blob: d42a79fb12420a4f17f608d24e4a721db1adfd9c [file] [log] [blame]
Joel Galenson66036a82020-07-07 13:29:38 -07001// Copyright 2018 Developers of the Rand project.
2// Copyright 2013-2017 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! Utilities for random number generation
11//!
12//! Rand provides utilities to generate random numbers, to convert them to
13//! useful types and distributions, and some randomness-related algorithms.
14//!
15//! # Quick Start
16//!
17//! To get you started quickly, the easiest and highest-level way to get
18//! a random value is to use [`random()`]; alternatively you can use
19//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
20//! the [`distributions`] and [`seq`] modules provide further
21//! functionality on top of RNGs.
22//!
23//! ```
24//! use rand::prelude::*;
25//!
26//! if rand::random() { // generates a boolean
27//! // Try printing a random unicode code point (probably a bad idea)!
28//! println!("char: {}", rand::random::<char>());
29//! }
30//!
31//! let mut rng = rand::thread_rng();
32//! let y: f64 = rng.gen(); // generates a float between 0 and 1
33//!
34//! let mut nums: Vec<i32> = (1..100).collect();
35//! nums.shuffle(&mut rng);
36//! ```
37//!
38//! # The Book
39//!
40//! For the user guide and futher documentation, please read
41//! [The Rust Rand Book](https://rust-random.github.io/book).
42
43#![doc(
44 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
45 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
46 html_root_url = "https://rust-random.github.io/rand/"
47)]
48#![deny(missing_docs)]
49#![deny(missing_debug_implementations)]
50#![doc(test(attr(allow(unused_variables), deny(warnings))))]
51#![cfg_attr(not(feature = "std"), no_std)]
52#![cfg_attr(all(feature = "simd_support", feature = "nightly"), feature(stdsimd))]
53#![allow(
54 clippy::excessive_precision,
55 clippy::unreadable_literal,
56 clippy::float_cmp
57)]
58
59#[cfg(all(feature = "alloc", not(feature = "std")))] extern crate alloc;
60
61#[allow(unused)]
62macro_rules! trace { ($($x:tt)*) => (
63 #[cfg(feature = "log")] {
64 log::trace!($($x)*)
65 }
66) }
67#[allow(unused)]
68macro_rules! debug { ($($x:tt)*) => (
69 #[cfg(feature = "log")] {
70 log::debug!($($x)*)
71 }
72) }
73#[allow(unused)]
74macro_rules! info { ($($x:tt)*) => (
75 #[cfg(feature = "log")] {
76 log::info!($($x)*)
77 }
78) }
79#[allow(unused)]
80macro_rules! warn { ($($x:tt)*) => (
81 #[cfg(feature = "log")] {
82 log::warn!($($x)*)
83 }
84) }
85#[allow(unused)]
86macro_rules! error { ($($x:tt)*) => (
87 #[cfg(feature = "log")] {
88 log::error!($($x)*)
89 }
90) }
91
92// Re-exports from rand_core
93pub use rand_core::{CryptoRng, Error, RngCore, SeedableRng};
94
95// Public exports
96#[cfg(feature = "std")] pub use crate::rngs::thread::thread_rng;
97
98// Public modules
99pub mod distributions;
100pub mod prelude;
101pub mod rngs;
102pub mod seq;
103
104
105use crate::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
106use crate::distributions::{Distribution, Standard};
107use core::num::Wrapping;
108use core::{mem, slice};
109
110/// An automatically-implemented extension trait on [`RngCore`] providing high-level
111/// generic methods for sampling values and other convenience methods.
112///
113/// This is the primary trait to use when generating random values.
114///
115/// # Generic usage
116///
117/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
118/// things are worth noting here:
119///
120/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
121/// difference whether we use `R: Rng` or `R: RngCore`.
122/// - The `+ ?Sized` un-bounding allows functions to be called directly on
123/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without
124/// this it would be necessary to write `foo(&mut r)`.
125///
126/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
127/// trade-offs. It allows the argument to be consumed directly without a `&mut`
128/// (which is how `from_rng(thread_rng())` works); also it still works directly
129/// on references (including type-erased references). Unfortunately within the
130/// function `foo` it is not known whether `rng` is a reference type or not,
131/// hence many uses of `rng` require an extra reference, either explicitly
132/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
133/// optimiser can remove redundant references later.
134///
135/// Example:
136///
137/// ```
138/// # use rand::thread_rng;
139/// use rand::Rng;
140///
141/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
142/// rng.gen()
143/// }
144///
145/// # let v = foo(&mut thread_rng());
146/// ```
147pub trait Rng: RngCore {
148 /// Return a random value supporting the [`Standard`] distribution.
149 ///
150 /// # Example
151 ///
152 /// ```
153 /// use rand::{thread_rng, Rng};
154 ///
155 /// let mut rng = thread_rng();
156 /// let x: u32 = rng.gen();
157 /// println!("{}", x);
158 /// println!("{:?}", rng.gen::<(f64, bool)>());
159 /// ```
160 ///
161 /// # Arrays and tuples
162 ///
163 /// The `rng.gen()` method is able to generate arrays (up to 32 elements)
164 /// and tuples (up to 12 elements), so long as all element types can be
165 /// generated.
166 ///
167 /// For arrays of integers, especially for those with small element types
168 /// (< 64 bit), it will likely be faster to instead use [`Rng::fill`].
169 ///
170 /// ```
171 /// use rand::{thread_rng, Rng};
172 ///
173 /// let mut rng = thread_rng();
174 /// let tuple: (u8, i32, char) = rng.gen(); // arbitrary tuple support
175 ///
176 /// let arr1: [f32; 32] = rng.gen(); // array construction
177 /// let mut arr2 = [0u8; 128];
178 /// rng.fill(&mut arr2); // array fill
179 /// ```
180 ///
181 /// [`Standard`]: distributions::Standard
182 #[inline]
183 fn gen<T>(&mut self) -> T
184 where Standard: Distribution<T> {
185 Standard.sample(self)
186 }
187
188 /// Generate a random value in the range [`low`, `high`), i.e. inclusive of
189 /// `low` and exclusive of `high`.
190 ///
191 /// This function is optimised for the case that only a single sample is
192 /// made from the given range. See also the [`Uniform`] distribution
193 /// type which may be faster if sampling from the same range repeatedly.
194 ///
195 /// # Panics
196 ///
197 /// Panics if `low >= high`.
198 ///
199 /// # Example
200 ///
201 /// ```
202 /// use rand::{thread_rng, Rng};
203 ///
204 /// let mut rng = thread_rng();
205 /// let n: u32 = rng.gen_range(0, 10);
206 /// println!("{}", n);
207 /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
208 /// println!("{}", m);
209 /// ```
210 ///
211 /// [`Uniform`]: distributions::uniform::Uniform
212 fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T
213 where
214 B1: SampleBorrow<T> + Sized,
215 B2: SampleBorrow<T> + Sized,
216 {
217 T::Sampler::sample_single(low, high, self)
218 }
219
220 /// Sample a new value, using the given distribution.
221 ///
222 /// ### Example
223 ///
224 /// ```
225 /// use rand::{thread_rng, Rng};
226 /// use rand::distributions::Uniform;
227 ///
228 /// let mut rng = thread_rng();
229 /// let x = rng.sample(Uniform::new(10u32, 15));
230 /// // Type annotation requires two types, the type and distribution; the
231 /// // distribution can be inferred.
232 /// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
233 /// ```
234 fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
235 distr.sample(self)
236 }
237
238 /// Create an iterator that generates values using the given distribution.
239 ///
240 /// Note that this function takes its arguments by value. This works since
241 /// `(&mut R): Rng where R: Rng` and
242 /// `(&D): Distribution where D: Distribution`,
243 /// however borrowing is not automatic hence `rng.sample_iter(...)` may
244 /// need to be replaced with `(&mut rng).sample_iter(...)`.
245 ///
246 /// # Example
247 ///
248 /// ```
249 /// use rand::{thread_rng, Rng};
250 /// use rand::distributions::{Alphanumeric, Uniform, Standard};
251 ///
252 /// let rng = thread_rng();
253 ///
254 /// // Vec of 16 x f32:
255 /// let v: Vec<f32> = rng.sample_iter(Standard).take(16).collect();
256 ///
257 /// // String:
258 /// let s: String = rng.sample_iter(Alphanumeric).take(7).collect();
259 ///
260 /// // Combined values
261 /// println!("{:?}", rng.sample_iter(Standard).take(5)
262 /// .collect::<Vec<(f64, bool)>>());
263 ///
264 /// // Dice-rolling:
265 /// let die_range = Uniform::new_inclusive(1, 6);
266 /// let mut roll_die = rng.sample_iter(die_range);
267 /// while roll_die.next().unwrap() != 6 {
268 /// println!("Not a 6; rolling again!");
269 /// }
270 /// ```
271 fn sample_iter<T, D>(self, distr: D) -> distributions::DistIter<D, Self, T>
272 where
273 D: Distribution<T>,
274 Self: Sized,
275 {
276 distr.sample_iter(self)
277 }
278
279 /// Fill `dest` entirely with random bytes (uniform value distribution),
280 /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
281 /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
282 ///
283 /// On big-endian platforms this performs byte-swapping to ensure
284 /// portability of results from reproducible generators.
285 ///
286 /// This uses [`fill_bytes`] internally which may handle some RNG errors
287 /// implicitly (e.g. waiting if the OS generator is not ready), but panics
288 /// on other errors. See also [`try_fill`] which returns errors.
289 ///
290 /// # Example
291 ///
292 /// ```
293 /// use rand::{thread_rng, Rng};
294 ///
295 /// let mut arr = [0i8; 20];
296 /// thread_rng().fill(&mut arr[..]);
297 /// ```
298 ///
299 /// [`fill_bytes`]: RngCore::fill_bytes
300 /// [`try_fill`]: Rng::try_fill
301 fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
302 self.fill_bytes(dest.as_byte_slice_mut());
303 dest.to_le();
304 }
305
306 /// Fill `dest` entirely with random bytes (uniform value distribution),
307 /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
308 /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
309 ///
310 /// On big-endian platforms this performs byte-swapping to ensure
311 /// portability of results from reproducible generators.
312 ///
313 /// This is identical to [`fill`] except that it uses [`try_fill_bytes`]
314 /// internally and forwards RNG errors.
315 ///
316 /// # Example
317 ///
318 /// ```
319 /// # use rand::Error;
320 /// use rand::{thread_rng, Rng};
321 ///
322 /// # fn try_inner() -> Result<(), Error> {
323 /// let mut arr = [0u64; 4];
324 /// thread_rng().try_fill(&mut arr[..])?;
325 /// # Ok(())
326 /// # }
327 ///
328 /// # try_inner().unwrap()
329 /// ```
330 ///
331 /// [`try_fill_bytes`]: RngCore::try_fill_bytes
332 /// [`fill`]: Rng::fill
333 fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
334 self.try_fill_bytes(dest.as_byte_slice_mut())?;
335 dest.to_le();
336 Ok(())
337 }
338
339 /// Return a bool with a probability `p` of being true.
340 ///
341 /// See also the [`Bernoulli`] distribution, which may be faster if
342 /// sampling from the same probability repeatedly.
343 ///
344 /// # Example
345 ///
346 /// ```
347 /// use rand::{thread_rng, Rng};
348 ///
349 /// let mut rng = thread_rng();
350 /// println!("{}", rng.gen_bool(1.0 / 3.0));
351 /// ```
352 ///
353 /// # Panics
354 ///
355 /// If `p < 0` or `p > 1`.
356 ///
357 /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
358 #[inline]
359 fn gen_bool(&mut self, p: f64) -> bool {
360 let d = distributions::Bernoulli::new(p).unwrap();
361 self.sample(d)
362 }
363
364 /// Return a bool with a probability of `numerator/denominator` of being
365 /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
366 /// returning true. If `numerator == denominator`, then the returned value
367 /// is guaranteed to be `true`. If `numerator == 0`, then the returned
368 /// value is guaranteed to be `false`.
369 ///
370 /// See also the [`Bernoulli`] distribution, which may be faster if
371 /// sampling from the same `numerator` and `denominator` repeatedly.
372 ///
373 /// # Panics
374 ///
375 /// If `denominator == 0` or `numerator > denominator`.
376 ///
377 /// # Example
378 ///
379 /// ```
380 /// use rand::{thread_rng, Rng};
381 ///
382 /// let mut rng = thread_rng();
383 /// println!("{}", rng.gen_ratio(2, 3));
384 /// ```
385 ///
386 /// [`Bernoulli`]: distributions::bernoulli::Bernoulli
387 #[inline]
388 fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
389 let d = distributions::Bernoulli::from_ratio(numerator, denominator).unwrap();
390 self.sample(d)
391 }
392}
393
394impl<R: RngCore + ?Sized> Rng for R {}
395
396/// Trait for casting types to byte slices
397///
398/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods.
399pub trait AsByteSliceMut {
400 /// Return a mutable reference to self as a byte slice
401 fn as_byte_slice_mut(&mut self) -> &mut [u8];
402
403 /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms).
404 fn to_le(&mut self);
405}
406
407impl AsByteSliceMut for [u8] {
408 fn as_byte_slice_mut(&mut self) -> &mut [u8] {
409 self
410 }
411
412 fn to_le(&mut self) {}
413}
414
415macro_rules! impl_as_byte_slice {
416 () => {};
417 ($t:ty) => {
418 impl AsByteSliceMut for [$t] {
419 fn as_byte_slice_mut(&mut self) -> &mut [u8] {
420 if self.len() == 0 {
421 unsafe {
422 // must not use null pointer
423 slice::from_raw_parts_mut(0x1 as *mut u8, 0)
424 }
425 } else {
426 unsafe {
427 slice::from_raw_parts_mut(self.as_mut_ptr()
428 as *mut u8,
429 self.len() * mem::size_of::<$t>()
430 )
431 }
432 }
433 }
434
435 fn to_le(&mut self) {
436 for x in self {
437 *x = x.to_le();
438 }
439 }
440 }
441
442 impl AsByteSliceMut for [Wrapping<$t>] {
443 fn as_byte_slice_mut(&mut self) -> &mut [u8] {
444 if self.len() == 0 {
445 unsafe {
446 // must not use null pointer
447 slice::from_raw_parts_mut(0x1 as *mut u8, 0)
448 }
449 } else {
450 unsafe {
451 slice::from_raw_parts_mut(self.as_mut_ptr()
452 as *mut u8,
453 self.len() * mem::size_of::<$t>()
454 )
455 }
456 }
457 }
458
459 fn to_le(&mut self) {
460 for x in self {
461 *x = Wrapping(x.0.to_le());
462 }
463 }
464 }
465 };
466 ($t:ty, $($tt:ty,)*) => {
467 impl_as_byte_slice!($t);
468 // TODO: this could replace above impl once Rust #32463 is fixed
469 // impl_as_byte_slice!(Wrapping<$t>);
470 impl_as_byte_slice!($($tt,)*);
471 }
472}
473
474impl_as_byte_slice!(u16, u32, u64, usize,);
475#[cfg(not(target_os = "emscripten"))]
476impl_as_byte_slice!(u128);
477impl_as_byte_slice!(i8, i16, i32, i64, isize,);
478#[cfg(not(target_os = "emscripten"))]
479impl_as_byte_slice!(i128);
480
481macro_rules! impl_as_byte_slice_arrays {
482 ($n:expr,) => {};
483 ($n:expr, $N:ident) => {
484 impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
485 fn as_byte_slice_mut(&mut self) -> &mut [u8] {
486 self[..].as_byte_slice_mut()
487 }
488
489 fn to_le(&mut self) {
490 self[..].to_le()
491 }
492 }
493 };
494 ($n:expr, $N:ident, $($NN:ident,)*) => {
495 impl_as_byte_slice_arrays!($n, $N);
496 impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
497 };
498 (!div $n:expr,) => {};
499 (!div $n:expr, $N:ident, $($NN:ident,)*) => {
500 impl_as_byte_slice_arrays!($n, $N);
501 impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*);
502 };
503}
504#[rustfmt::skip]
505impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
506impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,);
507
508/// Generates a random value using the thread-local random number generator.
509///
510/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
511/// documentation of the entropy source and [`Standard`] for documentation of
512/// distributions and type-specific generation.
513///
514/// # Examples
515///
516/// ```
517/// let x = rand::random::<u8>();
518/// println!("{}", x);
519///
520/// let y = rand::random::<f64>();
521/// println!("{}", y);
522///
523/// if rand::random() { // generates a boolean
524/// println!("Better lucky than good!");
525/// }
526/// ```
527///
528/// If you're calling `random()` in a loop, caching the generator as in the
529/// following example can increase performance.
530///
531/// ```
532/// use rand::Rng;
533///
534/// let mut v = vec![1, 2, 3];
535///
536/// for x in v.iter_mut() {
537/// *x = rand::random()
538/// }
539///
540/// // can be made faster by caching thread_rng
541///
542/// let mut rng = rand::thread_rng();
543///
544/// for x in v.iter_mut() {
545/// *x = rng.gen();
546/// }
547/// ```
548///
549/// [`Standard`]: distributions::Standard
550#[cfg(feature = "std")]
551#[inline]
552pub fn random<T>() -> T
553where Standard: Distribution<T> {
554 thread_rng().gen()
555}
556
557#[cfg(test)]
558mod test {
559 use super::*;
560 use crate::rngs::mock::StepRng;
561 #[cfg(all(not(feature = "std"), feature = "alloc"))] use alloc::boxed::Box;
562
563 /// Construct a deterministic RNG with the given seed
564 pub fn rng(seed: u64) -> impl RngCore {
565 // For tests, we want a statistically good, fast, reproducible RNG.
566 // PCG32 will do fine, and will be easy to embed if we ever need to.
567 const INC: u64 = 11634580027462260723;
568 rand_pcg::Pcg32::new(seed, INC)
569 }
570
571 #[test]
572 fn test_fill_bytes_default() {
573 let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
574
575 // check every remainder mod 8, both in small and big vectors.
576 let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87];
577 for &n in lengths.iter() {
578 let mut buffer = [0u8; 87];
579 let v = &mut buffer[0..n];
580 r.fill_bytes(v);
581
582 // use this to get nicer error messages.
583 for (i, &byte) in v.iter().enumerate() {
584 if byte == 0 {
585 panic!("byte {} of {} is zero", i, n)
586 }
587 }
588 }
589 }
590
591 #[test]
592 fn test_fill() {
593 let x = 9041086907909331047; // a random u64
594 let mut rng = StepRng::new(x, 0);
595
596 // Convert to byte sequence and back to u64; byte-swap twice if BE.
597 let mut array = [0u64; 2];
598 rng.fill(&mut array[..]);
599 assert_eq!(array, [x, x]);
600 assert_eq!(rng.next_u64(), x);
601
602 // Convert to bytes then u32 in LE order
603 let mut array = [0u32; 2];
604 rng.fill(&mut array[..]);
605 assert_eq!(array, [x as u32, (x >> 32) as u32]);
606 assert_eq!(rng.next_u32(), x as u32);
607
608 // Check equivalence using wrapped arrays
609 let mut warray = [Wrapping(0u32); 2];
610 rng.fill(&mut warray[..]);
611 assert_eq!(array[0], warray[0].0);
612 assert_eq!(array[1], warray[1].0);
613 }
614
615 #[test]
616 fn test_fill_empty() {
617 let mut array = [0u32; 0];
618 let mut rng = StepRng::new(0, 1);
619 rng.fill(&mut array);
620 rng.fill(&mut array[..]);
621 }
622
623 #[test]
624 fn test_gen_range() {
625 let mut r = rng(101);
626 for _ in 0..1000 {
627 let a = r.gen_range(-4711, 17);
628 assert!(a >= -4711 && a < 17);
629 let a = r.gen_range(-3i8, 42);
630 assert!(a >= -3i8 && a < 42i8);
631 let a = r.gen_range(&10u16, 99);
632 assert!(a >= 10u16 && a < 99u16);
633 let a = r.gen_range(-100i32, &2000);
634 assert!(a >= -100i32 && a < 2000i32);
635 let a = r.gen_range(&12u32, &24u32);
636 assert!(a >= 12u32 && a < 24u32);
637
638 assert_eq!(r.gen_range(0u32, 1), 0u32);
639 assert_eq!(r.gen_range(-12i64, -11), -12i64);
640 assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
641 }
642 }
643
644 #[test]
645 #[should_panic]
646 fn test_gen_range_panic_int() {
647 let mut r = rng(102);
648 r.gen_range(5, -2);
649 }
650
651 #[test]
652 #[should_panic]
653 fn test_gen_range_panic_usize() {
654 let mut r = rng(103);
655 r.gen_range(5, 2);
656 }
657
658 #[test]
659 fn test_gen_bool() {
660 let mut r = rng(105);
661 for _ in 0..5 {
662 assert_eq!(r.gen_bool(0.0), false);
663 assert_eq!(r.gen_bool(1.0), true);
664 }
665 }
666
667 #[test]
668 fn test_rng_trait_object() {
669 use crate::distributions::{Distribution, Standard};
670 let mut rng = rng(109);
671 let mut r = &mut rng as &mut dyn RngCore;
672 r.next_u32();
673 r.gen::<i32>();
674 assert_eq!(r.gen_range(0, 1), 0);
675 let _c: u8 = Standard.sample(&mut r);
676 }
677
678 #[test]
679 #[cfg(feature = "alloc")]
680 fn test_rng_boxed_trait() {
681 use crate::distributions::{Distribution, Standard};
682 let rng = rng(110);
683 let mut r = Box::new(rng) as Box<dyn RngCore>;
684 r.next_u32();
685 r.gen::<i32>();
686 assert_eq!(r.gen_range(0, 1), 0);
687 let _c: u8 = Standard.sample(&mut r);
688 }
689
690 #[test]
691 #[cfg(feature = "std")]
692 fn test_random() {
693 // not sure how to test this aside from just getting some values
694 let _n: usize = random();
695 let _f: f32 = random();
696 let _o: Option<Option<i8>> = random();
697 let _many: (
698 (),
699 (usize, isize, Option<(u32, (bool,))>),
700 (u8, i8, u16, i16, u32, i32, u64, i64),
701 (f32, (f64, (f64,))),
702 ) = random();
703 }
704
705 #[test]
706 #[cfg_attr(miri, ignore)] // Miri is too slow
707 fn test_gen_ratio_average() {
708 const NUM: u32 = 3;
709 const DENOM: u32 = 10;
710 const N: u32 = 100_000;
711
712 let mut sum: u32 = 0;
713 let mut rng = rng(111);
714 for _ in 0..N {
715 if rng.gen_ratio(NUM, DENOM) {
716 sum += 1;
717 }
718 }
719 // Have Binomial(N, NUM/DENOM) distribution
720 let expected = (NUM * N) / DENOM; // exact integer
721 assert!(((sum - expected) as i32).abs() < 500);
722 }
723}