Jakub Kotur | 3bceaeb | 2020-12-21 17:28:16 +0100 | [diff] [blame] | 1 | #[cfg(feature = "std")] |
| 2 | use core::fmt; |
| 3 | #[cfg(feature = "std")] |
| 4 | use core::iter; |
| 5 | use core::mem; |
| 6 | use core::slice; |
| 7 | |
| 8 | #[cfg(feature = "std")] |
| 9 | use byteorder::{BigEndian, LittleEndian}; |
| 10 | use byteorder::{ByteOrder, NativeEndian}; |
| 11 | #[cfg(feature = "std")] |
| 12 | use regex_syntax::ParserBuilder; |
| 13 | |
| 14 | use classes::ByteClasses; |
| 15 | #[cfg(feature = "std")] |
| 16 | use determinize::Determinizer; |
| 17 | use dfa::DFA; |
| 18 | #[cfg(feature = "std")] |
| 19 | use error::{Error, Result}; |
| 20 | #[cfg(feature = "std")] |
| 21 | use minimize::Minimizer; |
| 22 | #[cfg(feature = "std")] |
| 23 | use nfa::{self, NFA}; |
| 24 | #[cfg(feature = "std")] |
| 25 | use sparse::SparseDFA; |
| 26 | use state_id::{dead_id, StateID}; |
| 27 | #[cfg(feature = "std")] |
| 28 | use state_id::{ |
| 29 | next_state_id, premultiply_overflow_error, write_state_id_bytes, |
| 30 | }; |
| 31 | |
| 32 | /// The size of the alphabet in a standard DFA. |
| 33 | /// |
| 34 | /// Specifically, this length controls the number of transitions present in |
| 35 | /// each DFA state. However, when the byte class optimization is enabled, |
| 36 | /// then each DFA maps the space of all possible 256 byte values to at most |
| 37 | /// 256 distinct equivalence classes. In this case, the number of distinct |
| 38 | /// equivalence classes corresponds to the internal alphabet of the DFA, in the |
| 39 | /// sense that each DFA state has a number of transitions equal to the number |
| 40 | /// of equivalence classes despite supporting matching on all possible byte |
| 41 | /// values. |
| 42 | const ALPHABET_LEN: usize = 256; |
| 43 | |
| 44 | /// Masks used in serialization of DFAs. |
| 45 | pub(crate) const MASK_PREMULTIPLIED: u16 = 0b0000_0000_0000_0001; |
| 46 | pub(crate) const MASK_ANCHORED: u16 = 0b0000_0000_0000_0010; |
| 47 | |
| 48 | /// A dense table-based deterministic finite automaton (DFA). |
| 49 | /// |
| 50 | /// A dense DFA represents the core matching primitive in this crate. That is, |
| 51 | /// logically, all DFAs have a single start state, one or more match states |
| 52 | /// and a transition table that maps the current state and the current byte of |
| 53 | /// input to the next state. A DFA can use this information to implement fast |
| 54 | /// searching. In particular, the use of a dense DFA generally makes the trade |
| 55 | /// off that match speed is the most valuable characteristic, even if building |
| 56 | /// the regex may take significant time *and* space. As such, the processing |
| 57 | /// of every byte of input is done with a small constant number of operations |
| 58 | /// that does not vary with the pattern, its size or the size of the alphabet. |
| 59 | /// If your needs don't line up with this trade off, then a dense DFA may not |
| 60 | /// be an adequate solution to your problem. |
| 61 | /// |
| 62 | /// In contrast, a [sparse DFA](enum.SparseDFA.html) makes the opposite |
| 63 | /// trade off: it uses less space but will execute a variable number of |
| 64 | /// instructions per byte at match time, which makes it slower for matching. |
| 65 | /// |
| 66 | /// A DFA can be built using the default configuration via the |
| 67 | /// [`DenseDFA::new`](enum.DenseDFA.html#method.new) constructor. Otherwise, |
| 68 | /// one can configure various aspects via the |
| 69 | /// [`dense::Builder`](dense/struct.Builder.html). |
| 70 | /// |
| 71 | /// A single DFA fundamentally supports the following operations: |
| 72 | /// |
| 73 | /// 1. Detection of a match. |
| 74 | /// 2. Location of the end of the first possible match. |
| 75 | /// 3. Location of the end of the leftmost-first match. |
| 76 | /// |
| 77 | /// A notable absence from the above list of capabilities is the location of |
| 78 | /// the *start* of a match. In order to provide both the start and end of a |
| 79 | /// match, *two* DFAs are required. This functionality is provided by a |
| 80 | /// [`Regex`](struct.Regex.html), which can be built with its basic |
| 81 | /// constructor, [`Regex::new`](struct.Regex.html#method.new), or with |
| 82 | /// a [`RegexBuilder`](struct.RegexBuilder.html). |
| 83 | /// |
| 84 | /// # State size |
| 85 | /// |
| 86 | /// A `DenseDFA` has two type parameters, `T` and `S`. `T` corresponds to |
| 87 | /// the type of the DFA's transition table while `S` corresponds to the |
| 88 | /// representation used for the DFA's state identifiers as described by the |
| 89 | /// [`StateID`](trait.StateID.html) trait. This type parameter is typically |
| 90 | /// `usize`, but other valid choices provided by this crate include `u8`, |
| 91 | /// `u16`, `u32` and `u64`. The primary reason for choosing a different state |
| 92 | /// identifier representation than the default is to reduce the amount of |
| 93 | /// memory used by a DFA. Note though, that if the chosen representation cannot |
| 94 | /// accommodate the size of your DFA, then building the DFA will fail and |
| 95 | /// return an error. |
| 96 | /// |
| 97 | /// While the reduction in heap memory used by a DFA is one reason for choosing |
| 98 | /// a smaller state identifier representation, another possible reason is for |
| 99 | /// decreasing the serialization size of a DFA, as returned by |
| 100 | /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian), |
| 101 | /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian) |
| 102 | /// or |
| 103 | /// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian). |
| 104 | /// |
| 105 | /// The type of the transition table is typically either `Vec<S>` or `&[S]`, |
| 106 | /// depending on where the transition table is stored. |
| 107 | /// |
| 108 | /// # Variants |
| 109 | /// |
| 110 | /// This DFA is defined as a non-exhaustive enumeration of different types of |
| 111 | /// dense DFAs. All of these dense DFAs use the same internal representation |
| 112 | /// for the transition table, but they vary in how the transition table is |
| 113 | /// read. A DFA's specific variant depends on the configuration options set via |
| 114 | /// [`dense::Builder`](dense/struct.Builder.html). The default variant is |
| 115 | /// `PremultipliedByteClass`. |
| 116 | /// |
| 117 | /// # The `DFA` trait |
| 118 | /// |
| 119 | /// This type implements the [`DFA`](trait.DFA.html) trait, which means it |
| 120 | /// can be used for searching. For example: |
| 121 | /// |
| 122 | /// ``` |
| 123 | /// use regex_automata::{DFA, DenseDFA}; |
| 124 | /// |
| 125 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 126 | /// let dfa = DenseDFA::new("foo[0-9]+")?; |
| 127 | /// assert_eq!(Some(8), dfa.find(b"foo12345")); |
| 128 | /// # Ok(()) }; example().unwrap() |
| 129 | /// ``` |
| 130 | /// |
| 131 | /// The `DFA` trait also provides an assortment of other lower level methods |
| 132 | /// for DFAs, such as `start_state` and `next_state`. While these are correctly |
| 133 | /// implemented, it is an anti-pattern to use them in performance sensitive |
| 134 | /// code on the `DenseDFA` type directly. Namely, each implementation requires |
| 135 | /// a branch to determine which type of dense DFA is being used. Instead, |
| 136 | /// this branch should be pushed up a layer in the code since walking the |
| 137 | /// transitions of a DFA is usually a hot path. If you do need to use these |
| 138 | /// lower level methods in performance critical code, then you should match on |
| 139 | /// the variants of this DFA and use each variant's implementation of the `DFA` |
| 140 | /// trait directly. |
| 141 | #[derive(Clone, Debug)] |
| 142 | pub enum DenseDFA<T: AsRef<[S]>, S: StateID> { |
| 143 | /// A standard DFA that does not use premultiplication or byte classes. |
| 144 | Standard(Standard<T, S>), |
| 145 | /// A DFA that shrinks its alphabet to a set of equivalence classes instead |
| 146 | /// of using all possible byte values. Any two bytes belong to the same |
| 147 | /// equivalence class if and only if they can be used interchangeably |
| 148 | /// anywhere in the DFA while never discriminating between a match and a |
| 149 | /// non-match. |
| 150 | /// |
| 151 | /// This type of DFA can result in significant space reduction with a very |
| 152 | /// small match time performance penalty. |
| 153 | ByteClass(ByteClass<T, S>), |
| 154 | /// A DFA that premultiplies all of its state identifiers in its |
| 155 | /// transition table. This saves an instruction per byte at match time |
| 156 | /// which improves search performance. |
| 157 | /// |
| 158 | /// The only downside of premultiplication is that it may prevent one from |
| 159 | /// using a smaller state identifier representation than you otherwise |
| 160 | /// could. |
| 161 | Premultiplied(Premultiplied<T, S>), |
| 162 | /// The default configuration of a DFA, which uses byte classes and |
| 163 | /// premultiplies its state identifiers. |
| 164 | PremultipliedByteClass(PremultipliedByteClass<T, S>), |
| 165 | /// Hints that destructuring should not be exhaustive. |
| 166 | /// |
| 167 | /// This enum may grow additional variants, so this makes sure clients |
| 168 | /// don't count on exhaustive matching. (Otherwise, adding a new variant |
| 169 | /// could break existing code.) |
| 170 | #[doc(hidden)] |
| 171 | __Nonexhaustive, |
| 172 | } |
| 173 | |
| 174 | impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> { |
| 175 | /// Return the internal DFA representation. |
| 176 | /// |
| 177 | /// All variants share the same internal representation. |
| 178 | fn repr(&self) -> &Repr<T, S> { |
| 179 | match *self { |
| 180 | DenseDFA::Standard(ref r) => &r.0, |
| 181 | DenseDFA::ByteClass(ref r) => &r.0, |
| 182 | DenseDFA::Premultiplied(ref r) => &r.0, |
| 183 | DenseDFA::PremultipliedByteClass(ref r) => &r.0, |
| 184 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | #[cfg(feature = "std")] |
| 190 | impl DenseDFA<Vec<usize>, usize> { |
| 191 | /// Parse the given regular expression using a default configuration and |
| 192 | /// return the corresponding DFA. |
| 193 | /// |
| 194 | /// The default configuration uses `usize` for state IDs, premultiplies |
| 195 | /// them and reduces the alphabet size by splitting bytes into equivalence |
| 196 | /// classes. The DFA is *not* minimized. |
| 197 | /// |
| 198 | /// If you want a non-default configuration, then use the |
| 199 | /// [`dense::Builder`](dense/struct.Builder.html) |
| 200 | /// to set your own configuration. |
| 201 | /// |
| 202 | /// # Example |
| 203 | /// |
| 204 | /// ``` |
| 205 | /// use regex_automata::{DFA, DenseDFA}; |
| 206 | /// |
| 207 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 208 | /// let dfa = DenseDFA::new("foo[0-9]+bar")?; |
| 209 | /// assert_eq!(Some(11), dfa.find(b"foo12345bar")); |
| 210 | /// # Ok(()) }; example().unwrap() |
| 211 | /// ``` |
| 212 | pub fn new(pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> { |
| 213 | Builder::new().build(pattern) |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | #[cfg(feature = "std")] |
| 218 | impl<S: StateID> DenseDFA<Vec<S>, S> { |
| 219 | /// Create a new empty DFA that never matches any input. |
| 220 | /// |
| 221 | /// # Example |
| 222 | /// |
| 223 | /// In order to build an empty DFA, callers must provide a type hint |
| 224 | /// indicating their choice of state identifier representation. |
| 225 | /// |
| 226 | /// ``` |
| 227 | /// use regex_automata::{DFA, DenseDFA}; |
| 228 | /// |
| 229 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 230 | /// let dfa: DenseDFA<Vec<usize>, usize> = DenseDFA::empty(); |
| 231 | /// assert_eq!(None, dfa.find(b"")); |
| 232 | /// assert_eq!(None, dfa.find(b"foo")); |
| 233 | /// # Ok(()) }; example().unwrap() |
| 234 | /// ``` |
| 235 | pub fn empty() -> DenseDFA<Vec<S>, S> { |
| 236 | Repr::empty().into_dense_dfa() |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> { |
| 241 | /// Cheaply return a borrowed version of this dense DFA. Specifically, the |
| 242 | /// DFA returned always uses `&[S]` for its transition table while keeping |
| 243 | /// the same state identifier representation. |
| 244 | pub fn as_ref<'a>(&'a self) -> DenseDFA<&'a [S], S> { |
| 245 | match *self { |
| 246 | DenseDFA::Standard(ref r) => { |
| 247 | DenseDFA::Standard(Standard(r.0.as_ref())) |
| 248 | } |
| 249 | DenseDFA::ByteClass(ref r) => { |
| 250 | DenseDFA::ByteClass(ByteClass(r.0.as_ref())) |
| 251 | } |
| 252 | DenseDFA::Premultiplied(ref r) => { |
| 253 | DenseDFA::Premultiplied(Premultiplied(r.0.as_ref())) |
| 254 | } |
| 255 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 256 | let inner = PremultipliedByteClass(r.0.as_ref()); |
| 257 | DenseDFA::PremultipliedByteClass(inner) |
| 258 | } |
| 259 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | /// Return an owned version of this sparse DFA. Specifically, the DFA |
| 264 | /// returned always uses `Vec<u8>` for its transition table while keeping |
| 265 | /// the same state identifier representation. |
| 266 | /// |
| 267 | /// Effectively, this returns a sparse DFA whose transition table lives |
| 268 | /// on the heap. |
| 269 | #[cfg(feature = "std")] |
| 270 | pub fn to_owned(&self) -> DenseDFA<Vec<S>, S> { |
| 271 | match *self { |
| 272 | DenseDFA::Standard(ref r) => { |
| 273 | DenseDFA::Standard(Standard(r.0.to_owned())) |
| 274 | } |
| 275 | DenseDFA::ByteClass(ref r) => { |
| 276 | DenseDFA::ByteClass(ByteClass(r.0.to_owned())) |
| 277 | } |
| 278 | DenseDFA::Premultiplied(ref r) => { |
| 279 | DenseDFA::Premultiplied(Premultiplied(r.0.to_owned())) |
| 280 | } |
| 281 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 282 | let inner = PremultipliedByteClass(r.0.to_owned()); |
| 283 | DenseDFA::PremultipliedByteClass(inner) |
| 284 | } |
| 285 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /// Returns the memory usage, in bytes, of this DFA. |
| 290 | /// |
| 291 | /// The memory usage is computed based on the number of bytes used to |
| 292 | /// represent this DFA's transition table. This corresponds to heap memory |
| 293 | /// usage. |
| 294 | /// |
| 295 | /// This does **not** include the stack size used up by this DFA. To |
| 296 | /// compute that, used `std::mem::size_of::<DenseDFA>()`. |
| 297 | pub fn memory_usage(&self) -> usize { |
| 298 | self.repr().memory_usage() |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /// Routines for converting a dense DFA to other representations, such as |
| 303 | /// sparse DFAs, smaller state identifiers or raw bytes suitable for persistent |
| 304 | /// storage. |
| 305 | #[cfg(feature = "std")] |
| 306 | impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> { |
| 307 | /// Convert this dense DFA to a sparse DFA. |
| 308 | /// |
| 309 | /// This is a convenience routine for `to_sparse_sized` that fixes the |
| 310 | /// state identifier representation of the sparse DFA to the same |
| 311 | /// representation used for this dense DFA. |
| 312 | /// |
| 313 | /// If the chosen state identifier representation is too small to represent |
| 314 | /// all states in the sparse DFA, then this returns an error. In most |
| 315 | /// cases, if a dense DFA is constructable with `S` then a sparse DFA will |
| 316 | /// be as well. However, it is not guaranteed. |
| 317 | /// |
| 318 | /// # Example |
| 319 | /// |
| 320 | /// ``` |
| 321 | /// use regex_automata::{DFA, DenseDFA}; |
| 322 | /// |
| 323 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 324 | /// let dense = DenseDFA::new("foo[0-9]+")?; |
| 325 | /// let sparse = dense.to_sparse()?; |
| 326 | /// assert_eq!(Some(8), sparse.find(b"foo12345")); |
| 327 | /// # Ok(()) }; example().unwrap() |
| 328 | /// ``` |
| 329 | pub fn to_sparse(&self) -> Result<SparseDFA<Vec<u8>, S>> { |
| 330 | self.to_sparse_sized() |
| 331 | } |
| 332 | |
| 333 | /// Convert this dense DFA to a sparse DFA. |
| 334 | /// |
| 335 | /// Using this routine requires supplying a type hint to choose the state |
| 336 | /// identifier representation for the resulting sparse DFA. |
| 337 | /// |
| 338 | /// If the chosen state identifier representation is too small to represent |
| 339 | /// all states in the sparse DFA, then this returns an error. |
| 340 | /// |
| 341 | /// # Example |
| 342 | /// |
| 343 | /// ``` |
| 344 | /// use regex_automata::{DFA, DenseDFA}; |
| 345 | /// |
| 346 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 347 | /// let dense = DenseDFA::new("foo[0-9]+")?; |
| 348 | /// let sparse = dense.to_sparse_sized::<u8>()?; |
| 349 | /// assert_eq!(Some(8), sparse.find(b"foo12345")); |
| 350 | /// # Ok(()) }; example().unwrap() |
| 351 | /// ``` |
| 352 | pub fn to_sparse_sized<A: StateID>( |
| 353 | &self, |
| 354 | ) -> Result<SparseDFA<Vec<u8>, A>> { |
| 355 | self.repr().to_sparse_sized() |
| 356 | } |
| 357 | |
| 358 | /// Create a new DFA whose match semantics are equivalent to this DFA, |
| 359 | /// but attempt to use `u8` for the representation of state identifiers. |
| 360 | /// If `u8` is insufficient to represent all state identifiers in this |
| 361 | /// DFA, then this returns an error. |
| 362 | /// |
| 363 | /// This is a convenience routine for `to_sized::<u8>()`. |
| 364 | pub fn to_u8(&self) -> Result<DenseDFA<Vec<u8>, u8>> { |
| 365 | self.to_sized() |
| 366 | } |
| 367 | |
| 368 | /// Create a new DFA whose match semantics are equivalent to this DFA, |
| 369 | /// but attempt to use `u16` for the representation of state identifiers. |
| 370 | /// If `u16` is insufficient to represent all state identifiers in this |
| 371 | /// DFA, then this returns an error. |
| 372 | /// |
| 373 | /// This is a convenience routine for `to_sized::<u16>()`. |
| 374 | pub fn to_u16(&self) -> Result<DenseDFA<Vec<u16>, u16>> { |
| 375 | self.to_sized() |
| 376 | } |
| 377 | |
| 378 | /// Create a new DFA whose match semantics are equivalent to this DFA, |
| 379 | /// but attempt to use `u32` for the representation of state identifiers. |
| 380 | /// If `u32` is insufficient to represent all state identifiers in this |
| 381 | /// DFA, then this returns an error. |
| 382 | /// |
| 383 | /// This is a convenience routine for `to_sized::<u32>()`. |
| 384 | #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))] |
| 385 | pub fn to_u32(&self) -> Result<DenseDFA<Vec<u32>, u32>> { |
| 386 | self.to_sized() |
| 387 | } |
| 388 | |
| 389 | /// Create a new DFA whose match semantics are equivalent to this DFA, |
| 390 | /// but attempt to use `u64` for the representation of state identifiers. |
| 391 | /// If `u64` is insufficient to represent all state identifiers in this |
| 392 | /// DFA, then this returns an error. |
| 393 | /// |
| 394 | /// This is a convenience routine for `to_sized::<u64>()`. |
| 395 | #[cfg(target_pointer_width = "64")] |
| 396 | pub fn to_u64(&self) -> Result<DenseDFA<Vec<u64>, u64>> { |
| 397 | self.to_sized() |
| 398 | } |
| 399 | |
| 400 | /// Create a new DFA whose match semantics are equivalent to this DFA, but |
| 401 | /// attempt to use `A` for the representation of state identifiers. If `A` |
| 402 | /// is insufficient to represent all state identifiers in this DFA, then |
| 403 | /// this returns an error. |
| 404 | /// |
| 405 | /// An alternative way to construct such a DFA is to use |
| 406 | /// [`dense::Builder::build_with_size`](dense/struct.Builder.html#method.build_with_size). |
| 407 | /// In general, using the builder is preferred since it will use the given |
| 408 | /// state identifier representation throughout determinization (and |
| 409 | /// minimization, if done), and thereby using less memory throughout the |
| 410 | /// entire construction process. However, these routines are necessary |
| 411 | /// in cases where, say, a minimized DFA could fit in a smaller state |
| 412 | /// identifier representation, but the initial determinized DFA would not. |
| 413 | pub fn to_sized<A: StateID>(&self) -> Result<DenseDFA<Vec<A>, A>> { |
| 414 | self.repr().to_sized().map(|r| r.into_dense_dfa()) |
| 415 | } |
| 416 | |
| 417 | /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in little |
| 418 | /// endian format. |
| 419 | /// |
| 420 | /// If the state identifier representation of this DFA has a size different |
| 421 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 422 | /// implementations of `StateID` provided by this crate satisfy this |
| 423 | /// requirement. |
| 424 | pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> { |
| 425 | self.repr().to_bytes::<LittleEndian>() |
| 426 | } |
| 427 | |
| 428 | /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in big |
| 429 | /// endian format. |
| 430 | /// |
| 431 | /// If the state identifier representation of this DFA has a size different |
| 432 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 433 | /// implementations of `StateID` provided by this crate satisfy this |
| 434 | /// requirement. |
| 435 | pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> { |
| 436 | self.repr().to_bytes::<BigEndian>() |
| 437 | } |
| 438 | |
| 439 | /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in native |
| 440 | /// endian format. Generally, it is better to pick an explicit endianness |
| 441 | /// using either `to_bytes_little_endian` or `to_bytes_big_endian`. This |
| 442 | /// routine is useful in tests where the DFA is serialized and deserialized |
| 443 | /// on the same platform. |
| 444 | /// |
| 445 | /// If the state identifier representation of this DFA has a size different |
| 446 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 447 | /// implementations of `StateID` provided by this crate satisfy this |
| 448 | /// requirement. |
| 449 | pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> { |
| 450 | self.repr().to_bytes::<NativeEndian>() |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | impl<'a, S: StateID> DenseDFA<&'a [S], S> { |
| 455 | /// Deserialize a DFA with a specific state identifier representation. |
| 456 | /// |
| 457 | /// Deserializing a DFA using this routine will never allocate heap memory. |
| 458 | /// This is also guaranteed to be a constant time operation that does not |
| 459 | /// vary with the size of the DFA. |
| 460 | /// |
| 461 | /// The bytes given should be generated by the serialization of a DFA with |
| 462 | /// either the |
| 463 | /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian) |
| 464 | /// method or the |
| 465 | /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian) |
| 466 | /// endian, depending on the endianness of the machine you are |
| 467 | /// deserializing this DFA from. |
| 468 | /// |
| 469 | /// If the state identifier representation is `usize`, then deserialization |
| 470 | /// is dependent on the pointer size. For this reason, it is best to |
| 471 | /// serialize DFAs using a fixed size representation for your state |
| 472 | /// identifiers, such as `u8`, `u16`, `u32` or `u64`. |
| 473 | /// |
| 474 | /// # Panics |
| 475 | /// |
| 476 | /// The bytes given should be *trusted*. In particular, if the bytes |
| 477 | /// are not a valid serialization of a DFA, or if the given bytes are |
| 478 | /// not aligned to an 8 byte boundary, or if the endianness of the |
| 479 | /// serialized bytes is different than the endianness of the machine that |
| 480 | /// is deserializing the DFA, then this routine will panic. Moreover, it is |
| 481 | /// possible for this deserialization routine to succeed even if the given |
| 482 | /// bytes do not represent a valid serialized dense DFA. |
| 483 | /// |
| 484 | /// # Safety |
| 485 | /// |
| 486 | /// This routine is unsafe because it permits callers to provide an |
| 487 | /// arbitrary transition table with possibly incorrect transitions. While |
| 488 | /// the various serialization routines will never return an incorrect |
| 489 | /// transition table, there is no guarantee that the bytes provided here |
| 490 | /// are correct. While deserialization does many checks (as documented |
| 491 | /// above in the panic conditions), this routine does not check that the |
| 492 | /// transition table is correct. Given an incorrect transition table, it is |
| 493 | /// possible for the search routines to access out-of-bounds memory because |
| 494 | /// of explicit bounds check elision. |
| 495 | /// |
| 496 | /// # Example |
| 497 | /// |
| 498 | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
| 499 | /// and then use it for searching. Note that we first convert the DFA to |
| 500 | /// using `u16` for its state identifier representation before serializing |
| 501 | /// it. While this isn't strictly necessary, it's good practice in order to |
| 502 | /// decrease the size of the DFA and to avoid platform specific pitfalls |
| 503 | /// such as differing pointer sizes. |
| 504 | /// |
| 505 | /// ``` |
| 506 | /// use regex_automata::{DFA, DenseDFA}; |
| 507 | /// |
| 508 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 509 | /// let initial = DenseDFA::new("foo[0-9]+")?; |
| 510 | /// let bytes = initial.to_u16()?.to_bytes_native_endian()?; |
| 511 | /// let dfa: DenseDFA<&[u16], u16> = unsafe { |
| 512 | /// DenseDFA::from_bytes(&bytes) |
| 513 | /// }; |
| 514 | /// |
| 515 | /// assert_eq!(Some(8), dfa.find(b"foo12345")); |
| 516 | /// # Ok(()) }; example().unwrap() |
| 517 | /// ``` |
| 518 | pub unsafe fn from_bytes(buf: &'a [u8]) -> DenseDFA<&'a [S], S> { |
| 519 | Repr::from_bytes(buf).into_dense_dfa() |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | #[cfg(feature = "std")] |
| 524 | impl<S: StateID> DenseDFA<Vec<S>, S> { |
| 525 | /// Minimize this DFA in place. |
| 526 | /// |
| 527 | /// This is not part of the public API. It is only exposed to allow for |
| 528 | /// more granular external benchmarking. |
| 529 | #[doc(hidden)] |
| 530 | pub fn minimize(&mut self) { |
| 531 | self.repr_mut().minimize(); |
| 532 | } |
| 533 | |
| 534 | /// Return a mutable reference to the internal DFA representation. |
| 535 | fn repr_mut(&mut self) -> &mut Repr<Vec<S>, S> { |
| 536 | match *self { |
| 537 | DenseDFA::Standard(ref mut r) => &mut r.0, |
| 538 | DenseDFA::ByteClass(ref mut r) => &mut r.0, |
| 539 | DenseDFA::Premultiplied(ref mut r) => &mut r.0, |
| 540 | DenseDFA::PremultipliedByteClass(ref mut r) => &mut r.0, |
| 541 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | impl<T: AsRef<[S]>, S: StateID> DFA for DenseDFA<T, S> { |
| 547 | type ID = S; |
| 548 | |
| 549 | #[inline] |
| 550 | fn start_state(&self) -> S { |
| 551 | self.repr().start_state() |
| 552 | } |
| 553 | |
| 554 | #[inline] |
| 555 | fn is_match_state(&self, id: S) -> bool { |
| 556 | self.repr().is_match_state(id) |
| 557 | } |
| 558 | |
| 559 | #[inline] |
| 560 | fn is_dead_state(&self, id: S) -> bool { |
| 561 | self.repr().is_dead_state(id) |
| 562 | } |
| 563 | |
| 564 | #[inline] |
| 565 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 566 | self.repr().is_match_or_dead_state(id) |
| 567 | } |
| 568 | |
| 569 | #[inline] |
| 570 | fn is_anchored(&self) -> bool { |
| 571 | self.repr().is_anchored() |
| 572 | } |
| 573 | |
| 574 | #[inline] |
| 575 | fn next_state(&self, current: S, input: u8) -> S { |
| 576 | match *self { |
| 577 | DenseDFA::Standard(ref r) => r.next_state(current, input), |
| 578 | DenseDFA::ByteClass(ref r) => r.next_state(current, input), |
| 579 | DenseDFA::Premultiplied(ref r) => r.next_state(current, input), |
| 580 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 581 | r.next_state(current, input) |
| 582 | } |
| 583 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | #[inline] |
| 588 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 589 | match *self { |
| 590 | DenseDFA::Standard(ref r) => { |
| 591 | r.next_state_unchecked(current, input) |
| 592 | } |
| 593 | DenseDFA::ByteClass(ref r) => { |
| 594 | r.next_state_unchecked(current, input) |
| 595 | } |
| 596 | DenseDFA::Premultiplied(ref r) => { |
| 597 | r.next_state_unchecked(current, input) |
| 598 | } |
| 599 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 600 | r.next_state_unchecked(current, input) |
| 601 | } |
| 602 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | // We specialize the following methods because it lets us lift the |
| 607 | // case analysis between the different types of dense DFAs. Instead of |
| 608 | // doing the case analysis for every transition, we do it once before |
| 609 | // searching. |
| 610 | |
| 611 | #[inline] |
| 612 | fn is_match_at(&self, bytes: &[u8], start: usize) -> bool { |
| 613 | match *self { |
| 614 | DenseDFA::Standard(ref r) => r.is_match_at(bytes, start), |
| 615 | DenseDFA::ByteClass(ref r) => r.is_match_at(bytes, start), |
| 616 | DenseDFA::Premultiplied(ref r) => r.is_match_at(bytes, start), |
| 617 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 618 | r.is_match_at(bytes, start) |
| 619 | } |
| 620 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | #[inline] |
| 625 | fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> { |
| 626 | match *self { |
| 627 | DenseDFA::Standard(ref r) => r.shortest_match_at(bytes, start), |
| 628 | DenseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start), |
| 629 | DenseDFA::Premultiplied(ref r) => { |
| 630 | r.shortest_match_at(bytes, start) |
| 631 | } |
| 632 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 633 | r.shortest_match_at(bytes, start) |
| 634 | } |
| 635 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | #[inline] |
| 640 | fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> { |
| 641 | match *self { |
| 642 | DenseDFA::Standard(ref r) => r.find_at(bytes, start), |
| 643 | DenseDFA::ByteClass(ref r) => r.find_at(bytes, start), |
| 644 | DenseDFA::Premultiplied(ref r) => r.find_at(bytes, start), |
| 645 | DenseDFA::PremultipliedByteClass(ref r) => r.find_at(bytes, start), |
| 646 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | #[inline] |
| 651 | fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> { |
| 652 | match *self { |
| 653 | DenseDFA::Standard(ref r) => r.rfind_at(bytes, start), |
| 654 | DenseDFA::ByteClass(ref r) => r.rfind_at(bytes, start), |
| 655 | DenseDFA::Premultiplied(ref r) => r.rfind_at(bytes, start), |
| 656 | DenseDFA::PremultipliedByteClass(ref r) => { |
| 657 | r.rfind_at(bytes, start) |
| 658 | } |
| 659 | DenseDFA::__Nonexhaustive => unreachable!(), |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | /// A standard dense DFA that does not use premultiplication or byte classes. |
| 665 | /// |
| 666 | /// Generally, it isn't necessary to use this type directly, since a `DenseDFA` |
| 667 | /// can be used for searching directly. One possible reason why one might want |
| 668 | /// to use this type directly is if you are implementing your own search |
| 669 | /// routines by walking a DFA's transitions directly. In that case, you'll want |
| 670 | /// to use this type (or any of the other DFA variant types) directly, since |
| 671 | /// they implement `next_state` more efficiently. |
| 672 | #[derive(Clone, Debug)] |
| 673 | pub struct Standard<T: AsRef<[S]>, S: StateID>(Repr<T, S>); |
| 674 | |
| 675 | impl<T: AsRef<[S]>, S: StateID> DFA for Standard<T, S> { |
| 676 | type ID = S; |
| 677 | |
| 678 | #[inline] |
| 679 | fn start_state(&self) -> S { |
| 680 | self.0.start_state() |
| 681 | } |
| 682 | |
| 683 | #[inline] |
| 684 | fn is_match_state(&self, id: S) -> bool { |
| 685 | self.0.is_match_state(id) |
| 686 | } |
| 687 | |
| 688 | #[inline] |
| 689 | fn is_dead_state(&self, id: S) -> bool { |
| 690 | self.0.is_dead_state(id) |
| 691 | } |
| 692 | |
| 693 | #[inline] |
| 694 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 695 | self.0.is_match_or_dead_state(id) |
| 696 | } |
| 697 | |
| 698 | #[inline] |
| 699 | fn is_anchored(&self) -> bool { |
| 700 | self.0.is_anchored() |
| 701 | } |
| 702 | |
| 703 | #[inline] |
| 704 | fn next_state(&self, current: S, input: u8) -> S { |
| 705 | let o = current.to_usize() * ALPHABET_LEN + input as usize; |
| 706 | self.0.trans()[o] |
| 707 | } |
| 708 | |
| 709 | #[inline] |
| 710 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 711 | let o = current.to_usize() * ALPHABET_LEN + input as usize; |
| 712 | *self.0.trans().get_unchecked(o) |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | /// A dense DFA that shrinks its alphabet. |
| 717 | /// |
| 718 | /// Alphabet shrinking is achieved by using a set of equivalence classes |
| 719 | /// instead of using all possible byte values. Any two bytes belong to the same |
| 720 | /// equivalence class if and only if they can be used interchangeably anywhere |
| 721 | /// in the DFA while never discriminating between a match and a non-match. |
| 722 | /// |
| 723 | /// This type of DFA can result in significant space reduction with a very |
| 724 | /// small match time performance penalty. |
| 725 | /// |
| 726 | /// Generally, it isn't necessary to use this type directly, since a `DenseDFA` |
| 727 | /// can be used for searching directly. One possible reason why one might want |
| 728 | /// to use this type directly is if you are implementing your own search |
| 729 | /// routines by walking a DFA's transitions directly. In that case, you'll want |
| 730 | /// to use this type (or any of the other DFA variant types) directly, since |
| 731 | /// they implement `next_state` more efficiently. |
| 732 | #[derive(Clone, Debug)] |
| 733 | pub struct ByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>); |
| 734 | |
| 735 | impl<T: AsRef<[S]>, S: StateID> DFA for ByteClass<T, S> { |
| 736 | type ID = S; |
| 737 | |
| 738 | #[inline] |
| 739 | fn start_state(&self) -> S { |
| 740 | self.0.start_state() |
| 741 | } |
| 742 | |
| 743 | #[inline] |
| 744 | fn is_match_state(&self, id: S) -> bool { |
| 745 | self.0.is_match_state(id) |
| 746 | } |
| 747 | |
| 748 | #[inline] |
| 749 | fn is_dead_state(&self, id: S) -> bool { |
| 750 | self.0.is_dead_state(id) |
| 751 | } |
| 752 | |
| 753 | #[inline] |
| 754 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 755 | self.0.is_match_or_dead_state(id) |
| 756 | } |
| 757 | |
| 758 | #[inline] |
| 759 | fn is_anchored(&self) -> bool { |
| 760 | self.0.is_anchored() |
| 761 | } |
| 762 | |
| 763 | #[inline] |
| 764 | fn next_state(&self, current: S, input: u8) -> S { |
| 765 | let input = self.0.byte_classes().get(input); |
| 766 | let o = current.to_usize() * self.0.alphabet_len() + input as usize; |
| 767 | self.0.trans()[o] |
| 768 | } |
| 769 | |
| 770 | #[inline] |
| 771 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 772 | let input = self.0.byte_classes().get_unchecked(input); |
| 773 | let o = current.to_usize() * self.0.alphabet_len() + input as usize; |
| 774 | *self.0.trans().get_unchecked(o) |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | /// A dense DFA that premultiplies all of its state identifiers in its |
| 779 | /// transition table. |
| 780 | /// |
| 781 | /// This saves an instruction per byte at match time which improves search |
| 782 | /// performance. |
| 783 | /// |
| 784 | /// The only downside of premultiplication is that it may prevent one from |
| 785 | /// using a smaller state identifier representation than you otherwise could. |
| 786 | /// |
| 787 | /// Generally, it isn't necessary to use this type directly, since a `DenseDFA` |
| 788 | /// can be used for searching directly. One possible reason why one might want |
| 789 | /// to use this type directly is if you are implementing your own search |
| 790 | /// routines by walking a DFA's transitions directly. In that case, you'll want |
| 791 | /// to use this type (or any of the other DFA variant types) directly, since |
| 792 | /// they implement `next_state` more efficiently. |
| 793 | #[derive(Clone, Debug)] |
| 794 | pub struct Premultiplied<T: AsRef<[S]>, S: StateID>(Repr<T, S>); |
| 795 | |
| 796 | impl<T: AsRef<[S]>, S: StateID> DFA for Premultiplied<T, S> { |
| 797 | type ID = S; |
| 798 | |
| 799 | #[inline] |
| 800 | fn start_state(&self) -> S { |
| 801 | self.0.start_state() |
| 802 | } |
| 803 | |
| 804 | #[inline] |
| 805 | fn is_match_state(&self, id: S) -> bool { |
| 806 | self.0.is_match_state(id) |
| 807 | } |
| 808 | |
| 809 | #[inline] |
| 810 | fn is_dead_state(&self, id: S) -> bool { |
| 811 | self.0.is_dead_state(id) |
| 812 | } |
| 813 | |
| 814 | #[inline] |
| 815 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 816 | self.0.is_match_or_dead_state(id) |
| 817 | } |
| 818 | |
| 819 | #[inline] |
| 820 | fn is_anchored(&self) -> bool { |
| 821 | self.0.is_anchored() |
| 822 | } |
| 823 | |
| 824 | #[inline] |
| 825 | fn next_state(&self, current: S, input: u8) -> S { |
| 826 | let o = current.to_usize() + input as usize; |
| 827 | self.0.trans()[o] |
| 828 | } |
| 829 | |
| 830 | #[inline] |
| 831 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 832 | let o = current.to_usize() + input as usize; |
| 833 | *self.0.trans().get_unchecked(o) |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | /// The default configuration of a dense DFA, which uses byte classes and |
| 838 | /// premultiplies its state identifiers. |
| 839 | /// |
| 840 | /// Generally, it isn't necessary to use this type directly, since a `DenseDFA` |
| 841 | /// can be used for searching directly. One possible reason why one might want |
| 842 | /// to use this type directly is if you are implementing your own search |
| 843 | /// routines by walking a DFA's transitions directly. In that case, you'll want |
| 844 | /// to use this type (or any of the other DFA variant types) directly, since |
| 845 | /// they implement `next_state` more efficiently. |
| 846 | #[derive(Clone, Debug)] |
| 847 | pub struct PremultipliedByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>); |
| 848 | |
| 849 | impl<T: AsRef<[S]>, S: StateID> DFA for PremultipliedByteClass<T, S> { |
| 850 | type ID = S; |
| 851 | |
| 852 | #[inline] |
| 853 | fn start_state(&self) -> S { |
| 854 | self.0.start_state() |
| 855 | } |
| 856 | |
| 857 | #[inline] |
| 858 | fn is_match_state(&self, id: S) -> bool { |
| 859 | self.0.is_match_state(id) |
| 860 | } |
| 861 | |
| 862 | #[inline] |
| 863 | fn is_dead_state(&self, id: S) -> bool { |
| 864 | self.0.is_dead_state(id) |
| 865 | } |
| 866 | |
| 867 | #[inline] |
| 868 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 869 | self.0.is_match_or_dead_state(id) |
| 870 | } |
| 871 | |
| 872 | #[inline] |
| 873 | fn is_anchored(&self) -> bool { |
| 874 | self.0.is_anchored() |
| 875 | } |
| 876 | |
| 877 | #[inline] |
| 878 | fn next_state(&self, current: S, input: u8) -> S { |
| 879 | let input = self.0.byte_classes().get(input); |
| 880 | let o = current.to_usize() + input as usize; |
| 881 | self.0.trans()[o] |
| 882 | } |
| 883 | |
| 884 | #[inline] |
| 885 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 886 | let input = self.0.byte_classes().get_unchecked(input); |
| 887 | let o = current.to_usize() + input as usize; |
| 888 | *self.0.trans().get_unchecked(o) |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /// The internal representation of a dense DFA. |
| 893 | /// |
| 894 | /// This representation is shared by all DFA variants. |
| 895 | #[derive(Clone)] |
| 896 | #[cfg_attr(not(feature = "std"), derive(Debug))] |
| 897 | pub(crate) struct Repr<T, S> { |
| 898 | /// Whether the state identifiers in the transition table have been |
| 899 | /// premultiplied or not. |
| 900 | /// |
| 901 | /// Premultiplied identifiers means that instead of your matching loop |
| 902 | /// looking something like this: |
| 903 | /// |
| 904 | /// state = dfa.start |
| 905 | /// for byte in haystack: |
| 906 | /// next = dfa.transitions[state * len(alphabet) + byte] |
| 907 | /// if dfa.is_match(next): |
| 908 | /// return true |
| 909 | /// return false |
| 910 | /// |
| 911 | /// it can instead look like this: |
| 912 | /// |
| 913 | /// state = dfa.start |
| 914 | /// for byte in haystack: |
| 915 | /// next = dfa.transitions[state + byte] |
| 916 | /// if dfa.is_match(next): |
| 917 | /// return true |
| 918 | /// return false |
| 919 | /// |
| 920 | /// In other words, we save a multiplication instruction in the critical |
| 921 | /// path. This turns out to be a decent performance win. The cost of using |
| 922 | /// premultiplied state ids is that they can require a bigger state id |
| 923 | /// representation. |
| 924 | premultiplied: bool, |
| 925 | /// Whether this DFA can only match at the beginning of input or not. |
| 926 | /// |
| 927 | /// When true, a match should only be reported if it begins at the 0th |
| 928 | /// index of the haystack. |
| 929 | anchored: bool, |
| 930 | /// The initial start state ID. |
| 931 | start: S, |
| 932 | /// The total number of states in this DFA. Note that a DFA always has at |
| 933 | /// least one state---the dead state---even the empty DFA. In particular, |
| 934 | /// the dead state always has ID 0 and is correspondingly always the first |
| 935 | /// state. The dead state is never a match state. |
| 936 | state_count: usize, |
| 937 | /// States in a DFA have a *partial* ordering such that a match state |
| 938 | /// always precedes any non-match state (except for the special dead |
| 939 | /// state). |
| 940 | /// |
| 941 | /// `max_match` corresponds to the last state that is a match state. This |
| 942 | /// encoding has two critical benefits. Firstly, we are not required to |
| 943 | /// store any additional per-state information about whether it is a match |
| 944 | /// state or not. Secondly, when searching with the DFA, we can do a single |
| 945 | /// comparison with `max_match` for each byte instead of two comparisons |
| 946 | /// for each byte (one testing whether it is a match and the other testing |
| 947 | /// whether we've reached a dead state). Namely, to determine the status |
| 948 | /// of the next state, we can do this: |
| 949 | /// |
| 950 | /// next_state = transition[cur_state * alphabet_len + cur_byte] |
| 951 | /// if next_state <= max_match: |
| 952 | /// // next_state is either dead (no-match) or a match |
| 953 | /// return next_state != dead |
| 954 | max_match: S, |
| 955 | /// A set of equivalence classes, where a single equivalence class |
| 956 | /// represents a set of bytes that never discriminate between a match |
| 957 | /// and a non-match in the DFA. Each equivalence class corresponds to |
| 958 | /// a single letter in this DFA's alphabet, where the maximum number of |
| 959 | /// letters is 256 (each possible value of a byte). Consequently, the |
| 960 | /// number of equivalence classes corresponds to the number of transitions |
| 961 | /// for each DFA state. |
| 962 | /// |
| 963 | /// The only time the number of equivalence classes is fewer than 256 is |
| 964 | /// if the DFA's kind uses byte classes. If the DFA doesn't use byte |
| 965 | /// classes, then this vector is empty. |
| 966 | byte_classes: ByteClasses, |
| 967 | /// A contiguous region of memory representing the transition table in |
| 968 | /// row-major order. The representation is dense. That is, every state has |
| 969 | /// precisely the same number of transitions. The maximum number of |
| 970 | /// transitions is 256. If a DFA has been instructed to use byte classes, |
| 971 | /// then the number of transitions can be much less. |
| 972 | /// |
| 973 | /// In practice, T is either Vec<S> or &[S]. |
| 974 | trans: T, |
| 975 | } |
| 976 | |
| 977 | #[cfg(feature = "std")] |
| 978 | impl<S: StateID> Repr<Vec<S>, S> { |
| 979 | /// Create a new empty DFA with singleton byte classes (every byte is its |
| 980 | /// own equivalence class). |
| 981 | pub fn empty() -> Repr<Vec<S>, S> { |
| 982 | Repr::empty_with_byte_classes(ByteClasses::singletons()) |
| 983 | } |
| 984 | |
| 985 | /// Create a new empty DFA with the given set of byte equivalence classes. |
| 986 | /// An empty DFA never matches any input. |
| 987 | pub fn empty_with_byte_classes( |
| 988 | byte_classes: ByteClasses, |
| 989 | ) -> Repr<Vec<S>, S> { |
| 990 | let mut dfa = Repr { |
| 991 | premultiplied: false, |
| 992 | anchored: true, |
| 993 | start: dead_id(), |
| 994 | state_count: 0, |
| 995 | max_match: S::from_usize(0), |
| 996 | byte_classes, |
| 997 | trans: vec![], |
| 998 | }; |
| 999 | // Every state ID repr must be able to fit at least one state. |
| 1000 | dfa.add_empty_state().unwrap(); |
| 1001 | dfa |
| 1002 | } |
| 1003 | |
| 1004 | /// Sets whether this DFA is anchored or not. |
| 1005 | pub fn anchored(mut self, yes: bool) -> Repr<Vec<S>, S> { |
| 1006 | self.anchored = yes; |
| 1007 | self |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | impl<T: AsRef<[S]>, S: StateID> Repr<T, S> { |
| 1012 | /// Convert this internal DFA representation to a DenseDFA based on its |
| 1013 | /// transition table access pattern. |
| 1014 | pub fn into_dense_dfa(self) -> DenseDFA<T, S> { |
| 1015 | match (self.premultiplied, self.byte_classes().is_singleton()) { |
| 1016 | // no premultiplication, no byte classes |
| 1017 | (false, true) => DenseDFA::Standard(Standard(self)), |
| 1018 | // no premultiplication, yes byte classes |
| 1019 | (false, false) => DenseDFA::ByteClass(ByteClass(self)), |
| 1020 | // yes premultiplication, no byte classes |
| 1021 | (true, true) => DenseDFA::Premultiplied(Premultiplied(self)), |
| 1022 | // yes premultiplication, yes byte classes |
| 1023 | (true, false) => { |
| 1024 | DenseDFA::PremultipliedByteClass(PremultipliedByteClass(self)) |
| 1025 | } |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | fn as_ref<'a>(&'a self) -> Repr<&'a [S], S> { |
| 1030 | Repr { |
| 1031 | premultiplied: self.premultiplied, |
| 1032 | anchored: self.anchored, |
| 1033 | start: self.start, |
| 1034 | state_count: self.state_count, |
| 1035 | max_match: self.max_match, |
| 1036 | byte_classes: self.byte_classes().clone(), |
| 1037 | trans: self.trans(), |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | #[cfg(feature = "std")] |
| 1042 | fn to_owned(&self) -> Repr<Vec<S>, S> { |
| 1043 | Repr { |
| 1044 | premultiplied: self.premultiplied, |
| 1045 | anchored: self.anchored, |
| 1046 | start: self.start, |
| 1047 | state_count: self.state_count, |
| 1048 | max_match: self.max_match, |
| 1049 | byte_classes: self.byte_classes().clone(), |
| 1050 | trans: self.trans().to_vec(), |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | /// Return the starting state of this DFA. |
| 1055 | /// |
| 1056 | /// All searches using this DFA must begin at this state. There is exactly |
| 1057 | /// one starting state for every DFA. A starting state may be a dead state |
| 1058 | /// or a matching state or neither. |
| 1059 | pub fn start_state(&self) -> S { |
| 1060 | self.start |
| 1061 | } |
| 1062 | |
| 1063 | /// Returns true if and only if the given identifier corresponds to a match |
| 1064 | /// state. |
| 1065 | pub fn is_match_state(&self, id: S) -> bool { |
| 1066 | id <= self.max_match && id != dead_id() |
| 1067 | } |
| 1068 | |
| 1069 | /// Returns true if and only if the given identifier corresponds to a dead |
| 1070 | /// state. |
| 1071 | pub fn is_dead_state(&self, id: S) -> bool { |
| 1072 | id == dead_id() |
| 1073 | } |
| 1074 | |
| 1075 | /// Returns true if and only if the given identifier could correspond to |
| 1076 | /// either a match state or a dead state. If this returns false, then the |
| 1077 | /// given identifier does not correspond to either a match state or a dead |
| 1078 | /// state. |
| 1079 | pub fn is_match_or_dead_state(&self, id: S) -> bool { |
| 1080 | id <= self.max_match_state() |
| 1081 | } |
| 1082 | |
| 1083 | /// Returns the maximum identifier for which a match state can exist. |
| 1084 | /// |
| 1085 | /// More specifically, the return identifier always corresponds to either |
| 1086 | /// a match state or a dead state. Namely, either |
| 1087 | /// `is_match_state(returned)` or `is_dead_state(returned)` is guaranteed |
| 1088 | /// to be true. |
| 1089 | pub fn max_match_state(&self) -> S { |
| 1090 | self.max_match |
| 1091 | } |
| 1092 | |
| 1093 | /// Returns true if and only if this DFA is anchored. |
| 1094 | pub fn is_anchored(&self) -> bool { |
| 1095 | self.anchored |
| 1096 | } |
| 1097 | |
| 1098 | /// Return the byte classes used by this DFA. |
| 1099 | pub fn byte_classes(&self) -> &ByteClasses { |
| 1100 | &self.byte_classes |
| 1101 | } |
| 1102 | |
| 1103 | /// Returns an iterator over all states in this DFA. |
| 1104 | /// |
| 1105 | /// This iterator yields a tuple for each state. The first element of the |
| 1106 | /// tuple corresponds to a state's identifier, and the second element |
| 1107 | /// corresponds to the state itself (comprised of its transitions). |
| 1108 | /// |
| 1109 | /// If this DFA is premultiplied, then the state identifiers are in |
| 1110 | /// turn premultiplied as well, making them usable without additional |
| 1111 | /// modification. |
| 1112 | #[cfg(feature = "std")] |
| 1113 | pub fn states(&self) -> StateIter<T, S> { |
| 1114 | let it = self.trans().chunks(self.alphabet_len()); |
| 1115 | StateIter { dfa: self, it: it.enumerate() } |
| 1116 | } |
| 1117 | |
| 1118 | /// Return the total number of states in this DFA. Every DFA has at least |
| 1119 | /// 1 state, even the empty DFA. |
| 1120 | #[cfg(feature = "std")] |
| 1121 | pub fn state_count(&self) -> usize { |
| 1122 | self.state_count |
| 1123 | } |
| 1124 | |
| 1125 | /// Return the number of elements in this DFA's alphabet. |
| 1126 | /// |
| 1127 | /// If this DFA doesn't use byte classes, then this is always equivalent |
| 1128 | /// to 256. Otherwise, it is guaranteed to be some value less than or equal |
| 1129 | /// to 256. |
| 1130 | pub fn alphabet_len(&self) -> usize { |
| 1131 | self.byte_classes().alphabet_len() |
| 1132 | } |
| 1133 | |
| 1134 | /// Returns the memory usage, in bytes, of this DFA. |
| 1135 | pub fn memory_usage(&self) -> usize { |
| 1136 | self.trans().len() * mem::size_of::<S>() |
| 1137 | } |
| 1138 | |
| 1139 | /// Convert the given state identifier to the state's index. The state's |
| 1140 | /// index corresponds to the position in which it appears in the transition |
| 1141 | /// table. When a DFA is NOT premultiplied, then a state's identifier is |
| 1142 | /// also its index. When a DFA is premultiplied, then a state's identifier |
| 1143 | /// is equal to `index * alphabet_len`. This routine reverses that. |
| 1144 | #[cfg(feature = "std")] |
| 1145 | pub fn state_id_to_index(&self, id: S) -> usize { |
| 1146 | if self.premultiplied { |
| 1147 | id.to_usize() / self.alphabet_len() |
| 1148 | } else { |
| 1149 | id.to_usize() |
| 1150 | } |
| 1151 | } |
| 1152 | |
| 1153 | /// Return this DFA's transition table as a slice. |
| 1154 | fn trans(&self) -> &[S] { |
| 1155 | self.trans.as_ref() |
| 1156 | } |
| 1157 | |
| 1158 | /// Create a sparse DFA from the internal representation of a dense DFA. |
| 1159 | #[cfg(feature = "std")] |
| 1160 | pub fn to_sparse_sized<A: StateID>( |
| 1161 | &self, |
| 1162 | ) -> Result<SparseDFA<Vec<u8>, A>> { |
| 1163 | SparseDFA::from_dense_sized(self) |
| 1164 | } |
| 1165 | |
| 1166 | /// Create a new DFA whose match semantics are equivalent to this DFA, but |
| 1167 | /// attempt to use `A` for the representation of state identifiers. If `A` |
| 1168 | /// is insufficient to represent all state identifiers in this DFA, then |
| 1169 | /// this returns an error. |
| 1170 | #[cfg(feature = "std")] |
| 1171 | pub fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<A>, A>> { |
| 1172 | // Check that this DFA can fit into A's representation. |
| 1173 | let mut last_state_id = self.state_count - 1; |
| 1174 | if self.premultiplied { |
| 1175 | last_state_id *= self.alphabet_len(); |
| 1176 | } |
| 1177 | if last_state_id > A::max_id() { |
| 1178 | return Err(Error::state_id_overflow(A::max_id())); |
| 1179 | } |
| 1180 | |
| 1181 | // We're off to the races. The new DFA is the same as the old one, |
| 1182 | // but its transition table is truncated. |
| 1183 | let mut new = Repr { |
| 1184 | premultiplied: self.premultiplied, |
| 1185 | anchored: self.anchored, |
| 1186 | start: A::from_usize(self.start.to_usize()), |
| 1187 | state_count: self.state_count, |
| 1188 | max_match: A::from_usize(self.max_match.to_usize()), |
| 1189 | byte_classes: self.byte_classes().clone(), |
| 1190 | trans: vec![dead_id::<A>(); self.trans().len()], |
| 1191 | }; |
| 1192 | for (i, id) in new.trans.iter_mut().enumerate() { |
| 1193 | *id = A::from_usize(self.trans()[i].to_usize()); |
| 1194 | } |
| 1195 | Ok(new) |
| 1196 | } |
| 1197 | |
| 1198 | /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary. |
| 1199 | /// |
| 1200 | /// If the state identifier representation of this DFA has a size different |
| 1201 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 1202 | /// implementations of `StateID` provided by this crate satisfy this |
| 1203 | /// requirement. |
| 1204 | #[cfg(feature = "std")] |
| 1205 | pub(crate) fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> { |
| 1206 | let label = b"rust-regex-automata-dfa\x00"; |
| 1207 | assert_eq!(24, label.len()); |
| 1208 | |
| 1209 | let trans_size = mem::size_of::<S>() * self.trans().len(); |
| 1210 | let size = |
| 1211 | // For human readable label. |
| 1212 | label.len() |
| 1213 | // endiannes check, must be equal to 0xFEFF for native endian |
| 1214 | + 2 |
| 1215 | // For version number. |
| 1216 | + 2 |
| 1217 | // Size of state ID representation, in bytes. |
| 1218 | // Must be 1, 2, 4 or 8. |
| 1219 | + 2 |
| 1220 | // For DFA misc options. |
| 1221 | + 2 |
| 1222 | // For start state. |
| 1223 | + 8 |
| 1224 | // For state count. |
| 1225 | + 8 |
| 1226 | // For max match state. |
| 1227 | + 8 |
| 1228 | // For byte class map. |
| 1229 | + 256 |
| 1230 | // For transition table. |
| 1231 | + trans_size; |
| 1232 | // sanity check, this can be updated if need be |
| 1233 | assert_eq!(312 + trans_size, size); |
| 1234 | // This must always pass. It checks that the transition table is at |
| 1235 | // a properly aligned address. |
| 1236 | assert_eq!(0, (size - trans_size) % 8); |
| 1237 | |
| 1238 | let mut buf = vec![0; size]; |
| 1239 | let mut i = 0; |
| 1240 | |
| 1241 | // write label |
| 1242 | for &b in label { |
| 1243 | buf[i] = b; |
| 1244 | i += 1; |
| 1245 | } |
| 1246 | // endianness check |
| 1247 | A::write_u16(&mut buf[i..], 0xFEFF); |
| 1248 | i += 2; |
| 1249 | // version number |
| 1250 | A::write_u16(&mut buf[i..], 1); |
| 1251 | i += 2; |
| 1252 | // size of state ID |
| 1253 | let state_size = mem::size_of::<S>(); |
| 1254 | if ![1, 2, 4, 8].contains(&state_size) { |
| 1255 | return Err(Error::serialize(&format!( |
| 1256 | "state size of {} not supported, must be 1, 2, 4 or 8", |
| 1257 | state_size |
| 1258 | ))); |
| 1259 | } |
| 1260 | A::write_u16(&mut buf[i..], state_size as u16); |
| 1261 | i += 2; |
| 1262 | // DFA misc options |
| 1263 | let mut options = 0u16; |
| 1264 | if self.premultiplied { |
| 1265 | options |= MASK_PREMULTIPLIED; |
| 1266 | } |
| 1267 | if self.anchored { |
| 1268 | options |= MASK_ANCHORED; |
| 1269 | } |
| 1270 | A::write_u16(&mut buf[i..], options); |
| 1271 | i += 2; |
| 1272 | // start state |
| 1273 | A::write_u64(&mut buf[i..], self.start.to_usize() as u64); |
| 1274 | i += 8; |
| 1275 | // state count |
| 1276 | A::write_u64(&mut buf[i..], self.state_count as u64); |
| 1277 | i += 8; |
| 1278 | // max match state |
| 1279 | A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64); |
| 1280 | i += 8; |
| 1281 | // byte class map |
| 1282 | for b in (0..256).map(|b| b as u8) { |
| 1283 | buf[i] = self.byte_classes().get(b); |
| 1284 | i += 1; |
| 1285 | } |
| 1286 | // transition table |
| 1287 | for &id in self.trans() { |
| 1288 | write_state_id_bytes::<A, _>(&mut buf[i..], id); |
| 1289 | i += state_size; |
| 1290 | } |
| 1291 | assert_eq!(size, i, "expected to consume entire buffer"); |
| 1292 | |
| 1293 | Ok(buf) |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | impl<'a, S: StateID> Repr<&'a [S], S> { |
| 1298 | /// The implementation for deserializing a DFA from raw bytes. |
| 1299 | unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [S], S> { |
| 1300 | assert_eq!( |
| 1301 | 0, |
| 1302 | buf.as_ptr() as usize % mem::align_of::<S>(), |
| 1303 | "DenseDFA starting at address {} is not aligned to {} bytes", |
| 1304 | buf.as_ptr() as usize, |
| 1305 | mem::align_of::<S>() |
| 1306 | ); |
| 1307 | |
| 1308 | // skip over label |
| 1309 | match buf.iter().position(|&b| b == b'\x00') { |
| 1310 | None => panic!("could not find label"), |
| 1311 | Some(i) => buf = &buf[i + 1..], |
| 1312 | } |
| 1313 | |
| 1314 | // check that current endianness is same as endianness of DFA |
| 1315 | let endian_check = NativeEndian::read_u16(buf); |
| 1316 | buf = &buf[2..]; |
| 1317 | if endian_check != 0xFEFF { |
| 1318 | panic!( |
| 1319 | "endianness mismatch, expected 0xFEFF but got 0x{:X}. \ |
| 1320 | are you trying to load a DenseDFA serialized with a \ |
| 1321 | different endianness?", |
| 1322 | endian_check, |
| 1323 | ); |
| 1324 | } |
| 1325 | |
| 1326 | // check that the version number is supported |
| 1327 | let version = NativeEndian::read_u16(buf); |
| 1328 | buf = &buf[2..]; |
| 1329 | if version != 1 { |
| 1330 | panic!( |
| 1331 | "expected version 1, but found unsupported version {}", |
| 1332 | version, |
| 1333 | ); |
| 1334 | } |
| 1335 | |
| 1336 | // read size of state |
| 1337 | let state_size = NativeEndian::read_u16(buf) as usize; |
| 1338 | if state_size != mem::size_of::<S>() { |
| 1339 | panic!( |
| 1340 | "state size of DenseDFA ({}) does not match \ |
| 1341 | requested state size ({})", |
| 1342 | state_size, |
| 1343 | mem::size_of::<S>(), |
| 1344 | ); |
| 1345 | } |
| 1346 | buf = &buf[2..]; |
| 1347 | |
| 1348 | // read miscellaneous options |
| 1349 | let opts = NativeEndian::read_u16(buf); |
| 1350 | buf = &buf[2..]; |
| 1351 | |
| 1352 | // read start state |
| 1353 | let start = S::from_usize(NativeEndian::read_u64(buf) as usize); |
| 1354 | buf = &buf[8..]; |
| 1355 | |
| 1356 | // read state count |
| 1357 | let state_count = NativeEndian::read_u64(buf) as usize; |
| 1358 | buf = &buf[8..]; |
| 1359 | |
| 1360 | // read max match state |
| 1361 | let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize); |
| 1362 | buf = &buf[8..]; |
| 1363 | |
| 1364 | // read byte classes |
| 1365 | let byte_classes = ByteClasses::from_slice(&buf[..256]); |
| 1366 | buf = &buf[256..]; |
| 1367 | |
| 1368 | let len = state_count * byte_classes.alphabet_len(); |
| 1369 | let len_bytes = len * state_size; |
| 1370 | assert!( |
| 1371 | buf.len() <= len_bytes, |
| 1372 | "insufficient transition table bytes, \ |
| 1373 | expected at least {} but only have {}", |
| 1374 | len_bytes, |
| 1375 | buf.len() |
| 1376 | ); |
| 1377 | assert_eq!( |
| 1378 | 0, |
| 1379 | buf.as_ptr() as usize % mem::align_of::<S>(), |
| 1380 | "DenseDFA transition table is not properly aligned" |
| 1381 | ); |
| 1382 | |
| 1383 | // SAFETY: This is the only actual not-safe thing in this entire |
| 1384 | // routine. The key things we need to worry about here are alignment |
| 1385 | // and size. The two asserts above should cover both conditions. |
| 1386 | let trans = slice::from_raw_parts(buf.as_ptr() as *const S, len); |
| 1387 | Repr { |
| 1388 | premultiplied: opts & MASK_PREMULTIPLIED > 0, |
| 1389 | anchored: opts & MASK_ANCHORED > 0, |
| 1390 | start, |
| 1391 | state_count, |
| 1392 | max_match, |
| 1393 | byte_classes, |
| 1394 | trans, |
| 1395 | } |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | /// The following methods implement mutable routines on the internal |
| 1400 | /// representation of a DFA. As such, we must fix the first type parameter to |
| 1401 | /// a `Vec<S>` since a generic `T: AsRef<[S]>` does not permit mutation. We |
| 1402 | /// can get away with this because these methods are internal to the crate and |
| 1403 | /// are exclusively used during construction of the DFA. |
| 1404 | #[cfg(feature = "std")] |
| 1405 | impl<S: StateID> Repr<Vec<S>, S> { |
| 1406 | pub fn premultiply(&mut self) -> Result<()> { |
| 1407 | if self.premultiplied || self.state_count <= 1 { |
| 1408 | return Ok(()); |
| 1409 | } |
| 1410 | |
| 1411 | let alpha_len = self.alphabet_len(); |
| 1412 | premultiply_overflow_error( |
| 1413 | S::from_usize(self.state_count - 1), |
| 1414 | alpha_len, |
| 1415 | )?; |
| 1416 | |
| 1417 | for id in (0..self.state_count).map(S::from_usize) { |
| 1418 | for (_, next) in self.get_state_mut(id).iter_mut() { |
| 1419 | *next = S::from_usize(next.to_usize() * alpha_len); |
| 1420 | } |
| 1421 | } |
| 1422 | self.premultiplied = true; |
| 1423 | self.start = S::from_usize(self.start.to_usize() * alpha_len); |
| 1424 | self.max_match = S::from_usize(self.max_match.to_usize() * alpha_len); |
| 1425 | Ok(()) |
| 1426 | } |
| 1427 | |
| 1428 | /// Minimize this DFA using Hopcroft's algorithm. |
| 1429 | /// |
| 1430 | /// This cannot be called on a premultiplied DFA. |
| 1431 | pub fn minimize(&mut self) { |
| 1432 | assert!(!self.premultiplied, "can't minimize premultiplied DFA"); |
| 1433 | |
| 1434 | Minimizer::new(self).run(); |
| 1435 | } |
| 1436 | |
| 1437 | /// Set the start state of this DFA. |
| 1438 | /// |
| 1439 | /// Note that a start state cannot be set on a premultiplied DFA. Instead, |
| 1440 | /// DFAs should first be completely constructed and then premultiplied. |
| 1441 | pub fn set_start_state(&mut self, start: S) { |
| 1442 | assert!(!self.premultiplied, "can't set start on premultiplied DFA"); |
| 1443 | assert!(start.to_usize() < self.state_count, "invalid start state"); |
| 1444 | |
| 1445 | self.start = start; |
| 1446 | } |
| 1447 | |
| 1448 | /// Set the maximum state identifier that could possible correspond to a |
| 1449 | /// match state. |
| 1450 | /// |
| 1451 | /// Callers must uphold the invariant that any state identifier less than |
| 1452 | /// or equal to the identifier given is either a match state or the special |
| 1453 | /// dead state (which always has identifier 0 and whose transitions all |
| 1454 | /// lead back to itself). |
| 1455 | /// |
| 1456 | /// This cannot be called on a premultiplied DFA. |
| 1457 | pub fn set_max_match_state(&mut self, id: S) { |
| 1458 | assert!(!self.premultiplied, "can't set match on premultiplied DFA"); |
| 1459 | assert!(id.to_usize() < self.state_count, "invalid max match state"); |
| 1460 | |
| 1461 | self.max_match = id; |
| 1462 | } |
| 1463 | |
| 1464 | /// Add the given transition to this DFA. Both the `from` and `to` states |
| 1465 | /// must already exist. |
| 1466 | /// |
| 1467 | /// This cannot be called on a premultiplied DFA. |
| 1468 | pub fn add_transition(&mut self, from: S, byte: u8, to: S) { |
| 1469 | assert!(!self.premultiplied, "can't add trans to premultiplied DFA"); |
| 1470 | assert!(from.to_usize() < self.state_count, "invalid from state"); |
| 1471 | assert!(to.to_usize() < self.state_count, "invalid to state"); |
| 1472 | |
| 1473 | let class = self.byte_classes().get(byte); |
| 1474 | let offset = from.to_usize() * self.alphabet_len() + class as usize; |
| 1475 | self.trans[offset] = to; |
| 1476 | } |
| 1477 | |
| 1478 | /// An an empty state (a state where all transitions lead to a dead state) |
| 1479 | /// and return its identifier. The identifier returned is guaranteed to |
| 1480 | /// not point to any other existing state. |
| 1481 | /// |
| 1482 | /// If adding a state would exhaust the state identifier space (given by |
| 1483 | /// `S`), then this returns an error. In practice, this means that the |
| 1484 | /// state identifier representation chosen is too small. |
| 1485 | /// |
| 1486 | /// This cannot be called on a premultiplied DFA. |
| 1487 | pub fn add_empty_state(&mut self) -> Result<S> { |
| 1488 | assert!(!self.premultiplied, "can't add state to premultiplied DFA"); |
| 1489 | |
| 1490 | let id = if self.state_count == 0 { |
| 1491 | S::from_usize(0) |
| 1492 | } else { |
| 1493 | next_state_id(S::from_usize(self.state_count - 1))? |
| 1494 | }; |
| 1495 | let alphabet_len = self.alphabet_len(); |
| 1496 | self.trans.extend(iter::repeat(dead_id::<S>()).take(alphabet_len)); |
| 1497 | // This should never panic, since state_count is a usize. The |
| 1498 | // transition table size would have run out of room long ago. |
| 1499 | self.state_count = self.state_count.checked_add(1).unwrap(); |
| 1500 | Ok(id) |
| 1501 | } |
| 1502 | |
| 1503 | /// Return a mutable representation of the state corresponding to the given |
| 1504 | /// id. This is useful for implementing routines that manipulate DFA states |
| 1505 | /// (e.g., swapping states). |
| 1506 | /// |
| 1507 | /// This cannot be called on a premultiplied DFA. |
| 1508 | pub fn get_state_mut(&mut self, id: S) -> StateMut<S> { |
| 1509 | assert!(!self.premultiplied, "can't get state in premultiplied DFA"); |
| 1510 | |
| 1511 | let alphabet_len = self.alphabet_len(); |
| 1512 | let offset = id.to_usize() * alphabet_len; |
| 1513 | StateMut { |
| 1514 | transitions: &mut self.trans[offset..offset + alphabet_len], |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | /// Swap the two states given in the transition table. |
| 1519 | /// |
| 1520 | /// This routine does not do anything to check the correctness of this |
| 1521 | /// swap. Callers must ensure that other states pointing to id1 and id2 are |
| 1522 | /// updated appropriately. |
| 1523 | /// |
| 1524 | /// This cannot be called on a premultiplied DFA. |
| 1525 | pub fn swap_states(&mut self, id1: S, id2: S) { |
| 1526 | assert!(!self.premultiplied, "can't swap states in premultiplied DFA"); |
| 1527 | |
| 1528 | let o1 = id1.to_usize() * self.alphabet_len(); |
| 1529 | let o2 = id2.to_usize() * self.alphabet_len(); |
| 1530 | for b in 0..self.alphabet_len() { |
| 1531 | self.trans.swap(o1 + b, o2 + b); |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | /// Truncate the states in this DFA to the given count. |
| 1536 | /// |
| 1537 | /// This routine does not do anything to check the correctness of this |
| 1538 | /// truncation. Callers must ensure that other states pointing to truncated |
| 1539 | /// states are updated appropriately. |
| 1540 | /// |
| 1541 | /// This cannot be called on a premultiplied DFA. |
| 1542 | pub fn truncate_states(&mut self, count: usize) { |
| 1543 | assert!(!self.premultiplied, "can't truncate in premultiplied DFA"); |
| 1544 | |
| 1545 | let alphabet_len = self.alphabet_len(); |
| 1546 | self.trans.truncate(count * alphabet_len); |
| 1547 | self.state_count = count; |
| 1548 | } |
| 1549 | |
| 1550 | /// This routine shuffles all match states in this DFA---according to the |
| 1551 | /// given map---to the beginning of the DFA such that every non-match state |
| 1552 | /// appears after every match state. (With one exception: the special dead |
| 1553 | /// state remains as the first state.) The given map should have length |
| 1554 | /// exactly equivalent to the number of states in this DFA. |
| 1555 | /// |
| 1556 | /// The purpose of doing this shuffling is to avoid the need to store |
| 1557 | /// additional state to determine whether a state is a match state or not. |
| 1558 | /// It also enables a single conditional in the core matching loop instead |
| 1559 | /// of two. |
| 1560 | /// |
| 1561 | /// This updates `self.max_match` to point to the last matching state as |
| 1562 | /// well as `self.start` if the starting state was moved. |
| 1563 | pub fn shuffle_match_states(&mut self, is_match: &[bool]) { |
| 1564 | assert!( |
| 1565 | !self.premultiplied, |
| 1566 | "cannot shuffle match states of premultiplied DFA" |
| 1567 | ); |
| 1568 | assert_eq!(self.state_count, is_match.len()); |
| 1569 | |
| 1570 | if self.state_count <= 1 { |
| 1571 | return; |
| 1572 | } |
| 1573 | |
| 1574 | let mut first_non_match = 1; |
| 1575 | while first_non_match < self.state_count && is_match[first_non_match] { |
| 1576 | first_non_match += 1; |
| 1577 | } |
| 1578 | |
| 1579 | let mut swaps: Vec<S> = vec![dead_id(); self.state_count]; |
| 1580 | let mut cur = self.state_count - 1; |
| 1581 | while cur > first_non_match { |
| 1582 | if is_match[cur] { |
| 1583 | self.swap_states( |
| 1584 | S::from_usize(cur), |
| 1585 | S::from_usize(first_non_match), |
| 1586 | ); |
| 1587 | swaps[cur] = S::from_usize(first_non_match); |
| 1588 | swaps[first_non_match] = S::from_usize(cur); |
| 1589 | |
| 1590 | first_non_match += 1; |
| 1591 | while first_non_match < cur && is_match[first_non_match] { |
| 1592 | first_non_match += 1; |
| 1593 | } |
| 1594 | } |
| 1595 | cur -= 1; |
| 1596 | } |
| 1597 | for id in (0..self.state_count).map(S::from_usize) { |
| 1598 | for (_, next) in self.get_state_mut(id).iter_mut() { |
| 1599 | if swaps[next.to_usize()] != dead_id() { |
| 1600 | *next = swaps[next.to_usize()]; |
| 1601 | } |
| 1602 | } |
| 1603 | } |
| 1604 | if swaps[self.start.to_usize()] != dead_id() { |
| 1605 | self.start = swaps[self.start.to_usize()]; |
| 1606 | } |
| 1607 | self.max_match = S::from_usize(first_non_match - 1); |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | #[cfg(feature = "std")] |
| 1612 | impl<T: AsRef<[S]>, S: StateID> fmt::Debug for Repr<T, S> { |
| 1613 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1614 | fn state_status<T: AsRef<[S]>, S: StateID>( |
| 1615 | dfa: &Repr<T, S>, |
| 1616 | id: S, |
| 1617 | ) -> &'static str { |
| 1618 | if id == dead_id() { |
| 1619 | if dfa.is_match_state(id) { |
| 1620 | "D*" |
| 1621 | } else { |
| 1622 | "D " |
| 1623 | } |
| 1624 | } else if id == dfa.start_state() { |
| 1625 | if dfa.is_match_state(id) { |
| 1626 | ">*" |
| 1627 | } else { |
| 1628 | "> " |
| 1629 | } |
| 1630 | } else { |
| 1631 | if dfa.is_match_state(id) { |
| 1632 | " *" |
| 1633 | } else { |
| 1634 | " " |
| 1635 | } |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | writeln!(f, "DenseDFA(")?; |
| 1640 | for (id, state) in self.states() { |
| 1641 | let status = state_status(self, id); |
| 1642 | writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?; |
| 1643 | } |
| 1644 | writeln!(f, ")")?; |
| 1645 | Ok(()) |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | /// An iterator over all states in a DFA. |
| 1650 | /// |
| 1651 | /// This iterator yields a tuple for each state. The first element of the |
| 1652 | /// tuple corresponds to a state's identifier, and the second element |
| 1653 | /// corresponds to the state itself (comprised of its transitions). |
| 1654 | /// |
| 1655 | /// If this DFA is premultiplied, then the state identifiers are in turn |
| 1656 | /// premultiplied as well, making them usable without additional modification. |
| 1657 | /// |
| 1658 | /// `'a` corresponding to the lifetime of original DFA, `T` corresponds to |
| 1659 | /// the type of the transition table itself and `S` corresponds to the state |
| 1660 | /// identifier representation. |
| 1661 | #[cfg(feature = "std")] |
| 1662 | pub(crate) struct StateIter<'a, T: 'a, S: 'a> { |
| 1663 | dfa: &'a Repr<T, S>, |
| 1664 | it: iter::Enumerate<slice::Chunks<'a, S>>, |
| 1665 | } |
| 1666 | |
| 1667 | #[cfg(feature = "std")] |
| 1668 | impl<'a, T: AsRef<[S]>, S: StateID> Iterator for StateIter<'a, T, S> { |
| 1669 | type Item = (S, State<'a, S>); |
| 1670 | |
| 1671 | fn next(&mut self) -> Option<(S, State<'a, S>)> { |
| 1672 | self.it.next().map(|(id, chunk)| { |
| 1673 | let state = State { transitions: chunk }; |
| 1674 | let id = if self.dfa.premultiplied { |
| 1675 | id * self.dfa.alphabet_len() |
| 1676 | } else { |
| 1677 | id |
| 1678 | }; |
| 1679 | (S::from_usize(id), state) |
| 1680 | }) |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | /// An immutable representation of a single DFA state. |
| 1685 | /// |
| 1686 | /// `'a` correspondings to the lifetime of a DFA's transition table and `S` |
| 1687 | /// corresponds to the state identifier representation. |
| 1688 | #[cfg(feature = "std")] |
| 1689 | pub(crate) struct State<'a, S: 'a> { |
| 1690 | transitions: &'a [S], |
| 1691 | } |
| 1692 | |
| 1693 | #[cfg(feature = "std")] |
| 1694 | impl<'a, S: StateID> State<'a, S> { |
| 1695 | /// Return an iterator over all transitions in this state. This yields |
| 1696 | /// a number of transitions equivalent to the alphabet length of the |
| 1697 | /// corresponding DFA. |
| 1698 | /// |
| 1699 | /// Each transition is represented by a tuple. The first element is |
| 1700 | /// the input byte for that transition and the second element is the |
| 1701 | /// transitions itself. |
| 1702 | pub fn transitions(&self) -> StateTransitionIter<S> { |
| 1703 | StateTransitionIter { it: self.transitions.iter().enumerate() } |
| 1704 | } |
| 1705 | |
| 1706 | /// Return an iterator over a sparse representation of the transitions in |
| 1707 | /// this state. Only non-dead transitions are returned. |
| 1708 | /// |
| 1709 | /// The "sparse" representation in this case corresponds to a sequence of |
| 1710 | /// triples. The first two elements of the triple comprise an inclusive |
| 1711 | /// byte range while the last element corresponds to the transition taken |
| 1712 | /// for all bytes in the range. |
| 1713 | /// |
| 1714 | /// This is somewhat more condensed than the classical sparse |
| 1715 | /// representation (where you have an element for every non-dead |
| 1716 | /// transition), but in practice, checking if a byte is in a range is very |
| 1717 | /// cheap and using ranges tends to conserve quite a bit more space. |
| 1718 | pub fn sparse_transitions(&self) -> StateSparseTransitionIter<S> { |
| 1719 | StateSparseTransitionIter { dense: self.transitions(), cur: None } |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | #[cfg(feature = "std")] |
| 1724 | impl<'a, S: StateID> fmt::Debug for State<'a, S> { |
| 1725 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1726 | let mut transitions = vec![]; |
| 1727 | for (start, end, next_id) in self.sparse_transitions() { |
| 1728 | let line = if start == end { |
| 1729 | format!("{} => {}", escape(start), next_id.to_usize()) |
| 1730 | } else { |
| 1731 | format!( |
| 1732 | "{}-{} => {}", |
| 1733 | escape(start), |
| 1734 | escape(end), |
| 1735 | next_id.to_usize(), |
| 1736 | ) |
| 1737 | }; |
| 1738 | transitions.push(line); |
| 1739 | } |
| 1740 | write!(f, "{}", transitions.join(", "))?; |
| 1741 | Ok(()) |
| 1742 | } |
| 1743 | } |
| 1744 | |
| 1745 | /// An iterator over all transitions in a single DFA state. This yields |
| 1746 | /// a number of transitions equivalent to the alphabet length of the |
| 1747 | /// corresponding DFA. |
| 1748 | /// |
| 1749 | /// Each transition is represented by a tuple. The first element is the input |
| 1750 | /// byte for that transition and the second element is the transitions itself. |
| 1751 | #[cfg(feature = "std")] |
| 1752 | #[derive(Debug)] |
| 1753 | pub(crate) struct StateTransitionIter<'a, S: 'a> { |
| 1754 | it: iter::Enumerate<slice::Iter<'a, S>>, |
| 1755 | } |
| 1756 | |
| 1757 | #[cfg(feature = "std")] |
| 1758 | impl<'a, S: StateID> Iterator for StateTransitionIter<'a, S> { |
| 1759 | type Item = (u8, S); |
| 1760 | |
| 1761 | fn next(&mut self) -> Option<(u8, S)> { |
| 1762 | self.it.next().map(|(i, &id)| (i as u8, id)) |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | /// An iterator over all transitions in a single DFA state using a sparse |
| 1767 | /// representation. |
| 1768 | /// |
| 1769 | /// Each transition is represented by a triple. The first two elements of the |
| 1770 | /// triple comprise an inclusive byte range while the last element corresponds |
| 1771 | /// to the transition taken for all bytes in the range. |
| 1772 | #[cfg(feature = "std")] |
| 1773 | #[derive(Debug)] |
| 1774 | pub(crate) struct StateSparseTransitionIter<'a, S: 'a> { |
| 1775 | dense: StateTransitionIter<'a, S>, |
| 1776 | cur: Option<(u8, u8, S)>, |
| 1777 | } |
| 1778 | |
| 1779 | #[cfg(feature = "std")] |
| 1780 | impl<'a, S: StateID> Iterator for StateSparseTransitionIter<'a, S> { |
| 1781 | type Item = (u8, u8, S); |
| 1782 | |
| 1783 | fn next(&mut self) -> Option<(u8, u8, S)> { |
| 1784 | while let Some((b, next)) = self.dense.next() { |
| 1785 | let (prev_start, prev_end, prev_next) = match self.cur { |
| 1786 | Some(t) => t, |
| 1787 | None => { |
| 1788 | self.cur = Some((b, b, next)); |
| 1789 | continue; |
| 1790 | } |
| 1791 | }; |
| 1792 | if prev_next == next { |
| 1793 | self.cur = Some((prev_start, b, prev_next)); |
| 1794 | } else { |
| 1795 | self.cur = Some((b, b, next)); |
| 1796 | if prev_next != dead_id() { |
| 1797 | return Some((prev_start, prev_end, prev_next)); |
| 1798 | } |
| 1799 | } |
| 1800 | } |
| 1801 | if let Some((start, end, next)) = self.cur.take() { |
| 1802 | if next != dead_id() { |
| 1803 | return Some((start, end, next)); |
| 1804 | } |
| 1805 | } |
| 1806 | None |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | /// A mutable representation of a single DFA state. |
| 1811 | /// |
| 1812 | /// `'a` correspondings to the lifetime of a DFA's transition table and `S` |
| 1813 | /// corresponds to the state identifier representation. |
| 1814 | #[cfg(feature = "std")] |
| 1815 | pub(crate) struct StateMut<'a, S: 'a> { |
| 1816 | transitions: &'a mut [S], |
| 1817 | } |
| 1818 | |
| 1819 | #[cfg(feature = "std")] |
| 1820 | impl<'a, S: StateID> StateMut<'a, S> { |
| 1821 | /// Return an iterator over all transitions in this state. This yields |
| 1822 | /// a number of transitions equivalent to the alphabet length of the |
| 1823 | /// corresponding DFA. |
| 1824 | /// |
| 1825 | /// Each transition is represented by a tuple. The first element is the |
| 1826 | /// input byte for that transition and the second element is a mutable |
| 1827 | /// reference to the transition itself. |
| 1828 | pub fn iter_mut(&mut self) -> StateTransitionIterMut<S> { |
| 1829 | StateTransitionIterMut { it: self.transitions.iter_mut().enumerate() } |
| 1830 | } |
| 1831 | } |
| 1832 | |
| 1833 | #[cfg(feature = "std")] |
| 1834 | impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> { |
| 1835 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1836 | fmt::Debug::fmt(&State { transitions: self.transitions }, f) |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | /// A mutable iterator over all transitions in a DFA state. |
| 1841 | /// |
| 1842 | /// Each transition is represented by a tuple. The first element is the |
| 1843 | /// input byte for that transition and the second element is a mutable |
| 1844 | /// reference to the transition itself. |
| 1845 | #[cfg(feature = "std")] |
| 1846 | #[derive(Debug)] |
| 1847 | pub(crate) struct StateTransitionIterMut<'a, S: 'a> { |
| 1848 | it: iter::Enumerate<slice::IterMut<'a, S>>, |
| 1849 | } |
| 1850 | |
| 1851 | #[cfg(feature = "std")] |
| 1852 | impl<'a, S: StateID> Iterator for StateTransitionIterMut<'a, S> { |
| 1853 | type Item = (u8, &'a mut S); |
| 1854 | |
| 1855 | fn next(&mut self) -> Option<(u8, &'a mut S)> { |
| 1856 | self.it.next().map(|(i, id)| (i as u8, id)) |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | /// A builder for constructing a deterministic finite automaton from regular |
| 1861 | /// expressions. |
| 1862 | /// |
| 1863 | /// This builder permits configuring several aspects of the construction |
| 1864 | /// process such as case insensitivity, Unicode support and various options |
| 1865 | /// that impact the size of the generated DFA. In some cases, options (like |
| 1866 | /// performing DFA minimization) can come with a substantial additional cost. |
| 1867 | /// |
| 1868 | /// This builder always constructs a *single* DFA. As such, this builder can |
| 1869 | /// only be used to construct regexes that either detect the presence of a |
| 1870 | /// match or find the end location of a match. A single DFA cannot produce both |
| 1871 | /// the start and end of a match. For that information, use a |
| 1872 | /// [`Regex`](struct.Regex.html), which can be similarly configured using |
| 1873 | /// [`RegexBuilder`](struct.RegexBuilder.html). |
| 1874 | #[cfg(feature = "std")] |
| 1875 | #[derive(Clone, Debug)] |
| 1876 | pub struct Builder { |
| 1877 | parser: ParserBuilder, |
| 1878 | nfa: nfa::Builder, |
| 1879 | anchored: bool, |
| 1880 | minimize: bool, |
| 1881 | premultiply: bool, |
| 1882 | byte_classes: bool, |
| 1883 | reverse: bool, |
| 1884 | longest_match: bool, |
| 1885 | } |
| 1886 | |
| 1887 | #[cfg(feature = "std")] |
| 1888 | impl Builder { |
| 1889 | /// Create a new DenseDFA builder with the default configuration. |
| 1890 | pub fn new() -> Builder { |
| 1891 | let mut nfa = nfa::Builder::new(); |
| 1892 | // This is enabled by default, but we set it here anyway. Since we're |
| 1893 | // building a DFA, shrinking the NFA is always a good idea. |
| 1894 | nfa.shrink(true); |
| 1895 | Builder { |
| 1896 | parser: ParserBuilder::new(), |
| 1897 | nfa, |
| 1898 | anchored: false, |
| 1899 | minimize: false, |
| 1900 | premultiply: true, |
| 1901 | byte_classes: true, |
| 1902 | reverse: false, |
| 1903 | longest_match: false, |
| 1904 | } |
| 1905 | } |
| 1906 | |
| 1907 | /// Build a DFA from the given pattern. |
| 1908 | /// |
| 1909 | /// If there was a problem parsing or compiling the pattern, then an error |
| 1910 | /// is returned. |
| 1911 | pub fn build(&self, pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> { |
| 1912 | self.build_with_size::<usize>(pattern) |
| 1913 | } |
| 1914 | |
| 1915 | /// Build a DFA from the given pattern using a specific representation for |
| 1916 | /// the DFA's state IDs. |
| 1917 | /// |
| 1918 | /// If there was a problem parsing or compiling the pattern, then an error |
| 1919 | /// is returned. |
| 1920 | /// |
| 1921 | /// The representation of state IDs is determined by the `S` type |
| 1922 | /// parameter. In general, `S` is usually one of `u8`, `u16`, `u32`, `u64` |
| 1923 | /// or `usize`, where `usize` is the default used for `build`. The purpose |
| 1924 | /// of specifying a representation for state IDs is to reduce the memory |
| 1925 | /// footprint of a DFA. |
| 1926 | /// |
| 1927 | /// When using this routine, the chosen state ID representation will be |
| 1928 | /// used throughout determinization and minimization, if minimization |
| 1929 | /// was requested. Even if the minimized DFA can fit into the chosen |
| 1930 | /// state ID representation but the initial determinized DFA cannot, |
| 1931 | /// then this will still return an error. To get a minimized DFA with a |
| 1932 | /// smaller state ID representation, first build it with a bigger state ID |
| 1933 | /// representation, and then shrink the size of the DFA using one of its |
| 1934 | /// conversion routines, such as |
| 1935 | /// [`DenseDFA::to_u16`](enum.DenseDFA.html#method.to_u16). |
| 1936 | pub fn build_with_size<S: StateID>( |
| 1937 | &self, |
| 1938 | pattern: &str, |
| 1939 | ) -> Result<DenseDFA<Vec<S>, S>> { |
| 1940 | self.build_from_nfa(&self.build_nfa(pattern)?) |
| 1941 | } |
| 1942 | |
| 1943 | /// An internal only (for now) API for building a dense DFA directly from |
| 1944 | /// an NFA. |
| 1945 | pub(crate) fn build_from_nfa<S: StateID>( |
| 1946 | &self, |
| 1947 | nfa: &NFA, |
| 1948 | ) -> Result<DenseDFA<Vec<S>, S>> { |
| 1949 | if self.longest_match && !self.anchored { |
| 1950 | return Err(Error::unsupported_longest_match()); |
| 1951 | } |
| 1952 | |
| 1953 | let mut dfa = if self.byte_classes { |
| 1954 | Determinizer::new(nfa) |
| 1955 | .with_byte_classes() |
| 1956 | .longest_match(self.longest_match) |
| 1957 | .build() |
| 1958 | } else { |
| 1959 | Determinizer::new(nfa).longest_match(self.longest_match).build() |
| 1960 | }?; |
| 1961 | if self.minimize { |
| 1962 | dfa.minimize(); |
| 1963 | } |
| 1964 | if self.premultiply { |
| 1965 | dfa.premultiply()?; |
| 1966 | } |
| 1967 | Ok(dfa.into_dense_dfa()) |
| 1968 | } |
| 1969 | |
| 1970 | /// Builds an NFA from the given pattern. |
| 1971 | pub(crate) fn build_nfa(&self, pattern: &str) -> Result<NFA> { |
| 1972 | let hir = self.parser.build().parse(pattern).map_err(Error::syntax)?; |
| 1973 | Ok(self.nfa.build(&hir)?) |
| 1974 | } |
| 1975 | |
| 1976 | /// Set whether matching must be anchored at the beginning of the input. |
| 1977 | /// |
| 1978 | /// When enabled, a match must begin at the start of the input. When |
| 1979 | /// disabled, the DFA will act as if the pattern started with a `.*?`, |
| 1980 | /// which enables a match to appear anywhere. |
| 1981 | /// |
| 1982 | /// By default this is disabled. |
| 1983 | pub fn anchored(&mut self, yes: bool) -> &mut Builder { |
| 1984 | self.anchored = yes; |
| 1985 | self.nfa.anchored(yes); |
| 1986 | self |
| 1987 | } |
| 1988 | |
| 1989 | /// Enable or disable the case insensitive flag by default. |
| 1990 | /// |
| 1991 | /// By default this is disabled. It may alternatively be selectively |
| 1992 | /// enabled in the regular expression itself via the `i` flag. |
| 1993 | pub fn case_insensitive(&mut self, yes: bool) -> &mut Builder { |
| 1994 | self.parser.case_insensitive(yes); |
| 1995 | self |
| 1996 | } |
| 1997 | |
| 1998 | /// Enable verbose mode in the regular expression. |
| 1999 | /// |
| 2000 | /// When enabled, verbose mode permits insigificant whitespace in many |
| 2001 | /// places in the regular expression, as well as comments. Comments are |
| 2002 | /// started using `#` and continue until the end of the line. |
| 2003 | /// |
| 2004 | /// By default, this is disabled. It may be selectively enabled in the |
| 2005 | /// regular expression by using the `x` flag regardless of this setting. |
| 2006 | pub fn ignore_whitespace(&mut self, yes: bool) -> &mut Builder { |
| 2007 | self.parser.ignore_whitespace(yes); |
| 2008 | self |
| 2009 | } |
| 2010 | |
| 2011 | /// Enable or disable the "dot matches any character" flag by default. |
| 2012 | /// |
| 2013 | /// By default this is disabled. It may alternatively be selectively |
| 2014 | /// enabled in the regular expression itself via the `s` flag. |
| 2015 | pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut Builder { |
| 2016 | self.parser.dot_matches_new_line(yes); |
| 2017 | self |
| 2018 | } |
| 2019 | |
| 2020 | /// Enable or disable the "swap greed" flag by default. |
| 2021 | /// |
| 2022 | /// By default this is disabled. It may alternatively be selectively |
| 2023 | /// enabled in the regular expression itself via the `U` flag. |
| 2024 | pub fn swap_greed(&mut self, yes: bool) -> &mut Builder { |
| 2025 | self.parser.swap_greed(yes); |
| 2026 | self |
| 2027 | } |
| 2028 | |
| 2029 | /// Enable or disable the Unicode flag (`u`) by default. |
| 2030 | /// |
| 2031 | /// By default this is **enabled**. It may alternatively be selectively |
| 2032 | /// disabled in the regular expression itself via the `u` flag. |
| 2033 | /// |
| 2034 | /// Note that unless `allow_invalid_utf8` is enabled (it's disabled by |
| 2035 | /// default), a regular expression will fail to parse if Unicode mode is |
| 2036 | /// disabled and a sub-expression could possibly match invalid UTF-8. |
| 2037 | pub fn unicode(&mut self, yes: bool) -> &mut Builder { |
| 2038 | self.parser.unicode(yes); |
| 2039 | self |
| 2040 | } |
| 2041 | |
| 2042 | /// When enabled, the builder will permit the construction of a regular |
| 2043 | /// expression that may match invalid UTF-8. |
| 2044 | /// |
| 2045 | /// When disabled (the default), the builder is guaranteed to produce a |
| 2046 | /// regex that will only ever match valid UTF-8 (otherwise, the builder |
| 2047 | /// will return an error). |
| 2048 | pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder { |
| 2049 | self.parser.allow_invalid_utf8(yes); |
| 2050 | self.nfa.allow_invalid_utf8(yes); |
| 2051 | self |
| 2052 | } |
| 2053 | |
| 2054 | /// Set the nesting limit used for the regular expression parser. |
| 2055 | /// |
| 2056 | /// The nesting limit controls how deep the abstract syntax tree is allowed |
| 2057 | /// to be. If the AST exceeds the given limit (e.g., with too many nested |
| 2058 | /// groups), then an error is returned by the parser. |
| 2059 | /// |
| 2060 | /// The purpose of this limit is to act as a heuristic to prevent stack |
| 2061 | /// overflow when building a finite automaton from a regular expression's |
| 2062 | /// abstract syntax tree. In particular, construction currently uses |
| 2063 | /// recursion. In the future, the implementation may stop using recursion |
| 2064 | /// and this option will no longer be necessary. |
| 2065 | /// |
| 2066 | /// This limit is not checked until the entire AST is parsed. Therefore, |
| 2067 | /// if callers want to put a limit on the amount of heap space used, then |
| 2068 | /// they should impose a limit on the length, in bytes, of the concrete |
| 2069 | /// pattern string. In particular, this is viable since the parser will |
| 2070 | /// limit itself to heap space proportional to the lenth of the pattern |
| 2071 | /// string. |
| 2072 | /// |
| 2073 | /// Note that a nest limit of `0` will return a nest limit error for most |
| 2074 | /// patterns but not all. For example, a nest limit of `0` permits `a` but |
| 2075 | /// not `ab`, since `ab` requires a concatenation AST item, which results |
| 2076 | /// in a nest depth of `1`. In general, a nest limit is not something that |
| 2077 | /// manifests in an obvious way in the concrete syntax, therefore, it |
| 2078 | /// should not be used in a granular way. |
| 2079 | pub fn nest_limit(&mut self, limit: u32) -> &mut Builder { |
| 2080 | self.parser.nest_limit(limit); |
| 2081 | self |
| 2082 | } |
| 2083 | |
| 2084 | /// Minimize the DFA. |
| 2085 | /// |
| 2086 | /// When enabled, the DFA built will be minimized such that it is as small |
| 2087 | /// as possible. |
| 2088 | /// |
| 2089 | /// Whether one enables minimization or not depends on the types of costs |
| 2090 | /// you're willing to pay and how much you care about its benefits. In |
| 2091 | /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)` |
| 2092 | /// space, where `n` is the number of DFA states and `k` is the alphabet |
| 2093 | /// size. In practice, minimization can be quite costly in terms of both |
| 2094 | /// space and time, so it should only be done if you're willing to wait |
| 2095 | /// longer to produce a DFA. In general, you might want a minimal DFA in |
| 2096 | /// the following circumstances: |
| 2097 | /// |
| 2098 | /// 1. You would like to optimize for the size of the automaton. This can |
| 2099 | /// manifest in one of two ways. Firstly, if you're converting the |
| 2100 | /// DFA into Rust code (or a table embedded in the code), then a minimal |
| 2101 | /// DFA will translate into a corresponding reduction in code size, and |
| 2102 | /// thus, also the final compiled binary size. Secondly, if you are |
| 2103 | /// building many DFAs and putting them on the heap, you'll be able to |
| 2104 | /// fit more if they are smaller. Note though that building a minimal |
| 2105 | /// DFA itself requires additional space; you only realize the space |
| 2106 | /// savings once the minimal DFA is constructed (at which point, the |
| 2107 | /// space used for minimization is freed). |
| 2108 | /// 2. You've observed that a smaller DFA results in faster match |
| 2109 | /// performance. Naively, this isn't guaranteed since there is no |
| 2110 | /// inherent difference between matching with a bigger-than-minimal |
| 2111 | /// DFA and a minimal DFA. However, a smaller DFA may make use of your |
| 2112 | /// CPU's cache more efficiently. |
| 2113 | /// 3. You are trying to establish an equivalence between regular |
| 2114 | /// languages. The standard method for this is to build a minimal DFA |
| 2115 | /// for each language and then compare them. If the DFAs are equivalent |
| 2116 | /// (up to state renaming), then the languages are equivalent. |
| 2117 | /// |
| 2118 | /// This option is disabled by default. |
| 2119 | pub fn minimize(&mut self, yes: bool) -> &mut Builder { |
| 2120 | self.minimize = yes; |
| 2121 | self |
| 2122 | } |
| 2123 | |
| 2124 | /// Premultiply state identifiers in the DFA's transition table. |
| 2125 | /// |
| 2126 | /// When enabled, state identifiers are premultiplied to point to their |
| 2127 | /// corresponding row in the DFA's transition table. That is, given the |
| 2128 | /// `i`th state, its corresponding premultiplied identifier is `i * k` |
| 2129 | /// where `k` is the alphabet size of the DFA. (The alphabet size is at |
| 2130 | /// most 256, but is in practice smaller if byte classes is enabled.) |
| 2131 | /// |
| 2132 | /// When state identifiers are not premultiplied, then the identifier of |
| 2133 | /// the `i`th state is `i`. |
| 2134 | /// |
| 2135 | /// The advantage of premultiplying state identifiers is that is saves |
| 2136 | /// a multiplication instruction per byte when searching with the DFA. |
| 2137 | /// This has been observed to lead to a 20% performance benefit in |
| 2138 | /// micro-benchmarks. |
| 2139 | /// |
| 2140 | /// The primary disadvantage of premultiplying state identifiers is |
| 2141 | /// that they require a larger integer size to represent. For example, |
| 2142 | /// if your DFA has 200 states, then its premultiplied form requires |
| 2143 | /// 16 bits to represent every possible state identifier, where as its |
| 2144 | /// non-premultiplied form only requires 8 bits. |
| 2145 | /// |
| 2146 | /// This option is enabled by default. |
| 2147 | pub fn premultiply(&mut self, yes: bool) -> &mut Builder { |
| 2148 | self.premultiply = yes; |
| 2149 | self |
| 2150 | } |
| 2151 | |
| 2152 | /// Shrink the size of the DFA's alphabet by mapping bytes to their |
| 2153 | /// equivalence classes. |
| 2154 | /// |
| 2155 | /// When enabled, each DFA will use a map from all possible bytes to their |
| 2156 | /// corresponding equivalence class. Each equivalence class represents a |
| 2157 | /// set of bytes that does not discriminate between a match and a non-match |
| 2158 | /// in the DFA. For example, the pattern `[ab]+` has at least two |
| 2159 | /// equivalence classes: a set containing `a` and `b` and a set containing |
| 2160 | /// every byte except for `a` and `b`. `a` and `b` are in the same |
| 2161 | /// equivalence classes because they never discriminate between a match |
| 2162 | /// and a non-match. |
| 2163 | /// |
| 2164 | /// The advantage of this map is that the size of the transition table can |
| 2165 | /// be reduced drastically from `#states * 256 * sizeof(id)` to |
| 2166 | /// `#states * k * sizeof(id)` where `k` is the number of equivalence |
| 2167 | /// classes. As a result, total space usage can decrease substantially. |
| 2168 | /// Moreover, since a smaller alphabet is used, compilation becomes faster |
| 2169 | /// as well. |
| 2170 | /// |
| 2171 | /// The disadvantage of this map is that every byte searched must be |
| 2172 | /// passed through this map before it can be used to determine the next |
| 2173 | /// transition. This has a small match time performance cost. |
| 2174 | /// |
| 2175 | /// This option is enabled by default. |
| 2176 | pub fn byte_classes(&mut self, yes: bool) -> &mut Builder { |
| 2177 | self.byte_classes = yes; |
| 2178 | self |
| 2179 | } |
| 2180 | |
| 2181 | /// Reverse the DFA. |
| 2182 | /// |
| 2183 | /// A DFA reversal is performed by reversing all of the concatenated |
| 2184 | /// sub-expressions in the original pattern, recursively. The resulting |
| 2185 | /// DFA can be used to match the pattern starting from the end of a string |
| 2186 | /// instead of the beginning of a string. |
| 2187 | /// |
| 2188 | /// Generally speaking, a reversed DFA is most useful for finding the start |
| 2189 | /// of a match, since a single forward DFA is only capable of finding the |
| 2190 | /// end of a match. This start of match handling is done for you |
| 2191 | /// automatically if you build a [`Regex`](struct.Regex.html). |
| 2192 | pub fn reverse(&mut self, yes: bool) -> &mut Builder { |
| 2193 | self.reverse = yes; |
| 2194 | self.nfa.reverse(yes); |
| 2195 | self |
| 2196 | } |
| 2197 | |
| 2198 | /// Find the longest possible match. |
| 2199 | /// |
| 2200 | /// This is distinct from the default leftmost-first match semantics in |
| 2201 | /// that it treats all NFA states as having equivalent priority. In other |
| 2202 | /// words, the longest possible match is always found and it is not |
| 2203 | /// possible to implement non-greedy match semantics when this is set. That |
| 2204 | /// is, `a+` and `a+?` are equivalent when this is enabled. |
| 2205 | /// |
| 2206 | /// In particular, a practical issue with this option at the moment is that |
| 2207 | /// it prevents unanchored searches from working correctly, since |
| 2208 | /// unanchored searches are implemented by prepending an non-greedy `.*?` |
| 2209 | /// to the beginning of the pattern. As stated above, non-greedy match |
| 2210 | /// semantics aren't supported. Therefore, if this option is enabled and |
| 2211 | /// an unanchored search is requested, then building a DFA will return an |
| 2212 | /// error. |
| 2213 | /// |
| 2214 | /// This option is principally useful when building a reverse DFA for |
| 2215 | /// finding the start of a match. If you are building a regex with |
| 2216 | /// [`RegexBuilder`](struct.RegexBuilder.html), then this is handled for |
| 2217 | /// you automatically. The reason why this is necessary for start of match |
| 2218 | /// handling is because we want to find the earliest possible starting |
| 2219 | /// position of a match to satisfy leftmost-first match semantics. When |
| 2220 | /// matching in reverse, this means finding the longest possible match, |
| 2221 | /// hence, this option. |
| 2222 | /// |
| 2223 | /// By default this is disabled. |
| 2224 | pub fn longest_match(&mut self, yes: bool) -> &mut Builder { |
| 2225 | // There is prior art in RE2 that shows how this can support unanchored |
| 2226 | // searches. Instead of treating all NFA states as having equivalent |
| 2227 | // priority, we instead group NFA states into sets, and treat members |
| 2228 | // of each set as having equivalent priority, but having greater |
| 2229 | // priority than all following members of different sets. We then |
| 2230 | // essentially assign a higher priority to everything over the prefix |
| 2231 | // `.*?`. |
| 2232 | self.longest_match = yes; |
| 2233 | self |
| 2234 | } |
| 2235 | |
| 2236 | /// Apply best effort heuristics to shrink the NFA at the expense of more |
| 2237 | /// time/memory. |
| 2238 | /// |
| 2239 | /// This may be exposed in the future, but for now is exported for use in |
| 2240 | /// the `regex-automata-debug` tool. |
| 2241 | #[doc(hidden)] |
| 2242 | pub fn shrink(&mut self, yes: bool) -> &mut Builder { |
| 2243 | self.nfa.shrink(yes); |
| 2244 | self |
| 2245 | } |
| 2246 | } |
| 2247 | |
| 2248 | #[cfg(feature = "std")] |
| 2249 | impl Default for Builder { |
| 2250 | fn default() -> Builder { |
| 2251 | Builder::new() |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | /// Return the given byte as its escaped string form. |
| 2256 | #[cfg(feature = "std")] |
| 2257 | fn escape(b: u8) -> String { |
| 2258 | use std::ascii; |
| 2259 | |
| 2260 | String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap() |
| 2261 | } |
| 2262 | |
| 2263 | #[cfg(all(test, feature = "std"))] |
| 2264 | mod tests { |
| 2265 | use super::*; |
| 2266 | |
| 2267 | #[test] |
| 2268 | fn errors_when_converting_to_smaller_dfa() { |
| 2269 | let pattern = r"\w{10}"; |
| 2270 | let dfa = Builder::new() |
| 2271 | .byte_classes(false) |
| 2272 | .anchored(true) |
| 2273 | .premultiply(false) |
| 2274 | .build_with_size::<u16>(pattern) |
| 2275 | .unwrap(); |
| 2276 | assert!(dfa.to_u8().is_err()); |
| 2277 | } |
| 2278 | |
| 2279 | #[test] |
| 2280 | fn errors_when_determinization_would_overflow() { |
| 2281 | let pattern = r"\w{10}"; |
| 2282 | |
| 2283 | let mut builder = Builder::new(); |
| 2284 | builder.byte_classes(false).anchored(true).premultiply(false); |
| 2285 | // using u16 is fine |
| 2286 | assert!(builder.build_with_size::<u16>(pattern).is_ok()); |
| 2287 | // // ... but u8 results in overflow (because there are >256 states) |
| 2288 | assert!(builder.build_with_size::<u8>(pattern).is_err()); |
| 2289 | } |
| 2290 | |
| 2291 | #[test] |
| 2292 | fn errors_when_premultiply_would_overflow() { |
| 2293 | let pattern = r"[a-z]"; |
| 2294 | |
| 2295 | let mut builder = Builder::new(); |
| 2296 | builder.byte_classes(false).anchored(true).premultiply(false); |
| 2297 | // without premultiplication is OK |
| 2298 | assert!(builder.build_with_size::<u8>(pattern).is_ok()); |
| 2299 | // ... but with premultiplication overflows u8 |
| 2300 | builder.premultiply(true); |
| 2301 | assert!(builder.build_with_size::<u8>(pattern).is_err()); |
| 2302 | } |
| 2303 | |
| 2304 | // let data = ::std::fs::read_to_string("/usr/share/dict/words").unwrap(); |
| 2305 | // let mut words: Vec<&str> = data.lines().collect(); |
| 2306 | // println!("{} words", words.len()); |
| 2307 | // words.sort_by(|w1, w2| w1.len().cmp(&w2.len()).reverse()); |
| 2308 | // let pattern = words.join("|"); |
| 2309 | // print_automata_counts(&pattern); |
| 2310 | // print_automata(&pattern); |
| 2311 | |
| 2312 | // print_automata(r"[01]*1[01]{5}"); |
| 2313 | // print_automata(r"X(.?){0,8}Y"); |
| 2314 | // print_automata_counts(r"\p{alphabetic}"); |
| 2315 | // print_automata(r"a*b+|cdefg"); |
| 2316 | // print_automata(r"(..)*(...)*"); |
| 2317 | |
| 2318 | // let pattern = r"\p{any}*?\p{Other_Uppercase}"; |
| 2319 | // let pattern = r"\p{any}*?\w+"; |
| 2320 | // print_automata_counts(pattern); |
| 2321 | // print_automata_counts(r"(?-u:\w)"); |
| 2322 | |
| 2323 | // let pattern = r"\p{Greek}"; |
| 2324 | // let pattern = r"zZzZzZzZzZ"; |
| 2325 | // let pattern = grapheme_pattern(); |
| 2326 | // let pattern = r"\p{Ideographic}"; |
| 2327 | // let pattern = r"\w{10}"; // 51784 --> 41264 |
| 2328 | // let pattern = r"\w"; // 5182 |
| 2329 | // let pattern = r"a*"; |
| 2330 | // print_automata(pattern); |
| 2331 | // let (_, _, dfa) = build_automata(pattern); |
| 2332 | } |