 adaptors::update(self, updater)
1681 }
1682
1683 // non-adaptor methods
1684 /// Advances the iterator and returns the next items grouped in a tuple of
Joel Galenson6f798712021-04-01 17:03:06 -07001685 /// a specific size (up to 12).
Jakub Kotura425e552020-12-21 17:28:15 +01001686 ///
1687 /// If there are enough elements to be grouped in a tuple, then the tuple is
1688 /// returned inside `Some`, otherwise `None` is returned.
1689 ///
1690 /// ```
1691 /// use itertools::Itertools;
1692 ///
1693 /// let mut iter = 1..5;
1694 ///
1695 /// assert_eq!(Some((1, 2)), iter.next_tuple());
1696 /// ```
1697 fn next_tuple<T>(&mut self) -> Option<T>
1698 where Self: Sized + Iterator<Item = T::Item>,
1699 T: traits::HomogeneousTuple
1700 {
1701 T::collect_from_iter_no_buf(self)
1702 }
1703
1704 /// Collects all items from the iterator into a tuple of a specific size
Joel Galenson6f798712021-04-01 17:03:06 -07001705 /// (up to 12).
Jakub Kotura425e552020-12-21 17:28:15 +01001706 ///
1707 /// If the number of elements inside the iterator is **exactly** equal to
1708 /// the tuple size, then the tuple is returned inside `Some`, otherwise
1709 /// `None` is returned.
1710 ///
1711 /// ```
1712 /// use itertools::Itertools;
1713 ///
1714 /// let iter = 1..3;
1715 ///
1716 /// if let Some((x, y)) = iter.collect_tuple() {
1717 /// assert_eq!((x, y), (1, 2))
1718 /// } else {
1719 /// panic!("Expected two elements")
1720 /// }
1721 /// ```
1722 fn collect_tuple<T>(mut self) -> Option<T>
1723 where Self: Sized + Iterator<Item = T::Item>,
1724 T: traits::HomogeneousTuple
1725 {
1726 match self.next_tuple() {
1727 elt @ Some(_) => match self.next() {
1728 Some(_) => None,
1729 None => elt,
1730 },
1731 _ => None
1732 }
1733 }
1734
1735
1736 /// Find the position and value of the first element satisfying a predicate.
1737 ///
1738 /// The iterator is not advanced past the first element found.
1739 ///
1740 /// ```
1741 /// use itertools::Itertools;
1742 ///
1743 /// let text = "Hα";
1744 /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α')));
1745 /// ```
1746 fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)>
1747 where P: FnMut(&Self::Item) -> bool
1748 {
1749 let mut index = 0usize;
1750 for elt in self {
1751 if pred(&elt) {
1752 return Some((index, elt));
1753 }
1754 index += 1;
1755 }
1756 None
1757 }
Joel Galensonb593e252021-06-21 13:15:57 -07001758 /// Find the value of the first element satisfying a predicate or return the last element, if any.
1759 ///
1760 /// The iterator is not advanced past the first element found.
1761 ///
1762 /// ```
1763 /// use itertools::Itertools;
1764 ///
1765 /// let numbers = [1, 2, 3, 4];
1766 /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4));
1767 /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3));
1768 /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None);
1769 /// ```
1770 fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item>
1771 where Self: Sized,
1772 P: FnMut(&Self::Item) -> bool,
1773 {
1774 let mut prev = None;
1775 self.find_map(|x| if predicate(&x) { Some(x) } else { prev = Some(x); None })
1776 .or(prev)
1777 }
1778 /// Find the value of the first element satisfying a predicate or return the first element, if any.
1779 ///
1780 /// The iterator is not advanced past the first element found.
1781 ///
1782 /// ```
1783 /// use itertools::Itertools;
1784 ///
1785 /// let numbers = [1, 2, 3, 4];
1786 /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1));
1787 /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3));
1788 /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None);
1789 /// ```
1790 fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item>
1791 where Self: Sized,
1792 P: FnMut(&Self::Item) -> bool,
1793 {
1794 let first = self.next()?;
1795 Some(if predicate(&first) {
1796 first
1797 } else {
1798 self.find(|x| predicate(&x)).unwrap_or(first)
1799 })
1800 }
1801 /// Returns `true` if the given item is present in this iterator.
1802 ///
1803 /// This method is short-circuiting. If the given item is present in this
1804 /// iterator, this method will consume the iterator up-to-and-including
1805 /// the item. If the given item is not present in this iterator, the
1806 /// iterator will be exhausted.
1807 ///
1808 /// ```
1809 /// use itertools::Itertools;
1810 ///
1811 /// #[derive(PartialEq, Debug)]
1812 /// enum Enum { A, B, C, D, E, }
1813 ///
1814 /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter();
1815 ///
1816 /// // search `iter` for `B`
1817 /// assert_eq!(iter.contains(&Enum::B), true);
1818 /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`).
1819 /// assert_eq!(iter.next(), Some(Enum::C));
1820 ///
1821 /// // search `iter` for `E`
1822 /// assert_eq!(iter.contains(&Enum::E), false);
1823 /// // `E` wasn't found, so `iter` is now exhausted
1824 /// assert_eq!(iter.next(), None);
1825 /// ```
1826 fn contains<Q>(&mut self, query: &Q) -> bool
1827 where
1828 Self: Sized,
1829 Self::Item: Borrow<Q>,
1830 Q: PartialEq,
1831 {
1832 self.any(|x| x.borrow() == query)
1833 }
Jakub Kotura425e552020-12-21 17:28:15 +01001834
1835 /// Check whether all elements compare equal.
1836 ///
1837 /// Empty iterators are considered to have equal elements:
1838 ///
1839 /// ```
1840 /// use itertools::Itertools;
1841 ///
1842 /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5];
1843 /// assert!(!data.iter().all_equal());
1844 /// assert!(data[0..3].iter().all_equal());
1845 /// assert!(data[3..5].iter().all_equal());
1846 /// assert!(data[5..8].iter().all_equal());
1847 ///
1848 /// let data : Option<usize> = None;
1849 /// assert!(data.into_iter().all_equal());
1850 /// ```
1851 fn all_equal(&mut self) -> bool
1852 where Self: Sized,
1853 Self::Item: PartialEq,
1854 {
1855 match self.next() {
1856 None => true,
1857 Some(a) => self.all(|x| a == x),
1858 }
1859 }
1860
Joel Galensonb593e252021-06-21 13:15:57 -07001861 /// Check whether all elements are unique (non equal).
1862 ///
1863 /// Empty iterators are considered to have unique elements:
1864 ///
1865 /// ```
1866 /// use itertools::Itertools;
1867 ///
1868 /// let data = vec![1, 2, 3, 4, 1, 5];
1869 /// assert!(!data.iter().all_unique());
1870 /// assert!(data[0..4].iter().all_unique());
1871 /// assert!(data[1..6].iter().all_unique());
1872 ///
1873 /// let data : Option<usize> = None;
1874 /// assert!(data.into_iter().all_unique());
1875 /// ```
1876 #[cfg(feature = "use_std")]
1877 fn all_unique(&mut self) -> bool
1878 where Self: Sized,
1879 Self::Item: Eq + Hash
1880 {
1881 let mut used = HashSet::new();
1882 self.all(move |elt| used.insert(elt))
1883 }
1884
Jakub Kotura425e552020-12-21 17:28:15 +01001885 /// Consume the first `n` elements from the iterator eagerly,
1886 /// and return the same iterator again.
1887 ///
1888 /// It works similarly to *.skip(* `n` *)* except it is eager and
1889 /// preserves the iterator type.
1890 ///
1891 /// ```
1892 /// use itertools::Itertools;
1893 ///
1894 /// let mut iter = "αβγ".chars().dropping(2);
1895 /// itertools::assert_equal(iter, "γ".chars());
1896 /// ```
1897 ///
1898 /// *Fusing notes: if the iterator is exhausted by dropping,
1899 /// the result of calling `.next()` again depends on the iterator implementation.*
1900 fn dropping(mut self, n: usize) -> Self
1901 where Self: Sized
1902 {
1903 if n > 0 {
1904 self.nth(n - 1);
1905 }
1906 self
1907 }
1908
1909 /// Consume the last `n` elements from the iterator eagerly,
1910 /// and return the same iterator again.
1911 ///
1912 /// This is only possible on double ended iterators. `n` may be
1913 /// larger than the number of elements.
1914 ///
1915 /// Note: This method is eager, dropping the back elements immediately and
1916 /// preserves the iterator type.
1917 ///
1918 /// ```
1919 /// use itertools::Itertools;
1920 ///
1921 /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
1922 /// itertools::assert_equal(init, vec![0, 3, 6]);
1923 /// ```
1924 fn dropping_back(mut self, n: usize) -> Self
1925 where Self: Sized,
1926 Self: DoubleEndedIterator
1927 {
1928 if n > 0 {
1929 (&mut self).rev().nth(n - 1);
1930 }
1931 self
1932 }
1933
1934 /// Run the closure `f` eagerly on each element of the iterator.
1935 ///
1936 /// Consumes the iterator until its end.
1937 ///
1938 /// ```
1939 /// use std::sync::mpsc::channel;
1940 /// use itertools::Itertools;
1941 ///
1942 /// let (tx, rx) = channel();
1943 ///
1944 /// // use .foreach() to apply a function to each value -- sending it
1945 /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
1946 ///
1947 /// drop(tx);
1948 ///
1949 /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
1950 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07001951 #[deprecated(note="Use .for_each() instead", since="0.8.0")]
Jakub Kotura425e552020-12-21 17:28:15 +01001952 fn foreach<F>(self, f: F)
1953 where F: FnMut(Self::Item),
1954 Self: Sized,
1955 {
1956 self.for_each(f)
1957 }
1958
Joel Galensonb593e252021-06-21 13:15:57 -07001959 /// Combine all an iterator's elements into one element by using [`Extend`].
Jakub Kotura425e552020-12-21 17:28:15 +01001960 ///
1961 /// This combinator will extend the first item with each of the rest of the
1962 /// items of the iterator. If the iterator is empty, the default value of
1963 /// `I::Item` is returned.
1964 ///
1965 /// ```rust
1966 /// use itertools::Itertools;
1967 ///
1968 /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
1969 /// assert_eq!(input.into_iter().concat(),
1970 /// vec![1, 2, 3, 4, 5, 6]);
1971 /// ```
1972 fn concat(self) -> Self::Item
1973 where Self: Sized,
1974 Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default
1975 {
1976 concat(self)
1977 }
1978
Joel Galensonb593e252021-06-21 13:15:57 -07001979 /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`],
Jakub Kotura425e552020-12-21 17:28:15 +01001980 /// for convenience.
Joel Galenson6f798712021-04-01 17:03:06 -07001981 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01001982 fn collect_vec(self) -> Vec<Self::Item>
1983 where Self: Sized
1984 {
1985 self.collect()
1986 }
1987
1988 /// `.try_collect()` is more convenient way of writing
1989 /// `.collect::<Result<_, _>>()`
1990 ///
1991 /// # Example
1992 ///
1993 /// ```
1994 /// use std::{fs, io};
1995 /// use itertools::Itertools;
1996 ///
1997 /// fn process_dir_entries(entries: &[fs::DirEntry]) {
1998 /// // ...
1999 /// }
2000 ///
2001 /// fn do_stuff() -> std::io::Result<()> {
2002 /// let entries: Vec<_> = fs::read_dir(".")?.try_collect()?;
2003 /// process_dir_entries(&entries);
2004 ///
2005 /// Ok(())
2006 /// }
2007 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07002008 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01002009 fn try_collect<T, U, E>(self) -> Result<U, E>
2010 where
2011 Self: Sized + Iterator<Item = Result<T, E>>,
2012 Result<U, E>: FromIterator<Result<T, E>>,
2013 {
2014 self.collect()
2015 }
2016
2017 /// Assign to each reference in `self` from the `from` iterator,
2018 /// stopping at the shortest of the two iterators.
2019 ///
2020 /// The `from` iterator is queried for its next element before the `self`
2021 /// iterator, and if either is exhausted the method is done.
2022 ///
2023 /// Return the number of elements written.
2024 ///
2025 /// ```
2026 /// use itertools::Itertools;
2027 ///
2028 /// let mut xs = [0; 4];
2029 /// xs.iter_mut().set_from(1..);
2030 /// assert_eq!(xs, [1, 2, 3, 4]);
2031 /// ```
2032 #[inline]
2033 fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize
2034 where Self: Iterator<Item = &'a mut A>,
2035 J: IntoIterator<Item = A>
2036 {
2037 let mut count = 0;
2038 for elt in from {
2039 match self.next() {
2040 None => break,
2041 Some(ptr) => *ptr = elt,
2042 }
2043 count += 1;
2044 }
2045 count
2046 }
2047
2048 /// Combine all iterator elements into one String, separated by `sep`.
2049 ///
2050 /// Use the `Display` implementation of each element.
2051 ///
2052 /// ```
2053 /// use itertools::Itertools;
2054 ///
2055 /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
2056 /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
2057 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07002058 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01002059 fn join(&mut self, sep: &str) -> String
2060 where Self::Item: std::fmt::Display
2061 {
2062 match self.next() {
2063 None => String::new(),
2064 Some(first_elt) => {
2065 // estimate lower bound of capacity needed
2066 let (lower, _) = self.size_hint();
2067 let mut result = String::with_capacity(sep.len() * lower);
2068 write!(&mut result, "{}", first_elt).unwrap();
Joel Galenson6f798712021-04-01 17:03:06 -07002069 self.for_each(|elt| {
Jakub Kotura425e552020-12-21 17:28:15 +01002070 result.push_str(sep);
2071 write!(&mut result, "{}", elt).unwrap();
Joel Galenson6f798712021-04-01 17:03:06 -07002072 });
Jakub Kotura425e552020-12-21 17:28:15 +01002073 result
2074 }
2075 }
2076 }
2077
2078 /// Format all iterator elements, separated by `sep`.
2079 ///
2080 /// All elements are formatted (any formatting trait)
2081 /// with `sep` inserted between each element.
2082 ///
2083 /// **Panics** if the formatter helper is formatted more than once.
2084 ///
2085 /// ```
2086 /// use itertools::Itertools;
2087 ///
2088 /// let data = [1.1, 2.71828, -3.];
2089 /// assert_eq!(
2090 /// format!("{:.2}", data.iter().format(", ")),
2091 /// "1.10, 2.72, -3.00");
2092 /// ```
2093 fn format(self, sep: &str) -> Format<Self>
2094 where Self: Sized,
2095 {
2096 format::new_format_default(self, sep)
2097 }
2098
2099 /// Format all iterator elements, separated by `sep`.
2100 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002101 /// This is a customizable version of [`.format()`](Itertools::format).
Jakub Kotura425e552020-12-21 17:28:15 +01002102 ///
2103 /// The supplied closure `format` is called once per iterator element,
2104 /// with two arguments: the element and a callback that takes a
2105 /// `&Display` value, i.e. any reference to type that implements `Display`.
2106 ///
2107 /// Using `&format_args!(...)` is the most versatile way to apply custom
2108 /// element formatting. The callback can be called multiple times if needed.
2109 ///
2110 /// **Panics** if the formatter helper is formatted more than once.
2111 ///
2112 /// ```
2113 /// use itertools::Itertools;
2114 ///
2115 /// let data = [1.1, 2.71828, -3.];
2116 /// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt)));
2117 /// assert_eq!(format!("{}", data_formatter),
2118 /// "1.10, 2.72, -3.00");
2119 ///
2120 /// // .format_with() is recursively composable
2121 /// let matrix = [[1., 2., 3.],
2122 /// [4., 5., 6.]];
2123 /// let matrix_formatter = matrix.iter().format_with("\n", |row, f| {
2124 /// f(&row.iter().format_with(", ", |elt, g| g(&elt)))
2125 /// });
2126 /// assert_eq!(format!("{}", matrix_formatter),
2127 /// "1, 2, 3\n4, 5, 6");
2128 ///
2129 ///
2130 /// ```
2131 fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F>
2132 where Self: Sized,
2133 F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result,
2134 {
2135 format::new_format(self, sep, format)
2136 }
2137
Joel Galensonb593e252021-06-21 13:15:57 -07002138 /// See [`.fold_ok()`](Itertools::fold_ok).
Joel Galenson6f798712021-04-01 17:03:06 -07002139 #[deprecated(note="Use .fold_ok() instead", since="0.10.0")]
2140 fn fold_results<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E>
2141 where Self: Iterator<Item = Result<A, E>>,
2142 F: FnMut(B, A) -> B
2143 {
2144 self.fold_ok(start, f)
2145 }
2146
Jakub Kotura425e552020-12-21 17:28:15 +01002147 /// Fold `Result` values from an iterator.
2148 ///
2149 /// Only `Ok` values are folded. If no error is encountered, the folded
2150 /// value is returned inside `Ok`. Otherwise, the operation terminates
2151 /// and returns the first `Err` value it encounters. No iterator elements are
2152 /// consumed after the first error.
2153 ///
2154 /// The first accumulator value is the `start` parameter.
2155 /// Each iteration passes the accumulator value and the next value inside `Ok`
2156 /// to the fold function `f` and its return value becomes the new accumulator value.
2157 ///
2158 /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
2159 /// computation like this:
2160 ///
2161 /// ```ignore
2162 /// let mut accum = start;
2163 /// accum = f(accum, 1);
2164 /// accum = f(accum, 2);
2165 /// accum = f(accum, 3);
2166 /// ```
2167 ///
2168 /// With a `start` value of 0 and an addition as folding function,
2169 /// this effectively results in *((0 + 1) + 2) + 3*
2170 ///
2171 /// ```
2172 /// use std::ops::Add;
2173 /// use itertools::Itertools;
2174 ///
2175 /// let values = [1, 2, -2, -1, 2, 1];
2176 /// assert_eq!(
2177 /// values.iter()
2178 /// .map(Ok::<_, ()>)
Joel Galenson6f798712021-04-01 17:03:06 -07002179 /// .fold_ok(0, Add::add),
Jakub Kotura425e552020-12-21 17:28:15 +01002180 /// Ok(3)
2181 /// );
2182 /// assert!(
2183 /// values.iter()
2184 /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
Joel Galenson6f798712021-04-01 17:03:06 -07002185 /// .fold_ok(0, Add::add)
Jakub Kotura425e552020-12-21 17:28:15 +01002186 /// .is_err()
2187 /// );
2188 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07002189 fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E>
Jakub Kotura425e552020-12-21 17:28:15 +01002190 where Self: Iterator<Item = Result<A, E>>,
2191 F: FnMut(B, A) -> B
2192 {
2193 for elt in self {
2194 match elt {
2195 Ok(v) => start = f(start, v),
2196 Err(u) => return Err(u),
2197 }
2198 }
2199 Ok(start)
2200 }
2201
2202 /// Fold `Option` values from an iterator.
2203 ///
2204 /// Only `Some` values are folded. If no `None` is encountered, the folded
2205 /// value is returned inside `Some`. Otherwise, the operation terminates
2206 /// and returns `None`. No iterator elements are consumed after the `None`.
2207 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002208 /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok).
Jakub Kotura425e552020-12-21 17:28:15 +01002209 ///
2210 /// ```
2211 /// use std::ops::Add;
2212 /// use itertools::Itertools;
2213 ///
2214 /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter();
2215 /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2));
2216 ///
2217 /// let mut more_values = vec![Some(2), None, Some(0)].into_iter();
2218 /// assert!(more_values.fold_options(0, Add::add).is_none());
2219 /// assert_eq!(more_values.next().unwrap(), Some(0));
2220 /// ```
2221 fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B>
2222 where Self: Iterator<Item = Option<A>>,
2223 F: FnMut(B, A) -> B
2224 {
2225 for elt in self {
2226 match elt {
2227 Some(v) => start = f(start, v),
2228 None => return None,
2229 }
2230 }
2231 Some(start)
2232 }
2233
2234 /// Accumulator of the elements in the iterator.
2235 ///
2236 /// Like `.fold()`, without a base case. If the iterator is
2237 /// empty, return `None`. With just one element, return it.
2238 /// Otherwise elements are accumulated in sequence using the closure `f`.
2239 ///
2240 /// ```
2241 /// use itertools::Itertools;
2242 ///
2243 /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
2244 /// assert_eq!((0..0).fold1(|x, y| x * y), None);
2245 /// ```
David LeGareb72e9052022-03-02 16:21:08 +00002246 #[deprecated(since = "0.10.2", note = "Use `Iterator::reduce` instead")]
Jakub Kotura425e552020-12-21 17:28:15 +01002247 fn fold1<F>(mut self, f: F) -> Option<Self::Item>
2248 where F: FnMut(Self::Item, Self::Item) -> Self::Item,
2249 Self: Sized,
2250 {
2251 self.next().map(move |x| self.fold(x, f))
2252 }
2253
2254 /// Accumulate the elements in the iterator in a tree-like manner.
2255 ///
2256 /// You can think of it as, while there's more than one item, repeatedly
2257 /// combining adjacent items. It does so in bottom-up-merge-sort order,
2258 /// however, so that it needs only logarithmic stack space.
2259 ///
2260 /// This produces a call tree like the following (where the calls under
2261 /// an item are done after reading that item):
2262 ///
2263 /// ```text
2264 /// 1 2 3 4 5 6 7
2265 /// │ │ │ │ │ │ │
2266 /// └─f └─f └─f │
2267 /// │ │ │ │
2268 /// └───f └─f
2269 /// │ │
2270 /// └─────f
2271 /// ```
2272 ///
2273 /// Which, for non-associative functions, will typically produce a different
2274 /// result than the linear call tree used by `fold1`:
2275 ///
2276 /// ```text
2277 /// 1 2 3 4 5 6 7
2278 /// │ │ │ │ │ │ │
2279 /// └─f─f─f─f─f─f
2280 /// ```
2281 ///
2282 /// If `f` is associative, prefer the normal `fold1` instead.
2283 ///
2284 /// ```
2285 /// use itertools::Itertools;
2286 ///
2287 /// // The same tree as above
2288 /// let num_strings = (1..8).map(|x| x.to_string());
2289 /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)),
2290 /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))")));
2291 ///
2292 /// // Like fold1, an empty iterator produces None
2293 /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None);
2294 ///
2295 /// // tree_fold1 matches fold1 for associative operations...
2296 /// assert_eq!((0..10).tree_fold1(|x, y| x + y),
2297 /// (0..10).fold1(|x, y| x + y));
2298 /// // ...but not for non-associative ones
2299 /// assert_ne!((0..10).tree_fold1(|x, y| x - y),
2300 /// (0..10).fold1(|x, y| x - y));
2301 /// ```
2302 fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item>
2303 where F: FnMut(Self::Item, Self::Item) -> Self::Item,
2304 Self: Sized,
2305 {
2306 type State<T> = Result<T, Option<T>>;
2307
2308 fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T>
2309 where
2310 II: Iterator<Item = T>,
2311 FF: FnMut(T, T) -> T
2312 {
2313 // This function could be replaced with `it.next().ok_or(None)`,
2314 // but half the useful tree_fold1 work is combining adjacent items,
2315 // so put that in a form that LLVM is more likely to optimize well.
2316
2317 let a =
2318 if let Some(v) = it.next() { v }
2319 else { return Err(None) };
2320 let b =
2321 if let Some(v) = it.next() { v }
2322 else { return Err(Some(a)) };
2323 Ok(f(a, b))
2324 }
2325
2326 fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T>
2327 where
2328 II: Iterator<Item = T>,
2329 FF: FnMut(T, T) -> T
2330 {
2331 let mut x = inner0(it, f)?;
2332 for height in 0..stop {
2333 // Try to get another tree the same size with which to combine it,
2334 // creating a new tree that's twice as big for next time around.
2335 let next =
2336 if height == 0 {
2337 inner0(it, f)
2338 } else {
2339 inner(height, it, f)
2340 };
2341 match next {
2342 Ok(y) => x = f(x, y),
2343
2344 // If we ran out of items, combine whatever we did manage
2345 // to get. It's better combined with the current value
2346 // than something in a parent frame, because the tree in
2347 // the parent is always as least as big as this one.
2348 Err(None) => return Err(Some(x)),
2349 Err(Some(y)) => return Err(Some(f(x, y))),
2350 }
2351 }
2352 Ok(x)
2353 }
2354
2355 match inner(usize::max_value(), &mut self, &mut f) {
2356 Err(x) => x,
2357 _ => unreachable!(),
2358 }
2359 }
2360
2361 /// An iterator method that applies a function, producing a single, final value.
2362 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002363 /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for
Jakub Kotura425e552020-12-21 17:28:15 +01002364 /// early exit via short-circuiting.
2365 ///
2366 /// ```
2367 /// use itertools::Itertools;
2368 /// use itertools::FoldWhile::{Continue, Done};
2369 ///
2370 /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2371 ///
2372 /// let mut result = 0;
2373 ///
2374 /// // for loop:
2375 /// for i in &numbers {
2376 /// if *i > 5 {
2377 /// break;
2378 /// }
2379 /// result = result + i;
2380 /// }
2381 ///
2382 /// // fold:
2383 /// let result2 = numbers.iter().fold(0, |acc, x| {
2384 /// if *x > 5 { acc } else { acc + x }
2385 /// });
2386 ///
2387 /// // fold_while:
2388 /// let result3 = numbers.iter().fold_while(0, |acc, x| {
2389 /// if *x > 5 { Done(acc) } else { Continue(acc + x) }
2390 /// }).into_inner();
2391 ///
2392 /// // they're the same
2393 /// assert_eq!(result, result2);
2394 /// assert_eq!(result2, result3);
2395 /// ```
2396 ///
2397 /// The big difference between the computations of `result2` and `result3` is that while
2398 /// `fold()` called the provided closure for every item of the callee iterator,
2399 /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`.
Jakub Kotura425e552020-12-21 17:28:15 +01002400 fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B>
2401 where Self: Sized,
2402 F: FnMut(B, Self::Item) -> FoldWhile<B>
2403 {
Joel Galenson6f798712021-04-01 17:03:06 -07002404 use Result::{
2405 Ok as Continue,
2406 Err as Break,
2407 };
2408
2409 let result = self.try_fold(init, #[inline(always)] |acc, v|
2410 match f(acc, v) {
2411 FoldWhile::Continue(acc) => Continue(acc),
2412 FoldWhile::Done(acc) => Break(acc),
Jakub Kotura425e552020-12-21 17:28:15 +01002413 }
Joel Galenson6f798712021-04-01 17:03:06 -07002414 );
2415
2416 match result {
2417 Continue(acc) => FoldWhile::Continue(acc),
2418 Break(acc) => FoldWhile::Done(acc),
Jakub Kotura425e552020-12-21 17:28:15 +01002419 }
Jakub Kotura425e552020-12-21 17:28:15 +01002420 }
2421
2422 /// Iterate over the entire iterator and add all the elements.
2423 ///
2424 /// An empty iterator returns `None`, otherwise `Some(sum)`.
2425 ///
2426 /// # Panics
2427 ///
2428 /// When calling `sum1()` and a primitive integer type is being returned, this
2429 /// method will panic if the computation overflows and debug assertions are
2430 /// enabled.
2431 ///
2432 /// # Examples
2433 ///
2434 /// ```
2435 /// use itertools::Itertools;
2436 ///
2437 /// let empty_sum = (1..1).sum1::<i32>();
2438 /// assert_eq!(empty_sum, None);
2439 ///
2440 /// let nonempty_sum = (1..11).sum1::<i32>();
2441 /// assert_eq!(nonempty_sum, Some(55));
2442 /// ```
2443 fn sum1<S>(mut self) -> Option<S>
2444 where Self: Sized,
2445 S: std::iter::Sum<Self::Item>,
2446 {
2447 self.next()
2448 .map(|first| once(first).chain(self).sum())
2449 }
2450
2451 /// Iterate over the entire iterator and multiply all the elements.
2452 ///
2453 /// An empty iterator returns `None`, otherwise `Some(product)`.
2454 ///
2455 /// # Panics
2456 ///
2457 /// When calling `product1()` and a primitive integer type is being returned,
2458 /// method will panic if the computation overflows and debug assertions are
2459 /// enabled.
2460 ///
2461 /// # Examples
2462 /// ```
2463 /// use itertools::Itertools;
2464 ///
2465 /// let empty_product = (1..1).product1::<i32>();
2466 /// assert_eq!(empty_product, None);
2467 ///
2468 /// let nonempty_product = (1..11).product1::<i32>();
2469 /// assert_eq!(nonempty_product, Some(3628800));
2470 /// ```
2471 fn product1<P>(mut self) -> Option<P>
2472 where Self: Sized,
2473 P: std::iter::Product<Self::Item>,
2474 {
2475 self.next()
2476 .map(|first| once(first).chain(self).product())
2477 }
2478
Joel Galenson6f798712021-04-01 17:03:06 -07002479 /// Sort all iterator elements into a new iterator in ascending order.
2480 ///
2481 /// **Note:** This consumes the entire iterator, uses the
Joel Galensonb593e252021-06-21 13:15:57 -07002482 /// [`slice::sort_unstable`] method and returns the result as a new
Joel Galenson6f798712021-04-01 17:03:06 -07002483 /// iterator that owns its elements.
2484 ///
2485 /// The sorted iterator, if directly collected to a `Vec`, is converted
2486 /// without any extra copying or allocation cost.
2487 ///
2488 /// ```
2489 /// use itertools::Itertools;
2490 ///
2491 /// // sort the letters of the text in ascending order
2492 /// let text = "bdacfe";
2493 /// itertools::assert_equal(text.chars().sorted_unstable(),
2494 /// "abcdef".chars());
2495 /// ```
2496 #[cfg(feature = "use_alloc")]
2497 fn sorted_unstable(self) -> VecIntoIter<Self::Item>
2498 where Self: Sized,
2499 Self::Item: Ord
2500 {
2501 // Use .sort_unstable() directly since it is not quite identical with
2502 // .sort_by(Ord::cmp)
2503 let mut v = Vec::from_iter(self);
2504 v.sort_unstable();
2505 v.into_iter()
2506 }
2507
2508 /// Sort all iterator elements into a new iterator in ascending order.
2509 ///
2510 /// **Note:** This consumes the entire iterator, uses the
Joel Galensonb593e252021-06-21 13:15:57 -07002511 /// [`slice::sort_unstable_by`] method and returns the result as a new
Joel Galenson6f798712021-04-01 17:03:06 -07002512 /// iterator that owns its elements.
2513 ///
2514 /// The sorted iterator, if directly collected to a `Vec`, is converted
2515 /// without any extra copying or allocation cost.
2516 ///
2517 /// ```
2518 /// use itertools::Itertools;
2519 ///
2520 /// // sort people in descending order by age
2521 /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
2522 ///
2523 /// let oldest_people_first = people
2524 /// .into_iter()
2525 /// .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1))
2526 /// .map(|(person, _age)| person);
2527 ///
2528 /// itertools::assert_equal(oldest_people_first,
2529 /// vec!["Jill", "Jack", "Jane", "John"]);
2530 /// ```
2531 #[cfg(feature = "use_alloc")]
2532 fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
2533 where Self: Sized,
2534 F: FnMut(&Self::Item, &Self::Item) -> Ordering,
2535 {
2536 let mut v = Vec::from_iter(self);
2537 v.sort_unstable_by(cmp);
2538 v.into_iter()
2539 }
2540
2541 /// Sort all iterator elements into a new iterator in ascending order.
2542 ///
2543 /// **Note:** This consumes the entire iterator, uses the
Joel Galensonb593e252021-06-21 13:15:57 -07002544 /// [`slice::sort_unstable_by_key`] method and returns the result as a new
Joel Galenson6f798712021-04-01 17:03:06 -07002545 /// iterator that owns its elements.
2546 ///
2547 /// The sorted iterator, if directly collected to a `Vec`, is converted
2548 /// without any extra copying or allocation cost.
2549 ///
2550 /// ```
2551 /// use itertools::Itertools;
2552 ///
2553 /// // sort people in descending order by age
2554 /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
2555 ///
2556 /// let oldest_people_first = people
2557 /// .into_iter()
2558 /// .sorted_unstable_by_key(|x| -x.1)
2559 /// .map(|(person, _age)| person);
2560 ///
2561 /// itertools::assert_equal(oldest_people_first,
2562 /// vec!["Jill", "Jack", "Jane", "John"]);
2563 /// ```
2564 #[cfg(feature = "use_alloc")]
2565 fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
2566 where Self: Sized,
2567 K: Ord,
2568 F: FnMut(&Self::Item) -> K,
2569 {
2570 let mut v = Vec::from_iter(self);
2571 v.sort_unstable_by_key(f);
2572 v.into_iter()
2573 }
Jakub Kotura425e552020-12-21 17:28:15 +01002574
2575 /// Sort all iterator elements into a new iterator in ascending order.
2576 ///
2577 /// **Note:** This consumes the entire iterator, uses the
Joel Galensonb593e252021-06-21 13:15:57 -07002578 /// [`slice::sort`] method and returns the result as a new
Jakub Kotura425e552020-12-21 17:28:15 +01002579 /// iterator that owns its elements.
2580 ///
2581 /// The sorted iterator, if directly collected to a `Vec`, is converted
2582 /// without any extra copying or allocation cost.
2583 ///
2584 /// ```
2585 /// use itertools::Itertools;
2586 ///
2587 /// // sort the letters of the text in ascending order
2588 /// let text = "bdacfe";
2589 /// itertools::assert_equal(text.chars().sorted(),
2590 /// "abcdef".chars());
2591 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07002592 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01002593 fn sorted(self) -> VecIntoIter<Self::Item>
2594 where Self: Sized,
2595 Self::Item: Ord
2596 {
2597 // Use .sort() directly since it is not quite identical with
2598 // .sort_by(Ord::cmp)
2599 let mut v = Vec::from_iter(self);
2600 v.sort();
2601 v.into_iter()
2602 }
2603
2604 /// Sort all iterator elements into a new iterator in ascending order.
2605 ///
2606 /// **Note:** This consumes the entire iterator, uses the
Joel Galensonb593e252021-06-21 13:15:57 -07002607 /// [`slice::sort_by`] method and returns the result as a new
Jakub Kotura425e552020-12-21 17:28:15 +01002608 /// iterator that owns its elements.
2609 ///
2610 /// The sorted iterator, if directly collected to a `Vec`, is converted
2611 /// without any extra copying or allocation cost.
2612 ///
2613 /// ```
2614 /// use itertools::Itertools;
2615 ///
2616 /// // sort people in descending order by age
2617 /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
2618 ///
2619 /// let oldest_people_first = people
2620 /// .into_iter()
2621 /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1))
2622 /// .map(|(person, _age)| person);
2623 ///
2624 /// itertools::assert_equal(oldest_people_first,
2625 /// vec!["Jill", "Jack", "Jane", "John"]);
2626 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07002627 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01002628 fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
2629 where Self: Sized,
2630 F: FnMut(&Self::Item, &Self::Item) -> Ordering,
2631 {
2632 let mut v = Vec::from_iter(self);
2633 v.sort_by(cmp);
2634 v.into_iter()
2635 }
2636
2637 /// Sort all iterator elements into a new iterator in ascending order.
2638 ///
2639 /// **Note:** This consumes the entire iterator, uses the
Joel Galensonb593e252021-06-21 13:15:57 -07002640 /// [`slice::sort_by_key`] method and returns the result as a new
Jakub Kotura425e552020-12-21 17:28:15 +01002641 /// iterator that owns its elements.
2642 ///
2643 /// The sorted iterator, if directly collected to a `Vec`, is converted
2644 /// without any extra copying or allocation cost.
2645 ///
2646 /// ```
2647 /// use itertools::Itertools;
2648 ///
2649 /// // sort people in descending order by age
2650 /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
2651 ///
2652 /// let oldest_people_first = people
2653 /// .into_iter()
2654 /// .sorted_by_key(|x| -x.1)
2655 /// .map(|(person, _age)| person);
2656 ///
2657 /// itertools::assert_equal(oldest_people_first,
2658 /// vec!["Jill", "Jack", "Jane", "John"]);
2659 /// ```
Joel Galenson6f798712021-04-01 17:03:06 -07002660 #[cfg(feature = "use_alloc")]
Jakub Kotura425e552020-12-21 17:28:15 +01002661 fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
2662 where Self: Sized,
2663 K: Ord,
2664 F: FnMut(&Self::Item) -> K,
2665 {
2666 let mut v = Vec::from_iter(self);
2667 v.sort_by_key(f);
2668 v.into_iter()
2669 }
2670
David LeGareb72e9052022-03-02 16:21:08 +00002671 /// Sort all iterator elements into a new iterator in ascending order. The key function is
2672 /// called exactly once per key.
2673 ///
2674 /// **Note:** This consumes the entire iterator, uses the
2675 /// [`slice::sort_by_cached_key`] method and returns the result as a new
2676 /// iterator that owns its elements.
2677 ///
2678 /// The sorted iterator, if directly collected to a `Vec`, is converted
2679 /// without any extra copying or allocation cost.
2680 ///
2681 /// ```
2682 /// use itertools::Itertools;
2683 ///
2684 /// // sort people in descending order by age
2685 /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
2686 ///
2687 /// let oldest_people_first = people
2688 /// .into_iter()
2689 /// .sorted_by_cached_key(|x| -x.1)
2690 /// .map(|(person, _age)| person);
2691 ///
2692 /// itertools::assert_equal(oldest_people_first,
2693 /// vec!["Jill", "Jack", "Jane", "John"]);
2694 /// ```
2695 /// ```
2696 #[cfg(feature = "use_alloc")]
2697 fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
2698 where
2699 Self: Sized,
2700 K: Ord,
2701 F: FnMut(&Self::Item) -> K,
2702 {
2703 let mut v = Vec::from_iter(self);
2704 v.sort_by_cached_key(f);
2705 v.into_iter()
2706 }
2707
Joel Galenson6f798712021-04-01 17:03:06 -07002708 /// Sort the k smallest elements into a new iterator, in ascending order.
2709 ///
2710 /// **Note:** This consumes the entire iterator, and returns the result
2711 /// as a new iterator that owns its elements. If the input contains
2712 /// less than k elements, the result is equivalent to `self.sorted()`.
2713 ///
2714 /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory
2715 /// and `O(n log k)` time, with `n` the number of elements in the input.
2716 ///
2717 /// The sorted iterator, if directly collected to a `Vec`, is converted
2718 /// without any extra copying or allocation cost.
2719 ///
2720 /// **Note:** This is functionally-equivalent to `self.sorted().take(k)`
2721 /// but much more efficient.
2722 ///
2723 /// ```
2724 /// use itertools::Itertools;
2725 ///
2726 /// // A random permutation of 0..15
2727 /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5];
2728 ///
2729 /// let five_smallest = numbers
2730 /// .into_iter()
2731 /// .k_smallest(5);
2732 ///
2733 /// itertools::assert_equal(five_smallest, 0..5);
2734 /// ```
2735 #[cfg(feature = "use_alloc")]
2736 fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item>
2737 where Self: Sized,
2738 Self::Item: Ord
2739 {
2740 crate::k_smallest::k_smallest(self, k)
2741 .into_sorted_vec()
2742 .into_iter()
2743 }
2744
Jakub Kotura425e552020-12-21 17:28:15 +01002745 /// Collect all iterator elements into one of two
Joel Galensonb593e252021-06-21 13:15:57 -07002746 /// partitions. Unlike [`Iterator::partition`], each partition may
Jakub Kotura425e552020-12-21 17:28:15 +01002747 /// have a distinct type.
2748 ///
2749 /// ```
2750 /// use itertools::{Itertools, Either};
2751 ///
2752 /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
2753 ///
2754 /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
2755 /// .into_iter()
2756 /// .partition_map(|r| {
2757 /// match r {
2758 /// Ok(v) => Either::Left(v),
2759 /// Err(v) => Either::Right(v),
2760 /// }
2761 /// });
2762 ///
2763 /// assert_eq!(successes, [1, 2]);
2764 /// assert_eq!(failures, [false, true]);
2765 /// ```
2766 fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B)
2767 where Self: Sized,
2768 F: FnMut(Self::Item) -> Either<L, R>,
2769 A: Default + Extend<L>,
2770 B: Default + Extend<R>,
2771 {
2772 let mut left = A::default();
2773 let mut right = B::default();
2774
2775 self.for_each(|val| match predicate(val) {
2776 Either::Left(v) => left.extend(Some(v)),
2777 Either::Right(v) => right.extend(Some(v)),
2778 });
2779
2780 (left, right)
2781 }
2782
Joel Galensonb593e252021-06-21 13:15:57 -07002783 /// Partition a sequence of `Result`s into one list of all the `Ok` elements
2784 /// and another list of all the `Err` elements.
2785 ///
2786 /// ```
2787 /// use itertools::Itertools;
2788 ///
2789 /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
2790 ///
2791 /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
2792 /// .into_iter()
2793 /// .partition_result();
2794 ///
2795 /// assert_eq!(successes, [1, 2]);
2796 /// assert_eq!(failures, [false, true]);
2797 /// ```
2798 fn partition_result<A, B, T, E>(self) -> (A, B)
2799 where
2800 Self: Iterator<Item = Result<T, E>> + Sized,
2801 A: Default + Extend<T>,
2802 B: Default + Extend<E>,
2803 {
2804 self.partition_map(|r| match r {
2805 Ok(v) => Either::Left(v),
2806 Err(v) => Either::Right(v),
2807 })
2808 }
2809
Jakub Kotura425e552020-12-21 17:28:15 +01002810 /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values
2811 /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator.
2812 ///
David LeGareb72e9052022-03-02 16:21:08 +00002813 /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`.
2814 ///
Jakub Kotura425e552020-12-21 17:28:15 +01002815 /// ```
2816 /// use itertools::Itertools;
2817 ///
2818 /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
2819 /// let lookup = data.into_iter().into_group_map();
2820 ///
2821 /// assert_eq!(lookup[&0], vec![10, 20]);
2822 /// assert_eq!(lookup.get(&1), None);
2823 /// assert_eq!(lookup[&2], vec![12, 42]);
2824 /// assert_eq!(lookup[&3], vec![13, 33]);
2825 /// ```
2826 #[cfg(feature = "use_std")]
2827 fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
2828 where Self: Iterator<Item=(K, V)> + Sized,
2829 K: Hash + Eq,
2830 {
2831 group_map::into_group_map(self)
2832 }
2833
Joel Galensonb593e252021-06-21 13:15:57 -07002834 /// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified
Joel Galenson6f798712021-04-01 17:03:06 -07002835 /// in the closure.
David LeGareb72e9052022-03-02 16:21:08 +00002836 ///
2837 /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`.
Joel Galenson6f798712021-04-01 17:03:06 -07002838 ///
2839 /// ```
2840 /// use itertools::Itertools;
2841 /// use std::collections::HashMap;
2842 ///
2843 /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
Joel Galensonb593e252021-06-21 13:15:57 -07002844 /// let lookup: HashMap<u32,Vec<(u32, u32)>> =
2845 /// data.clone().into_iter().into_group_map_by(|a| a.0);
Joel Galenson6f798712021-04-01 17:03:06 -07002846 ///
2847 /// assert_eq!(lookup[&0], vec![(0,10),(0,20)]);
2848 /// assert_eq!(lookup.get(&1), None);
2849 /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]);
2850 /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]);
2851 ///
2852 /// assert_eq!(
2853 /// data.into_iter()
Joel Galensonb593e252021-06-21 13:15:57 -07002854 /// .into_group_map_by(|x| x.0)
2855 /// .into_iter()
2856 /// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v )))
2857 /// .collect::<HashMap<u32,u32>>()[&0],
2858 /// 30,
2859 /// );
Joel Galenson6f798712021-04-01 17:03:06 -07002860 /// ```
2861 #[cfg(feature = "use_std")]
2862 fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>>
2863 where
2864 Self: Iterator<Item=V> + Sized,
2865 K: Hash + Eq,
2866 F: Fn(&V) -> K,
2867 {
2868 group_map::into_group_map_by(self, f)
2869 }
2870
2871 /// Constructs a `GroupingMap` to be used later with one of the efficient
2872 /// group-and-fold operations it allows to perform.
2873 ///
2874 /// The input iterator must yield item in the form of `(K, V)` where the
2875 /// value of type `K` will be used as key to identify the groups and the
2876 /// value of type `V` as value for the folding operation.
2877 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002878 /// See [`GroupingMap`] for more informations
Joel Galenson6f798712021-04-01 17:03:06 -07002879 /// on what operations are available.
2880 #[cfg(feature = "use_std")]
2881 fn into_grouping_map<K, V>(self) -> GroupingMap<Self>
2882 where Self: Iterator<Item=(K, V)> + Sized,
2883 K: Hash + Eq,
2884 {
2885 grouping_map::new(self)
2886 }
2887
2888 /// Constructs a `GroupingMap` to be used later with one of the efficient
2889 /// group-and-fold operations it allows to perform.
2890 ///
2891 /// The values from this iterator will be used as values for the folding operation
2892 /// while the keys will be obtained from the values by calling `key_mapper`.
2893 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002894 /// See [`GroupingMap`] for more informations
Joel Galenson6f798712021-04-01 17:03:06 -07002895 /// on what operations are available.
2896 #[cfg(feature = "use_std")]
2897 fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F>
2898 where Self: Iterator<Item=V> + Sized,
2899 K: Hash + Eq,
2900 F: FnMut(&V) -> K
2901 {
2902 grouping_map::new(grouping_map::MapForGrouping::new(self, key_mapper))
2903 }
2904
Jakub Kotura425e552020-12-21 17:28:15 +01002905 /// Return the minimum and maximum elements in the iterator.
2906 ///
2907 /// The return type `MinMaxResult` is an enum of three variants:
2908 ///
2909 /// - `NoElements` if the iterator is empty.
2910 /// - `OneElement(x)` if the iterator has exactly one element.
2911 /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two
2912 /// values are equal if and only if there is more than one
2913 /// element in the iterator and all elements are equal.
2914 ///
2915 /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons,
2916 /// and so is faster than calling `min` and `max` separately which does
2917 /// `2 * n` comparisons.
2918 ///
2919 /// # Examples
2920 ///
2921 /// ```
2922 /// use itertools::Itertools;
2923 /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
2924 ///
2925 /// let a: [i32; 0] = [];
2926 /// assert_eq!(a.iter().minmax(), NoElements);
2927 ///
2928 /// let a = [1];
2929 /// assert_eq!(a.iter().minmax(), OneElement(&1));
2930 ///
2931 /// let a = [1, 2, 3, 4, 5];
2932 /// assert_eq!(a.iter().minmax(), MinMax(&1, &5));
2933 ///
2934 /// let a = [1, 1, 1, 1];
2935 /// assert_eq!(a.iter().minmax(), MinMax(&1, &1));
2936 /// ```
2937 ///
2938 /// The elements can be floats but no particular result is guaranteed
2939 /// if an element is NaN.
2940 fn minmax(self) -> MinMaxResult<Self::Item>
2941 where Self: Sized, Self::Item: PartialOrd
2942 {
2943 minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y)
2944 }
2945
2946 /// Return the minimum and maximum element of an iterator, as determined by
2947 /// the specified function.
2948 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002949 /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
Jakub Kotura425e552020-12-21 17:28:15 +01002950 ///
2951 /// For the minimum, the first minimal element is returned. For the maximum,
2952 /// the last maximal element wins. This matches the behavior of the standard
Joel Galensonb593e252021-06-21 13:15:57 -07002953 /// [`Iterator::min`] and [`Iterator::max`] methods.
Jakub Kotura425e552020-12-21 17:28:15 +01002954 ///
2955 /// The keys can be floats but no particular result is guaranteed
2956 /// if a key is NaN.
2957 fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
2958 where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
2959 {
2960 minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk)
2961 }
2962
2963 /// Return the minimum and maximum element of an iterator, as determined by
2964 /// the specified comparison function.
2965 ///
Joel Galensonb593e252021-06-21 13:15:57 -07002966 /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
Jakub Kotura425e552020-12-21 17:28:15 +01002967 ///
2968 /// For the minimum, the first minimal element is returned. For the maximum,
2969 /// the last maximal element wins. This matches the behavior of the standard
Joel Galensonb593e252021-06-21 13:15:57 -07002970 /// [`Iterator::min`] and [`Iterator::max`] methods.
Jakub Kotura425e552020-12-21 17:28:15 +01002971 fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item>
2972 where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
2973 {
2974 minmax::minmax_impl(
2975 self,
2976 |_| (),
2977 |x, y, _, _| Ordering::Less == compare(x, y)
2978 )
2979 }
2980
2981 /// Return the position of the maximum element in the iterator.
2982 ///
2983 /// If several elements are equally maximum, the position of the
2984 /// last of them is returned.
2985 ///
2986 /// # Examples
2987 ///
2988 /// ```
2989 /// use itertools::Itertools;
2990 ///
2991 /// let a: [i32; 0] = [];
2992 /// assert_eq!(a.iter().position_max(), None);
2993 ///
2994 /// let a = [-3, 0, 1, 5, -10];
2995 /// assert_eq!(a.iter().position_max(), Some(3));
2996 ///
2997 /// let a = [1, 1, -1, -1];
2998 /// assert_eq!(a.iter().position_max(), Some(1));
2999 /// ```
3000 fn position_max(self) -> Option<usize>
3001 where Self: Sized, Self::Item: Ord
3002 {
3003 self.enumerate()
3004 .max_by(|x, y| Ord::cmp(&x.1, &y.1))
3005 .map(|x| x.0)
3006 }
3007
3008 /// Return the position of the maximum element in the iterator, as
3009 /// determined by the specified function.
3010 ///
3011 /// If several elements are equally maximum, the position of the
3012 /// last of them is returned.
3013 ///
3014 /// # Examples
3015 ///
3016 /// ```
3017 /// use itertools::Itertools;
3018 ///
3019 /// let a: [i32; 0] = [];
3020 /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None);
3021 ///
3022 /// let a = [-3_i32, 0, 1, 5, -10];
3023 /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4));
3024 ///
3025 /// let a = [1_i32, 1, -1, -1];
3026 /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3));
3027 /// ```
3028 fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize>
3029 where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
3030 {
3031 self.enumerate()
3032 .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1)))
3033 .map(|x| x.0)
3034 }
3035
3036 /// Return the position of the maximum element in the iterator, as
3037 /// determined by the specified comparison function.
3038 ///
3039 /// If several elements are equally maximum, the position of the
3040 /// last of them is returned.
3041 ///
3042 /// # Examples
3043 ///
3044 /// ```
3045 /// use itertools::Itertools;
3046 ///
3047 /// let a: [i32; 0] = [];
3048 /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None);
3049 ///
3050 /// let a = [-3_i32, 0, 1, 5, -10];
3051 /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3));
3052 ///
3053 /// let a = [1_i32, 1, -1, -1];
3054 /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1));
3055 /// ```
3056 fn position_max_by<F>(self, mut compare: F) -> Option<usize>
3057 where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
3058 {
3059 self.enumerate()
3060 .max_by(|x, y| compare(&x.1, &y.1))
3061 .map(|x| x.0)
3062 }
3063
3064 /// Return the position of the minimum element in the iterator.
3065 ///
3066 /// If several elements are equally minimum, the position of the
3067 /// first of them is returned.
3068 ///
3069 /// # Examples
3070 ///
3071 /// ```
3072 /// use itertools::Itertools;
3073 ///
3074 /// let a: [i32; 0] = [];
3075 /// assert_eq!(a.iter().position_min(), None);
3076 ///
3077 /// let a = [-3, 0, 1, 5, -10];
3078 /// assert_eq!(a.iter().position_min(), Some(4));
3079 ///
3080 /// let a = [1, 1, -1, -1];
3081 /// assert_eq!(a.iter().position_min(), Some(2));
3082 /// ```
3083 fn position_min(self) -> Option<usize>
3084 where Self: Sized, Self::Item: Ord
3085 {
3086 self.enumerate()
3087 .min_by(|x, y| Ord::cmp(&x.1, &y.1))
3088 .map(|x| x.0)
3089 }
3090
3091 /// Return the position of the minimum element in the iterator, as
3092 /// determined by the specified function.
3093 ///
3094 /// If several elements are equally minimum, the position of the
3095 /// first of them is returned.
3096 ///
3097 /// # Examples
3098 ///
3099 /// ```
3100 /// use itertools::Itertools;
3101 ///
3102 /// let a: [i32; 0] = [];
3103 /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None);
3104 ///
3105 /// let a = [-3_i32, 0, 1, 5, -10];
3106 /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1));
3107 ///
3108 /// let a = [1_i32, 1, -1, -1];
3109 /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0));
3110 /// ```
3111 fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize>
3112 where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K
3113 {
3114 self.enumerate()
3115 .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1)))
3116 .map(|x| x.0)
3117 }
3118
3119 /// Return the position of the minimum element in the iterator, as
3120 /// determined by the specified comparison function.
3121 ///
3122 /// If several elements are equally minimum, the position of the
3123 /// first of them is returned.
3124 ///
3125 /// # Examples
3126 ///
3127 /// ```
3128 /// use itertools::Itertools;
3129 ///
3130 /// let a: [i32; 0] = [];
3131 /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None);
3132 ///
3133 /// let a = [-3_i32, 0, 1, 5, -10];
3134 /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4));
3135 ///
3136 /// let a = [1_i32, 1, -1, -1];
3137 /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2));
3138 /// ```
3139 fn position_min_by<F>(self, mut compare: F) -> Option<usize>
3140 where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
3141 {
3142 self.enumerate()
3143 .min_by(|x, y| compare(&x.1, &y.1))
3144 .map(|x| x.0)
3145 }
3146
3147 /// Return the positions of the minimum and maximum elements in
3148 /// the iterator.
3149 ///
3150 /// The return type [`MinMaxResult`] is an enum of three variants:
3151 ///
3152 /// - `NoElements` if the iterator is empty.
3153 /// - `OneElement(xpos)` if the iterator has exactly one element.
3154 /// - `MinMax(xpos, ypos)` is returned otherwise, where the
3155 /// element at `xpos` ≤ the element at `ypos`. While the
3156 /// referenced elements themselves may be equal, `xpos` cannot
3157 /// be equal to `ypos`.
3158 ///
3159 /// On an iterator of length `n`, `position_minmax` does `1.5 * n`
3160 /// comparisons, and so is faster than calling `positon_min` and
3161 /// `position_max` separately which does `2 * n` comparisons.
3162 ///
3163 /// For the minimum, if several elements are equally minimum, the
3164 /// position of the first of them is returned. For the maximum, if
3165 /// several elements are equally maximum, the position of the last
3166 /// of them is returned.
3167 ///
3168 /// The elements can be floats but no particular result is
3169 /// guaranteed if an element is NaN.
3170 ///
3171 /// # Examples
3172 ///
3173 /// ```
3174 /// use itertools::Itertools;
3175 /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
3176 ///
3177 /// let a: [i32; 0] = [];
3178 /// assert_eq!(a.iter().position_minmax(), NoElements);
3179 ///
3180 /// let a = [10];
3181 /// assert_eq!(a.iter().position_minmax(), OneElement(0));
3182 ///
3183 /// let a = [-3, 0, 1, 5, -10];
3184 /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3));
3185 ///
3186 /// let a = [1, 1, -1, -1];
3187 /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1));
3188 /// ```
Jakub Kotura425e552020-12-21 17:28:15 +01003189 fn position_minmax(self) -> MinMaxResult<usize>
3190 where Self: Sized, Self::Item: PartialOrd
3191 {
3192 use crate::MinMaxResult::{NoElements, OneElement, MinMax};
3193 match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) {
3194 NoElements => NoElements,
3195 OneElement(x) => OneElement(x.0),
3196 MinMax(x, y) => MinMax(x.0, y.0),
3197 }
3198 }
3199
3200 /// Return the postions of the minimum and maximum elements of an
3201 /// iterator, as determined by the specified function.
3202 ///
3203 /// The return value is a variant of [`MinMaxResult`] like for
3204 /// [`position_minmax`].
3205 ///
3206 /// For the minimum, if several elements are equally minimum, the
3207 /// position of the first of them is returned. For the maximum, if
3208 /// several elements are equally maximum, the position of the last
3209 /// of them is returned.
3210 ///
3211 /// The keys can be floats but no particular result is guaranteed
3212 /// if a key is NaN.
3213 ///
3214 /// # Examples
3215 ///
3216 /// ```
3217 /// use itertools::Itertools;
3218 /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
3219 ///
3220 /// let a: [i32; 0] = [];
3221 /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements);
3222 ///
3223 /// let a = [10_i32];
3224 /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0));
3225 ///
3226 /// let a = [-3_i32, 0, 1, 5, -10];
3227 /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4));
3228 ///
3229 /// let a = [1_i32, 1, -1, -1];
3230 /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3));
3231 /// ```
3232 ///
Joel Galensonb593e252021-06-21 13:15:57 -07003233 /// [`position_minmax`]: Self::position_minmax
Jakub Kotura425e552020-12-21 17:28:15 +01003234 fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize>
3235 where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
3236 {
3237 use crate::MinMaxResult::{NoElements, OneElement, MinMax};
3238 match self.enumerate().minmax_by_key(|e| key(&e.1)) {
3239 NoElements => NoElements,
3240 OneElement(x) => OneElement(x.0),
3241 MinMax(x, y) => MinMax(x.0, y.0),
3242 }
3243 }
3244
3245 /// Return the postions of the minimum and maximum elements of an
3246 /// iterator, as determined by the specified comparison function.
3247 ///
3248 /// The return value is a variant of [`MinMaxResult`] like for
3249 /// [`position_minmax`].
3250 ///
3251 /// For the minimum, if several elements are equally minimum, the
3252 /// position of the first of them is returned. For the maximum, if
3253 /// several elements are equally maximum, the position of the last
3254 /// of them is returned.
3255 ///
3256 /// # Examples
3257 ///
3258 /// ```
3259 /// use itertools::Itertools;
3260 /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
3261 ///
3262 /// let a: [i32; 0] = [];
3263 /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements);
3264 ///
3265 /// let a = [10_i32];
3266 /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0));
3267 ///
3268 /// let a = [-3_i32, 0, 1, 5, -10];
3269 /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3));
3270 ///
3271 /// let a = [1_i32, 1, -1, -1];
3272 /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1));
3273 /// ```
3274 ///
Joel Galensonb593e252021-06-21 13:15:57 -07003275 /// [`position_minmax`]: Self::position_minmax
Jakub Kotura425e552020-12-21 17:28:15 +01003276 fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize>
3277 where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
3278 {
3279 use crate::MinMaxResult::{NoElements, OneElement, MinMax};
3280 match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) {
3281 NoElements => NoElements,
3282 OneElement(x) => OneElement(x.0),
3283 MinMax(x, y) => MinMax(x.0, y.0),
3284 }
3285 }
3286
3287 /// If the iterator yields exactly one element, that element will be returned, otherwise
3288 /// an error will be returned containing an iterator that has the same output as the input
3289 /// iterator.
3290 ///
3291 /// This provides an additional layer of validation over just calling `Iterator::next()`.
3292 /// If your assumption that there should only be one element yielded is false this provides
3293 /// the opportunity to detect and handle that, preventing errors at a distance.
3294 ///
3295 /// # Examples
3296 /// ```
3297 /// use itertools::Itertools;
3298 ///
3299 /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2);
3300 /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4));
3301 /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5));
3302 /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0));
3303 /// ```
3304 fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>>
3305 where
3306 Self: Sized,
3307 {
3308 match self.next() {
3309 Some(first) => {
3310 match self.next() {
3311 Some(second) => {
Joel Galenson6f798712021-04-01 17:03:06 -07003312 Err(ExactlyOneError::new(Some(Either::Left([first, second])), self))
Jakub Kotura425e552020-12-21 17:28:15 +01003313 }
3314 None => {
3315 Ok(first)
3316 }
3317 }
3318 }
Joel Galenson6f798712021-04-01 17:03:06 -07003319 None => Err(ExactlyOneError::new(None, self)),
Jakub Kotura425e552020-12-21 17:28:15 +01003320 }
3321 }
Joel Galenson6f798712021-04-01 17:03:06 -07003322
Joel Galensonb593e252021-06-21 13:15:57 -07003323 /// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields
3324 /// exactly one element, that element will be returned, otherwise an error will be returned
3325 /// containing an iterator that has the same output as the input iterator.
3326 ///
3327 /// This provides an additional layer of validation over just calling `Iterator::next()`.
3328 /// If your assumption that there should be at most one element yielded is false this provides
3329 /// the opportunity to detect and handle that, preventing errors at a distance.
3330 ///
3331 /// # Examples
3332 /// ```
3333 /// use itertools::Itertools;
3334 ///
3335 /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2));
3336 /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4));
3337 /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5));
3338 /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None);
3339 /// ```
3340 fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>>
3341 where
3342 Self: Sized,
3343 {
3344 match self.next() {
3345 Some(first) => {
3346 match self.next() {
3347 Some(second) => {
3348 Err(ExactlyOneError::new(Some(Either::Left([first, second])), self))
3349 }
3350 None => {
3351 Ok(Some(first))
3352 }
3353 }
3354 }
3355 None => Ok(None),
3356 }
3357 }
3358
Joel Galenson6f798712021-04-01 17:03:06 -07003359 /// An iterator adaptor that allows the user to peek at multiple `.next()`
3360 /// values without advancing the base iterator.
3361 ///
3362 /// # Examples
3363 /// ```
3364 /// use itertools::Itertools;
3365 ///
3366 /// let mut iter = (0..10).multipeek();
3367 /// assert_eq!(iter.peek(), Some(&0));
3368 /// assert_eq!(iter.peek(), Some(&1));
3369 /// assert_eq!(iter.peek(), Some(&2));
3370 /// assert_eq!(iter.next(), Some(0));
3371 /// assert_eq!(iter.peek(), Some(&1));
3372 /// ```
3373 #[cfg(feature = "use_alloc")]
3374 fn multipeek(self) -> MultiPeek<Self>
3375 where
3376 Self: Sized,
3377 {
3378 multipeek_impl::multipeek(self)
3379 }
3380
3381 /// Collect the items in this iterator and return a `HashMap` which
3382 /// contains each item that appears in the iterator and the number
3383 /// of times it appears.
3384 ///
3385 /// # Examples
3386 /// ```
3387 /// # use itertools::Itertools;
3388 /// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts();
3389 /// assert_eq!(counts[&1], 3);
3390 /// assert_eq!(counts[&3], 2);
3391 /// assert_eq!(counts[&5], 1);
3392 /// assert_eq!(counts.get(&0), None);
3393 /// ```
3394 #[cfg(feature = "use_std")]
3395 fn counts(self) -> HashMap<Self::Item, usize>
3396 where
3397 Self: Sized,
3398 Self::Item: Eq + Hash,
3399 {
3400 let mut counts = HashMap::new();
3401 self.for_each(|item| *counts.entry(item).or_default() += 1);
3402 counts
3403 }
Joel Galensonb593e252021-06-21 13:15:57 -07003404
3405 /// Collect the items in this iterator and return a `HashMap` which
3406 /// contains each item that appears in the iterator and the number
3407 /// of times it appears,
3408 /// determining identity using a keying function.
3409 ///
3410 /// ```
3411 /// # use itertools::Itertools;
3412 /// struct Character {
3413 /// first_name: &'static str,
3414 /// last_name: &'static str,
3415 /// }
3416 ///
3417 /// let characters =
3418 /// vec![
3419 /// Character { first_name: "Amy", last_name: "Pond" },
3420 /// Character { first_name: "Amy", last_name: "Wong" },
3421 /// Character { first_name: "Amy", last_name: "Santiago" },
3422 /// Character { first_name: "James", last_name: "Bond" },
3423 /// Character { first_name: "James", last_name: "Sullivan" },
3424 /// Character { first_name: "James", last_name: "Norington" },
3425 /// Character { first_name: "James", last_name: "Kirk" },
3426 /// ];
3427 ///
3428 /// let first_name_frequency =
3429 /// characters
3430 /// .into_iter()
3431 /// .counts_by(|c| c.first_name);
3432 ///
3433 /// assert_eq!(first_name_frequency["Amy"], 3);
3434 /// assert_eq!(first_name_frequency["James"], 4);
3435 /// assert_eq!(first_name_frequency.contains_key("Asha"), false);
3436 /// ```
3437 #[cfg(feature = "use_std")]
3438 fn counts_by<K, F>(self, f: F) -> HashMap<K, usize>
3439 where
3440 Self: Sized,
3441 K: Eq + Hash,
3442 F: FnMut(Self::Item) -> K,
3443 {
3444 self.map(f).counts()
3445 }
David LeGareb72e9052022-03-02 16:21:08 +00003446
3447 /// Converts an iterator of tuples into a tuple of containers.
3448 ///
3449 /// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each
3450 /// column.
3451 ///
3452 /// This function is, in some sense, the opposite of [`multizip`].
3453 ///
3454 /// ```
3455 /// use itertools::Itertools;
3456 ///
3457 /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)];
3458 ///
3459 /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs
3460 /// .into_iter()
3461 /// .multiunzip();
3462 ///
3463 /// assert_eq!(a, vec![1, 4, 7]);
3464 /// assert_eq!(b, vec![2, 5, 8]);
3465 /// assert_eq!(c, vec![3, 6, 9]);
3466 /// ```
3467 fn multiunzip<FromI>(self) -> FromI
3468 where
3469 Self: Sized + MultiUnzip<FromI>,
3470 {
3471 MultiUnzip::multiunzip(self)
3472 }
Jakub Kotura425e552020-12-21 17:28:15 +01003473}
3474
3475impl<T: ?Sized> Itertools for T where T: Iterator { }
3476
3477/// Return `true` if both iterables produce equal sequences
3478/// (elements pairwise equal and sequences of the same length),
3479/// `false` otherwise.
3480///
Joel Galensonb593e252021-06-21 13:15:57 -07003481/// This is an [`IntoIterator`] enabled function that is similar to the standard
3482/// library method [`Iterator::eq`].
Jakub Kotura425e552020-12-21 17:28:15 +01003483///
3484/// ```
3485/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
3486/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0]));
3487/// ```
3488pub fn equal<I, J>(a: I, b: J) -> bool
3489 where I: IntoIterator,
3490 J: IntoIterator,
3491 I::Item: PartialEq<J::Item>
3492{
3493 let mut ia = a.into_iter();
3494 let mut ib = b.into_iter();
3495 loop {
3496 match ia.next() {
3497 Some(x) => match ib.next() {
3498 Some(y) => if x != y { return false; },
3499 None => return false,
3500 },
3501 None => return ib.next().is_none()
3502 }
3503 }
3504}
3505
3506/// Assert that two iterables produce equal sequences, with the same
Joel Galensonb593e252021-06-21 13:15:57 -07003507/// semantics as [`equal(a, b)`](equal).
Jakub Kotura425e552020-12-21 17:28:15 +01003508///
3509/// **Panics** on assertion failure with a message that shows the
3510/// two iteration elements.
3511///
3512/// ```ignore
3513/// assert_equal("exceed".split('c'), "excess".split('c'));
3514/// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1',
3515/// ```
3516pub fn assert_equal<I, J>(a: I, b: J)
3517 where I: IntoIterator,
3518 J: IntoIterator,
3519 I::Item: fmt::Debug + PartialEq<J::Item>,
3520 J::Item: fmt::Debug,
3521{
3522 let mut ia = a.into_iter();
3523 let mut ib = b.into_iter();
3524 let mut i = 0;
3525 loop {
3526 match (ia.next(), ib.next()) {
3527 (None, None) => return,
3528 (a, b) => {
3529 let equal = match (&a, &b) {
3530 (&Some(ref a), &Some(ref b)) => a == b,
3531 _ => false,
3532 };
3533 assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}",
3534 i=i, a=a, b=b);
3535 i += 1;
3536 }
3537 }
3538 }
3539}
3540
3541/// Partition a sequence using predicate `pred` so that elements
3542/// that map to `true` are placed before elements which map to `false`.
3543///
3544/// The order within the partitions is arbitrary.
3545///
3546/// Return the index of the split point.
3547///
3548/// ```
3549/// use itertools::partition;
3550///
3551/// # // use repeated numbers to not promise any ordering
3552/// let mut data = [7, 1, 1, 7, 1, 1, 7];
3553/// let split_index = partition(&mut data, |elt| *elt >= 3);
3554///
3555/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]);
3556/// assert_eq!(split_index, 3);
3557/// ```
3558pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize
3559 where I: IntoIterator<Item = &'a mut A>,
3560 I::IntoIter: DoubleEndedIterator,
3561 F: FnMut(&A) -> bool
3562{
3563 let mut split_index = 0;
3564 let mut iter = iter.into_iter();
3565 'main: while let Some(front) = iter.next() {
3566 if !pred(front) {
3567 loop {
3568 match iter.next_back() {
3569 Some(back) => if pred(back) {
3570 std::mem::swap(front, back);
3571 break;
3572 },
3573 None => break 'main,
3574 }
3575 }
3576 }
3577 split_index += 1;
3578 }
3579 split_index
3580}
3581
Joel Galensonb593e252021-06-21 13:15:57 -07003582/// An enum used for controlling the execution of `fold_while`.
Jakub Kotura425e552020-12-21 17:28:15 +01003583///
Joel Galensonb593e252021-06-21 13:15:57 -07003584/// See [`.fold_while()`](Itertools::fold_while) for more information.
Jakub Kotura425e552020-12-21 17:28:15 +01003585#[derive(Copy, Clone, Debug, Eq, PartialEq)]
3586pub enum FoldWhile<T> {
3587 /// Continue folding with this value
3588 Continue(T),
3589 /// Fold is complete and will return this value
3590 Done(T),
3591}
3592
3593impl<T> FoldWhile<T> {
3594 /// Return the value in the continue or done.
3595 pub fn into_inner(self) -> T {
3596 match self {
3597 FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
3598 }
3599 }
3600
3601 /// Return true if `self` is `Done`, false if it is `Continue`.
3602 pub fn is_done(&self) -> bool {
3603 match *self {
3604 FoldWhile::Continue(_) => false,
3605 FoldWhile::Done(_) => true,
3606 }
3607 }
3608}