Jakub Kotur | 3bceaeb | 2020-12-21 17:28:16 +0100 | [diff] [blame^] | 1 | #[cfg(feature = "std")] |
| 2 | use core::fmt; |
| 3 | #[cfg(feature = "std")] |
| 4 | use core::iter; |
| 5 | use core::marker::PhantomData; |
| 6 | use core::mem::size_of; |
| 7 | #[cfg(feature = "std")] |
| 8 | use std::collections::HashMap; |
| 9 | |
| 10 | #[cfg(feature = "std")] |
| 11 | use byteorder::{BigEndian, LittleEndian}; |
| 12 | use byteorder::{ByteOrder, NativeEndian}; |
| 13 | |
| 14 | use classes::ByteClasses; |
| 15 | use dense; |
| 16 | use dfa::DFA; |
| 17 | #[cfg(feature = "std")] |
| 18 | use error::{Error, Result}; |
| 19 | #[cfg(feature = "std")] |
| 20 | use state_id::{dead_id, usize_to_state_id, write_state_id_bytes, StateID}; |
| 21 | #[cfg(not(feature = "std"))] |
| 22 | use state_id::{dead_id, StateID}; |
| 23 | |
| 24 | /// A sparse table-based deterministic finite automaton (DFA). |
| 25 | /// |
| 26 | /// In contrast to a [dense DFA](enum.DenseDFA.html), a sparse DFA uses a |
| 27 | /// more space efficient representation for its transition table. Consequently, |
| 28 | /// sparse DFAs can use much less memory than dense DFAs, but this comes at a |
| 29 | /// price. In particular, reading the more space efficient transitions takes |
| 30 | /// more work, and consequently, searching using a sparse DFA is typically |
| 31 | /// slower than a dense DFA. |
| 32 | /// |
| 33 | /// A sparse DFA can be built using the default configuration via the |
| 34 | /// [`SparseDFA::new`](enum.SparseDFA.html#method.new) constructor. Otherwise, |
| 35 | /// one can configure various aspects of a dense DFA via |
| 36 | /// [`dense::Builder`](dense/struct.Builder.html), and then convert a dense |
| 37 | /// DFA to a sparse DFA using |
| 38 | /// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse). |
| 39 | /// |
| 40 | /// In general, a sparse DFA supports all the same operations as a dense DFA. |
| 41 | /// |
| 42 | /// Making the choice between a dense and sparse DFA depends on your specific |
| 43 | /// work load. If you can sacrifice a bit of search time performance, then a |
| 44 | /// sparse DFA might be the best choice. In particular, while sparse DFAs are |
| 45 | /// probably always slower than dense DFAs, you may find that they are easily |
| 46 | /// fast enough for your purposes! |
| 47 | /// |
| 48 | /// # State size |
| 49 | /// |
| 50 | /// A `SparseDFA` has two type parameters, `T` and `S`. `T` corresponds to |
| 51 | /// the type of the DFA's transition table while `S` corresponds to the |
| 52 | /// representation used for the DFA's state identifiers as described by the |
| 53 | /// [`StateID`](trait.StateID.html) trait. This type parameter is typically |
| 54 | /// `usize`, but other valid choices provided by this crate include `u8`, |
| 55 | /// `u16`, `u32` and `u64`. The primary reason for choosing a different state |
| 56 | /// identifier representation than the default is to reduce the amount of |
| 57 | /// memory used by a DFA. Note though, that if the chosen representation cannot |
| 58 | /// accommodate the size of your DFA, then building the DFA will fail and |
| 59 | /// return an error. |
| 60 | /// |
| 61 | /// While the reduction in heap memory used by a DFA is one reason for choosing |
| 62 | /// a smaller state identifier representation, another possible reason is for |
| 63 | /// decreasing the serialization size of a DFA, as returned by |
| 64 | /// [`to_bytes_little_endian`](enum.SparseDFA.html#method.to_bytes_little_endian), |
| 65 | /// [`to_bytes_big_endian`](enum.SparseDFA.html#method.to_bytes_big_endian) |
| 66 | /// or |
| 67 | /// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian). |
| 68 | /// |
| 69 | /// The type of the transition table is typically either `Vec<u8>` or `&[u8]`, |
| 70 | /// depending on where the transition table is stored. Note that this is |
| 71 | /// different than a dense DFA, whose transition table is typically |
| 72 | /// `Vec<S>` or `&[S]`. The reason for this is that a sparse DFA always reads |
| 73 | /// its transition table from raw bytes because the table is compactly packed. |
| 74 | /// |
| 75 | /// # Variants |
| 76 | /// |
| 77 | /// This DFA is defined as a non-exhaustive enumeration of different types of |
| 78 | /// dense DFAs. All of the variants use the same internal representation |
| 79 | /// for the transition table, but they vary in how the transition table is |
| 80 | /// read. A DFA's specific variant depends on the configuration options set via |
| 81 | /// [`dense::Builder`](dense/struct.Builder.html). The default variant is |
| 82 | /// `ByteClass`. |
| 83 | /// |
| 84 | /// # The `DFA` trait |
| 85 | /// |
| 86 | /// This type implements the [`DFA`](trait.DFA.html) trait, which means it |
| 87 | /// can be used for searching. For example: |
| 88 | /// |
| 89 | /// ``` |
| 90 | /// use regex_automata::{DFA, SparseDFA}; |
| 91 | /// |
| 92 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 93 | /// let dfa = SparseDFA::new("foo[0-9]+")?; |
| 94 | /// assert_eq!(Some(8), dfa.find(b"foo12345")); |
| 95 | /// # Ok(()) }; example().unwrap() |
| 96 | /// ``` |
| 97 | /// |
| 98 | /// The `DFA` trait also provides an assortment of other lower level methods |
| 99 | /// for DFAs, such as `start_state` and `next_state`. While these are correctly |
| 100 | /// implemented, it is an anti-pattern to use them in performance sensitive |
| 101 | /// code on the `SparseDFA` type directly. Namely, each implementation requires |
| 102 | /// a branch to determine which type of sparse DFA is being used. Instead, |
| 103 | /// this branch should be pushed up a layer in the code since walking the |
| 104 | /// transitions of a DFA is usually a hot path. If you do need to use these |
| 105 | /// lower level methods in performance critical code, then you should match on |
| 106 | /// the variants of this DFA and use each variant's implementation of the `DFA` |
| 107 | /// trait directly. |
| 108 | #[derive(Clone, Debug)] |
| 109 | pub enum SparseDFA<T: AsRef<[u8]>, S: StateID = usize> { |
| 110 | /// A standard DFA that does not use byte classes. |
| 111 | Standard(Standard<T, S>), |
| 112 | /// A DFA that shrinks its alphabet to a set of equivalence classes instead |
| 113 | /// of using all possible byte values. Any two bytes belong to the same |
| 114 | /// equivalence class if and only if they can be used interchangeably |
| 115 | /// anywhere in the DFA while never discriminating between a match and a |
| 116 | /// non-match. |
| 117 | /// |
| 118 | /// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much |
| 119 | /// from using byte classes. In some cases, using byte classes can even |
| 120 | /// marginally increase the size of a sparse DFA's transition table. The |
| 121 | /// reason for this is that a sparse DFA already compacts each state's |
| 122 | /// transitions separate from whether byte classes are used. |
| 123 | ByteClass(ByteClass<T, S>), |
| 124 | /// Hints that destructuring should not be exhaustive. |
| 125 | /// |
| 126 | /// This enum may grow additional variants, so this makes sure clients |
| 127 | /// don't count on exhaustive matching. (Otherwise, adding a new variant |
| 128 | /// could break existing code.) |
| 129 | #[doc(hidden)] |
| 130 | __Nonexhaustive, |
| 131 | } |
| 132 | |
| 133 | #[cfg(feature = "std")] |
| 134 | impl SparseDFA<Vec<u8>, usize> { |
| 135 | /// Parse the given regular expression using a default configuration and |
| 136 | /// return the corresponding sparse DFA. |
| 137 | /// |
| 138 | /// The default configuration uses `usize` for state IDs and reduces the |
| 139 | /// alphabet size by splitting bytes into equivalence classes. The |
| 140 | /// resulting DFA is *not* minimized. |
| 141 | /// |
| 142 | /// If you want a non-default configuration, then use the |
| 143 | /// [`dense::Builder`](dense/struct.Builder.html) |
| 144 | /// to set your own configuration, and then call |
| 145 | /// [`DenseDFA::to_sparse`](enum.DenseDFA.html#method.to_sparse) |
| 146 | /// to create a sparse DFA. |
| 147 | /// |
| 148 | /// # Example |
| 149 | /// |
| 150 | /// ``` |
| 151 | /// use regex_automata::{DFA, SparseDFA}; |
| 152 | /// |
| 153 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 154 | /// let dfa = SparseDFA::new("foo[0-9]+bar")?; |
| 155 | /// assert_eq!(Some(11), dfa.find(b"foo12345bar")); |
| 156 | /// # Ok(()) }; example().unwrap() |
| 157 | /// ``` |
| 158 | pub fn new(pattern: &str) -> Result<SparseDFA<Vec<u8>, usize>> { |
| 159 | dense::Builder::new() |
| 160 | .build(pattern) |
| 161 | .and_then(|dense| dense.to_sparse()) |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | #[cfg(feature = "std")] |
| 166 | impl<S: StateID> SparseDFA<Vec<u8>, S> { |
| 167 | /// Create a new empty sparse DFA that never matches any input. |
| 168 | /// |
| 169 | /// # Example |
| 170 | /// |
| 171 | /// In order to build an empty DFA, callers must provide a type hint |
| 172 | /// indicating their choice of state identifier representation. |
| 173 | /// |
| 174 | /// ``` |
| 175 | /// use regex_automata::{DFA, SparseDFA}; |
| 176 | /// |
| 177 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 178 | /// let dfa: SparseDFA<Vec<u8>, usize> = SparseDFA::empty(); |
| 179 | /// assert_eq!(None, dfa.find(b"")); |
| 180 | /// assert_eq!(None, dfa.find(b"foo")); |
| 181 | /// # Ok(()) }; example().unwrap() |
| 182 | /// ``` |
| 183 | pub fn empty() -> SparseDFA<Vec<u8>, S> { |
| 184 | dense::DenseDFA::empty().to_sparse().unwrap() |
| 185 | } |
| 186 | |
| 187 | pub(crate) fn from_dense_sized<T: AsRef<[S]>, A: StateID>( |
| 188 | dfa: &dense::Repr<T, S>, |
| 189 | ) -> Result<SparseDFA<Vec<u8>, A>> { |
| 190 | Repr::from_dense_sized(dfa).map(|r| r.into_sparse_dfa()) |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> { |
| 195 | /// Cheaply return a borrowed version of this sparse DFA. Specifically, the |
| 196 | /// DFA returned always uses `&[u8]` for its transition table while keeping |
| 197 | /// the same state identifier representation. |
| 198 | pub fn as_ref<'a>(&'a self) -> SparseDFA<&'a [u8], S> { |
| 199 | match *self { |
| 200 | SparseDFA::Standard(Standard(ref r)) => { |
| 201 | SparseDFA::Standard(Standard(r.as_ref())) |
| 202 | } |
| 203 | SparseDFA::ByteClass(ByteClass(ref r)) => { |
| 204 | SparseDFA::ByteClass(ByteClass(r.as_ref())) |
| 205 | } |
| 206 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /// Return an owned version of this sparse DFA. Specifically, the DFA |
| 211 | /// returned always uses `Vec<u8>` for its transition table while keeping |
| 212 | /// the same state identifier representation. |
| 213 | /// |
| 214 | /// Effectively, this returns a sparse DFA whose transition table lives |
| 215 | /// on the heap. |
| 216 | #[cfg(feature = "std")] |
| 217 | pub fn to_owned(&self) -> SparseDFA<Vec<u8>, S> { |
| 218 | match *self { |
| 219 | SparseDFA::Standard(Standard(ref r)) => { |
| 220 | SparseDFA::Standard(Standard(r.to_owned())) |
| 221 | } |
| 222 | SparseDFA::ByteClass(ByteClass(ref r)) => { |
| 223 | SparseDFA::ByteClass(ByteClass(r.to_owned())) |
| 224 | } |
| 225 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /// Returns the memory usage, in bytes, of this DFA. |
| 230 | /// |
| 231 | /// The memory usage is computed based on the number of bytes used to |
| 232 | /// represent this DFA's transition table. This typically corresponds to |
| 233 | /// heap memory usage. |
| 234 | /// |
| 235 | /// This does **not** include the stack size used up by this DFA. To |
| 236 | /// compute that, used `std::mem::size_of::<SparseDFA>()`. |
| 237 | pub fn memory_usage(&self) -> usize { |
| 238 | self.repr().memory_usage() |
| 239 | } |
| 240 | |
| 241 | fn repr(&self) -> &Repr<T, S> { |
| 242 | match *self { |
| 243 | SparseDFA::Standard(ref r) => &r.0, |
| 244 | SparseDFA::ByteClass(ref r) => &r.0, |
| 245 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /// Routines for converting a sparse DFA to other representations, such as |
| 251 | /// smaller state identifiers or raw bytes suitable for persistent storage. |
| 252 | #[cfg(feature = "std")] |
| 253 | impl<T: AsRef<[u8]>, S: StateID> SparseDFA<T, S> { |
| 254 | /// Create a new sparse DFA whose match semantics are equivalent to |
| 255 | /// this DFA, but attempt to use `u8` for the representation of state |
| 256 | /// identifiers. If `u8` is insufficient to represent all state identifiers |
| 257 | /// in this DFA, then this returns an error. |
| 258 | /// |
| 259 | /// This is a convenience routine for `to_sized::<u8>()`. |
| 260 | pub fn to_u8(&self) -> Result<SparseDFA<Vec<u8>, u8>> { |
| 261 | self.to_sized() |
| 262 | } |
| 263 | |
| 264 | /// Create a new sparse DFA whose match semantics are equivalent to |
| 265 | /// this DFA, but attempt to use `u16` for the representation of state |
| 266 | /// identifiers. If `u16` is insufficient to represent all state |
| 267 | /// identifiers in this DFA, then this returns an error. |
| 268 | /// |
| 269 | /// This is a convenience routine for `to_sized::<u16>()`. |
| 270 | pub fn to_u16(&self) -> Result<SparseDFA<Vec<u8>, u16>> { |
| 271 | self.to_sized() |
| 272 | } |
| 273 | |
| 274 | /// Create a new sparse DFA whose match semantics are equivalent to |
| 275 | /// this DFA, but attempt to use `u32` for the representation of state |
| 276 | /// identifiers. If `u32` is insufficient to represent all state |
| 277 | /// identifiers in this DFA, then this returns an error. |
| 278 | /// |
| 279 | /// This is a convenience routine for `to_sized::<u32>()`. |
| 280 | #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))] |
| 281 | pub fn to_u32(&self) -> Result<SparseDFA<Vec<u8>, u32>> { |
| 282 | self.to_sized() |
| 283 | } |
| 284 | |
| 285 | /// Create a new sparse DFA whose match semantics are equivalent to |
| 286 | /// this DFA, but attempt to use `u64` for the representation of state |
| 287 | /// identifiers. If `u64` is insufficient to represent all state |
| 288 | /// identifiers in this DFA, then this returns an error. |
| 289 | /// |
| 290 | /// This is a convenience routine for `to_sized::<u64>()`. |
| 291 | #[cfg(target_pointer_width = "64")] |
| 292 | pub fn to_u64(&self) -> Result<SparseDFA<Vec<u8>, u64>> { |
| 293 | self.to_sized() |
| 294 | } |
| 295 | |
| 296 | /// Create a new sparse DFA whose match semantics are equivalent to |
| 297 | /// this DFA, but attempt to use `A` for the representation of state |
| 298 | /// identifiers. If `A` is insufficient to represent all state identifiers |
| 299 | /// in this DFA, then this returns an error. |
| 300 | /// |
| 301 | /// An alternative way to construct such a DFA is to use |
| 302 | /// [`DenseDFA::to_sparse_sized`](enum.DenseDFA.html#method.to_sparse_sized). |
| 303 | /// In general, picking the appropriate size upon initial construction of |
| 304 | /// a sparse DFA is preferred, since it will do the conversion in one |
| 305 | /// step instead of two. |
| 306 | pub fn to_sized<A: StateID>(&self) -> Result<SparseDFA<Vec<u8>, A>> { |
| 307 | self.repr().to_sized().map(|r| r.into_sparse_dfa()) |
| 308 | } |
| 309 | |
| 310 | /// Serialize a sparse DFA to raw bytes in little endian format. |
| 311 | /// |
| 312 | /// If the state identifier representation of this DFA has a size different |
| 313 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 314 | /// implementations of `StateID` provided by this crate satisfy this |
| 315 | /// requirement. |
| 316 | pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> { |
| 317 | self.repr().to_bytes::<LittleEndian>() |
| 318 | } |
| 319 | |
| 320 | /// Serialize a sparse DFA to raw bytes in big endian format. |
| 321 | /// |
| 322 | /// If the state identifier representation of this DFA has a size different |
| 323 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 324 | /// implementations of `StateID` provided by this crate satisfy this |
| 325 | /// requirement. |
| 326 | pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> { |
| 327 | self.repr().to_bytes::<BigEndian>() |
| 328 | } |
| 329 | |
| 330 | /// Serialize a sparse DFA to raw bytes in native endian format. |
| 331 | /// Generally, it is better to pick an explicit endianness using either |
| 332 | /// `to_bytes_little_endian` or `to_bytes_big_endian`. This routine is |
| 333 | /// useful in tests where the DFA is serialized and deserialized on the |
| 334 | /// same platform. |
| 335 | /// |
| 336 | /// If the state identifier representation of this DFA has a size different |
| 337 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 338 | /// implementations of `StateID` provided by this crate satisfy this |
| 339 | /// requirement. |
| 340 | pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> { |
| 341 | self.repr().to_bytes::<NativeEndian>() |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | impl<'a, S: StateID> SparseDFA<&'a [u8], S> { |
| 346 | /// Deserialize a sparse DFA with a specific state identifier |
| 347 | /// representation. |
| 348 | /// |
| 349 | /// Deserializing a DFA using this routine will never allocate heap memory. |
| 350 | /// This is also guaranteed to be a constant time operation that does not |
| 351 | /// vary with the size of the DFA. |
| 352 | /// |
| 353 | /// The bytes given should be generated by the serialization of a DFA with |
| 354 | /// either the |
| 355 | /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian) |
| 356 | /// method or the |
| 357 | /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian) |
| 358 | /// endian, depending on the endianness of the machine you are |
| 359 | /// deserializing this DFA from. |
| 360 | /// |
| 361 | /// If the state identifier representation is `usize`, then deserialization |
| 362 | /// is dependent on the pointer size. For this reason, it is best to |
| 363 | /// serialize DFAs using a fixed size representation for your state |
| 364 | /// identifiers, such as `u8`, `u16`, `u32` or `u64`. |
| 365 | /// |
| 366 | /// # Panics |
| 367 | /// |
| 368 | /// The bytes given should be *trusted*. In particular, if the bytes |
| 369 | /// are not a valid serialization of a DFA, or if the endianness of the |
| 370 | /// serialized bytes is different than the endianness of the machine that |
| 371 | /// is deserializing the DFA, then this routine will panic. Moreover, it |
| 372 | /// is possible for this deserialization routine to succeed even if the |
| 373 | /// given bytes do not represent a valid serialized sparse DFA. |
| 374 | /// |
| 375 | /// # Safety |
| 376 | /// |
| 377 | /// This routine is unsafe because it permits callers to provide an |
| 378 | /// arbitrary transition table with possibly incorrect transitions. While |
| 379 | /// the various serialization routines will never return an incorrect |
| 380 | /// transition table, there is no guarantee that the bytes provided here |
| 381 | /// are correct. While deserialization does many checks (as documented |
| 382 | /// above in the panic conditions), this routine does not check that the |
| 383 | /// transition table is correct. Given an incorrect transition table, it is |
| 384 | /// possible for the search routines to access out-of-bounds memory because |
| 385 | /// of explicit bounds check elision. |
| 386 | /// |
| 387 | /// # Example |
| 388 | /// |
| 389 | /// This example shows how to serialize a DFA to raw bytes, deserialize it |
| 390 | /// and then use it for searching. Note that we first convert the DFA to |
| 391 | /// using `u16` for its state identifier representation before serializing |
| 392 | /// it. While this isn't strictly necessary, it's good practice in order to |
| 393 | /// decrease the size of the DFA and to avoid platform specific pitfalls |
| 394 | /// such as differing pointer sizes. |
| 395 | /// |
| 396 | /// ``` |
| 397 | /// use regex_automata::{DFA, DenseDFA, SparseDFA}; |
| 398 | /// |
| 399 | /// # fn example() -> Result<(), regex_automata::Error> { |
| 400 | /// let sparse = SparseDFA::new("foo[0-9]+")?; |
| 401 | /// let bytes = sparse.to_u16()?.to_bytes_native_endian()?; |
| 402 | /// |
| 403 | /// let dfa: SparseDFA<&[u8], u16> = unsafe { |
| 404 | /// SparseDFA::from_bytes(&bytes) |
| 405 | /// }; |
| 406 | /// |
| 407 | /// assert_eq!(Some(8), dfa.find(b"foo12345")); |
| 408 | /// # Ok(()) }; example().unwrap() |
| 409 | /// ``` |
| 410 | pub unsafe fn from_bytes(buf: &'a [u8]) -> SparseDFA<&'a [u8], S> { |
| 411 | Repr::from_bytes(buf).into_sparse_dfa() |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | impl<T: AsRef<[u8]>, S: StateID> DFA for SparseDFA<T, S> { |
| 416 | type ID = S; |
| 417 | |
| 418 | #[inline] |
| 419 | fn start_state(&self) -> S { |
| 420 | self.repr().start_state() |
| 421 | } |
| 422 | |
| 423 | #[inline] |
| 424 | fn is_match_state(&self, id: S) -> bool { |
| 425 | self.repr().is_match_state(id) |
| 426 | } |
| 427 | |
| 428 | #[inline] |
| 429 | fn is_dead_state(&self, id: S) -> bool { |
| 430 | self.repr().is_dead_state(id) |
| 431 | } |
| 432 | |
| 433 | #[inline] |
| 434 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 435 | self.repr().is_match_or_dead_state(id) |
| 436 | } |
| 437 | |
| 438 | #[inline] |
| 439 | fn is_anchored(&self) -> bool { |
| 440 | self.repr().is_anchored() |
| 441 | } |
| 442 | |
| 443 | #[inline] |
| 444 | fn next_state(&self, current: S, input: u8) -> S { |
| 445 | match *self { |
| 446 | SparseDFA::Standard(ref r) => r.next_state(current, input), |
| 447 | SparseDFA::ByteClass(ref r) => r.next_state(current, input), |
| 448 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | #[inline] |
| 453 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 454 | self.next_state(current, input) |
| 455 | } |
| 456 | |
| 457 | // We specialize the following methods because it lets us lift the |
| 458 | // case analysis between the different types of sparse DFAs. Instead of |
| 459 | // doing the case analysis for every transition, we do it once before |
| 460 | // searching. For sparse DFAs, this doesn't seem to benefit performance as |
| 461 | // much as it does for the dense DFAs, but it's easy to do so we might as |
| 462 | // well do it. |
| 463 | |
| 464 | #[inline] |
| 465 | fn is_match_at(&self, bytes: &[u8], start: usize) -> bool { |
| 466 | match *self { |
| 467 | SparseDFA::Standard(ref r) => r.is_match_at(bytes, start), |
| 468 | SparseDFA::ByteClass(ref r) => r.is_match_at(bytes, start), |
| 469 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | #[inline] |
| 474 | fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> { |
| 475 | match *self { |
| 476 | SparseDFA::Standard(ref r) => r.shortest_match_at(bytes, start), |
| 477 | SparseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start), |
| 478 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | #[inline] |
| 483 | fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> { |
| 484 | match *self { |
| 485 | SparseDFA::Standard(ref r) => r.find_at(bytes, start), |
| 486 | SparseDFA::ByteClass(ref r) => r.find_at(bytes, start), |
| 487 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | #[inline] |
| 492 | fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> { |
| 493 | match *self { |
| 494 | SparseDFA::Standard(ref r) => r.rfind_at(bytes, start), |
| 495 | SparseDFA::ByteClass(ref r) => r.rfind_at(bytes, start), |
| 496 | SparseDFA::__Nonexhaustive => unreachable!(), |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /// A standard sparse DFA that does not use premultiplication or byte classes. |
| 502 | /// |
| 503 | /// Generally, it isn't necessary to use this type directly, since a |
| 504 | /// `SparseDFA` can be used for searching directly. One possible reason why |
| 505 | /// one might want to use this type directly is if you are implementing your |
| 506 | /// own search routines by walking a DFA's transitions directly. In that case, |
| 507 | /// you'll want to use this type (or any of the other DFA variant types) |
| 508 | /// directly, since they implement `next_state` more efficiently. |
| 509 | #[derive(Clone, Debug)] |
| 510 | pub struct Standard<T: AsRef<[u8]>, S: StateID = usize>(Repr<T, S>); |
| 511 | |
| 512 | impl<T: AsRef<[u8]>, S: StateID> DFA for Standard<T, S> { |
| 513 | type ID = S; |
| 514 | |
| 515 | #[inline] |
| 516 | fn start_state(&self) -> S { |
| 517 | self.0.start_state() |
| 518 | } |
| 519 | |
| 520 | #[inline] |
| 521 | fn is_match_state(&self, id: S) -> bool { |
| 522 | self.0.is_match_state(id) |
| 523 | } |
| 524 | |
| 525 | #[inline] |
| 526 | fn is_dead_state(&self, id: S) -> bool { |
| 527 | self.0.is_dead_state(id) |
| 528 | } |
| 529 | |
| 530 | #[inline] |
| 531 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 532 | self.0.is_match_or_dead_state(id) |
| 533 | } |
| 534 | |
| 535 | #[inline] |
| 536 | fn is_anchored(&self) -> bool { |
| 537 | self.0.is_anchored() |
| 538 | } |
| 539 | |
| 540 | #[inline] |
| 541 | fn next_state(&self, current: S, input: u8) -> S { |
| 542 | self.0.state(current).next(input) |
| 543 | } |
| 544 | |
| 545 | #[inline] |
| 546 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 547 | self.next_state(current, input) |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | /// A sparse DFA that shrinks its alphabet. |
| 552 | /// |
| 553 | /// Alphabet shrinking is achieved by using a set of equivalence classes |
| 554 | /// instead of using all possible byte values. Any two bytes belong to the same |
| 555 | /// equivalence class if and only if they can be used interchangeably anywhere |
| 556 | /// in the DFA while never discriminating between a match and a non-match. |
| 557 | /// |
| 558 | /// Unlike dense DFAs, sparse DFAs do not tend to benefit nearly as much from |
| 559 | /// using byte classes. In some cases, using byte classes can even marginally |
| 560 | /// increase the size of a sparse DFA's transition table. The reason for this |
| 561 | /// is that a sparse DFA already compacts each state's transitions separate |
| 562 | /// from whether byte classes are used. |
| 563 | /// |
| 564 | /// Generally, it isn't necessary to use this type directly, since a |
| 565 | /// `SparseDFA` can be used for searching directly. One possible reason why |
| 566 | /// one might want to use this type directly is if you are implementing your |
| 567 | /// own search routines by walking a DFA's transitions directly. In that case, |
| 568 | /// you'll want to use this type (or any of the other DFA variant types) |
| 569 | /// directly, since they implement `next_state` more efficiently. |
| 570 | #[derive(Clone, Debug)] |
| 571 | pub struct ByteClass<T: AsRef<[u8]>, S: StateID = usize>(Repr<T, S>); |
| 572 | |
| 573 | impl<T: AsRef<[u8]>, S: StateID> DFA for ByteClass<T, S> { |
| 574 | type ID = S; |
| 575 | |
| 576 | #[inline] |
| 577 | fn start_state(&self) -> S { |
| 578 | self.0.start_state() |
| 579 | } |
| 580 | |
| 581 | #[inline] |
| 582 | fn is_match_state(&self, id: S) -> bool { |
| 583 | self.0.is_match_state(id) |
| 584 | } |
| 585 | |
| 586 | #[inline] |
| 587 | fn is_dead_state(&self, id: S) -> bool { |
| 588 | self.0.is_dead_state(id) |
| 589 | } |
| 590 | |
| 591 | #[inline] |
| 592 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 593 | self.0.is_match_or_dead_state(id) |
| 594 | } |
| 595 | |
| 596 | #[inline] |
| 597 | fn is_anchored(&self) -> bool { |
| 598 | self.0.is_anchored() |
| 599 | } |
| 600 | |
| 601 | #[inline] |
| 602 | fn next_state(&self, current: S, input: u8) -> S { |
| 603 | let input = self.0.byte_classes.get(input); |
| 604 | self.0.state(current).next(input) |
| 605 | } |
| 606 | |
| 607 | #[inline] |
| 608 | unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S { |
| 609 | self.next_state(current, input) |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | /// The underlying representation of a sparse DFA. This is shared by all of |
| 614 | /// the different variants of a sparse DFA. |
| 615 | #[derive(Clone)] |
| 616 | #[cfg_attr(not(feature = "std"), derive(Debug))] |
| 617 | struct Repr<T: AsRef<[u8]>, S: StateID = usize> { |
| 618 | anchored: bool, |
| 619 | start: S, |
| 620 | state_count: usize, |
| 621 | max_match: S, |
| 622 | byte_classes: ByteClasses, |
| 623 | trans: T, |
| 624 | } |
| 625 | |
| 626 | impl<T: AsRef<[u8]>, S: StateID> Repr<T, S> { |
| 627 | fn into_sparse_dfa(self) -> SparseDFA<T, S> { |
| 628 | if self.byte_classes.is_singleton() { |
| 629 | SparseDFA::Standard(Standard(self)) |
| 630 | } else { |
| 631 | SparseDFA::ByteClass(ByteClass(self)) |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | fn as_ref<'a>(&'a self) -> Repr<&'a [u8], S> { |
| 636 | Repr { |
| 637 | anchored: self.anchored, |
| 638 | start: self.start, |
| 639 | state_count: self.state_count, |
| 640 | max_match: self.max_match, |
| 641 | byte_classes: self.byte_classes.clone(), |
| 642 | trans: self.trans(), |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | #[cfg(feature = "std")] |
| 647 | fn to_owned(&self) -> Repr<Vec<u8>, S> { |
| 648 | Repr { |
| 649 | anchored: self.anchored, |
| 650 | start: self.start, |
| 651 | state_count: self.state_count, |
| 652 | max_match: self.max_match, |
| 653 | byte_classes: self.byte_classes.clone(), |
| 654 | trans: self.trans().to_vec(), |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | /// Return a convenient representation of the given state. |
| 659 | /// |
| 660 | /// This is marked as inline because it doesn't seem to get inlined |
| 661 | /// otherwise, which leads to a fairly significant performance loss (~25%). |
| 662 | #[inline] |
| 663 | fn state<'a>(&'a self, id: S) -> State<'a, S> { |
| 664 | let mut pos = id.to_usize(); |
| 665 | let ntrans = NativeEndian::read_u16(&self.trans()[pos..]) as usize; |
| 666 | pos += 2; |
| 667 | let input_ranges = &self.trans()[pos..pos + (ntrans * 2)]; |
| 668 | pos += 2 * ntrans; |
| 669 | let next = &self.trans()[pos..pos + (ntrans * size_of::<S>())]; |
| 670 | State { _state_id_repr: PhantomData, ntrans, input_ranges, next } |
| 671 | } |
| 672 | |
| 673 | /// Return an iterator over all of the states in this DFA. |
| 674 | /// |
| 675 | /// The iterator returned yields tuples, where the first element is the |
| 676 | /// state ID and the second element is the state itself. |
| 677 | #[cfg(feature = "std")] |
| 678 | fn states<'a>(&'a self) -> StateIter<'a, T, S> { |
| 679 | StateIter { dfa: self, id: dead_id() } |
| 680 | } |
| 681 | |
| 682 | fn memory_usage(&self) -> usize { |
| 683 | self.trans().len() |
| 684 | } |
| 685 | |
| 686 | fn start_state(&self) -> S { |
| 687 | self.start |
| 688 | } |
| 689 | |
| 690 | fn is_match_state(&self, id: S) -> bool { |
| 691 | self.is_match_or_dead_state(id) && !self.is_dead_state(id) |
| 692 | } |
| 693 | |
| 694 | fn is_dead_state(&self, id: S) -> bool { |
| 695 | id == dead_id() |
| 696 | } |
| 697 | |
| 698 | fn is_match_or_dead_state(&self, id: S) -> bool { |
| 699 | id <= self.max_match |
| 700 | } |
| 701 | |
| 702 | fn is_anchored(&self) -> bool { |
| 703 | self.anchored |
| 704 | } |
| 705 | |
| 706 | fn trans(&self) -> &[u8] { |
| 707 | self.trans.as_ref() |
| 708 | } |
| 709 | |
| 710 | /// Create a new sparse DFA whose match semantics are equivalent to this |
| 711 | /// DFA, but attempt to use `A` for the representation of state |
| 712 | /// identifiers. If `A` is insufficient to represent all state identifiers |
| 713 | /// in this DFA, then this returns an error. |
| 714 | #[cfg(feature = "std")] |
| 715 | fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<u8>, A>> { |
| 716 | // To build the new DFA, we proceed much like the initial construction |
| 717 | // of the sparse DFA. Namely, since the state ID size is changing, |
| 718 | // we don't actually know all of our state IDs until we've allocated |
| 719 | // all necessary space. So we do one pass that allocates all of the |
| 720 | // storage we need, and then another pass to fill in the transitions. |
| 721 | |
| 722 | let mut trans = Vec::with_capacity(size_of::<A>() * self.state_count); |
| 723 | let mut map: HashMap<S, A> = HashMap::with_capacity(self.state_count); |
| 724 | for (old_id, state) in self.states() { |
| 725 | let pos = trans.len(); |
| 726 | map.insert(old_id, usize_to_state_id(pos)?); |
| 727 | |
| 728 | let n = state.ntrans; |
| 729 | let zeros = 2 + (n * 2) + (n * size_of::<A>()); |
| 730 | trans.extend(iter::repeat(0).take(zeros)); |
| 731 | |
| 732 | NativeEndian::write_u16(&mut trans[pos..], n as u16); |
| 733 | let (s, e) = (pos + 2, pos + 2 + (n * 2)); |
| 734 | trans[s..e].copy_from_slice(state.input_ranges); |
| 735 | } |
| 736 | |
| 737 | let mut new = Repr { |
| 738 | anchored: self.anchored, |
| 739 | start: map[&self.start], |
| 740 | state_count: self.state_count, |
| 741 | max_match: map[&self.max_match], |
| 742 | byte_classes: self.byte_classes.clone(), |
| 743 | trans, |
| 744 | }; |
| 745 | for (&old_id, &new_id) in map.iter() { |
| 746 | let old_state = self.state(old_id); |
| 747 | let mut new_state = new.state_mut(new_id); |
| 748 | for i in 0..new_state.ntrans { |
| 749 | let next = map[&old_state.next_at(i)]; |
| 750 | new_state.set_next_at(i, usize_to_state_id(next.to_usize())?); |
| 751 | } |
| 752 | } |
| 753 | new.start = map[&self.start]; |
| 754 | new.max_match = map[&self.max_match]; |
| 755 | Ok(new) |
| 756 | } |
| 757 | |
| 758 | /// Serialize a sparse DFA to raw bytes using the provided endianness. |
| 759 | /// |
| 760 | /// If the state identifier representation of this DFA has a size different |
| 761 | /// than 1, 2, 4 or 8 bytes, then this returns an error. All |
| 762 | /// implementations of `StateID` provided by this crate satisfy this |
| 763 | /// requirement. |
| 764 | /// |
| 765 | /// Unlike dense DFAs, the result is not necessarily aligned since a |
| 766 | /// sparse DFA's transition table is always read as a sequence of bytes. |
| 767 | #[cfg(feature = "std")] |
| 768 | fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> { |
| 769 | let label = b"rust-regex-automata-sparse-dfa\x00"; |
| 770 | let size = |
| 771 | // For human readable label. |
| 772 | label.len() |
| 773 | // endiannes check, must be equal to 0xFEFF for native endian |
| 774 | + 2 |
| 775 | // For version number. |
| 776 | + 2 |
| 777 | // Size of state ID representation, in bytes. |
| 778 | // Must be 1, 2, 4 or 8. |
| 779 | + 2 |
| 780 | // For DFA misc options. (Currently unused.) |
| 781 | + 2 |
| 782 | // For start state. |
| 783 | + 8 |
| 784 | // For state count. |
| 785 | + 8 |
| 786 | // For max match state. |
| 787 | + 8 |
| 788 | // For byte class map. |
| 789 | + 256 |
| 790 | // For transition table. |
| 791 | + self.trans().len(); |
| 792 | |
| 793 | let mut i = 0; |
| 794 | let mut buf = vec![0; size]; |
| 795 | |
| 796 | // write label |
| 797 | for &b in label { |
| 798 | buf[i] = b; |
| 799 | i += 1; |
| 800 | } |
| 801 | // endianness check |
| 802 | A::write_u16(&mut buf[i..], 0xFEFF); |
| 803 | i += 2; |
| 804 | // version number |
| 805 | A::write_u16(&mut buf[i..], 1); |
| 806 | i += 2; |
| 807 | // size of state ID |
| 808 | let state_size = size_of::<S>(); |
| 809 | if ![1, 2, 4, 8].contains(&state_size) { |
| 810 | return Err(Error::serialize(&format!( |
| 811 | "state size of {} not supported, must be 1, 2, 4 or 8", |
| 812 | state_size |
| 813 | ))); |
| 814 | } |
| 815 | A::write_u16(&mut buf[i..], state_size as u16); |
| 816 | i += 2; |
| 817 | // DFA misc options |
| 818 | let mut options = 0u16; |
| 819 | if self.anchored { |
| 820 | options |= dense::MASK_ANCHORED; |
| 821 | } |
| 822 | A::write_u16(&mut buf[i..], options); |
| 823 | i += 2; |
| 824 | // start state |
| 825 | A::write_u64(&mut buf[i..], self.start.to_usize() as u64); |
| 826 | i += 8; |
| 827 | // state count |
| 828 | A::write_u64(&mut buf[i..], self.state_count as u64); |
| 829 | i += 8; |
| 830 | // max match state |
| 831 | A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64); |
| 832 | i += 8; |
| 833 | // byte class map |
| 834 | for b in (0..256).map(|b| b as u8) { |
| 835 | buf[i] = self.byte_classes.get(b); |
| 836 | i += 1; |
| 837 | } |
| 838 | // transition table |
| 839 | for (_, state) in self.states() { |
| 840 | A::write_u16(&mut buf[i..], state.ntrans as u16); |
| 841 | i += 2; |
| 842 | buf[i..i + (state.ntrans * 2)].copy_from_slice(state.input_ranges); |
| 843 | i += state.ntrans * 2; |
| 844 | for j in 0..state.ntrans { |
| 845 | write_state_id_bytes::<A, _>(&mut buf[i..], state.next_at(j)); |
| 846 | i += size_of::<S>(); |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | assert_eq!(size, i, "expected to consume entire buffer"); |
| 851 | |
| 852 | Ok(buf) |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | impl<'a, S: StateID> Repr<&'a [u8], S> { |
| 857 | /// The implementation for deserializing a sparse DFA from raw bytes. |
| 858 | unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [u8], S> { |
| 859 | // skip over label |
| 860 | match buf.iter().position(|&b| b == b'\x00') { |
| 861 | None => panic!("could not find label"), |
| 862 | Some(i) => buf = &buf[i + 1..], |
| 863 | } |
| 864 | |
| 865 | // check that current endianness is same as endianness of DFA |
| 866 | let endian_check = NativeEndian::read_u16(buf); |
| 867 | buf = &buf[2..]; |
| 868 | if endian_check != 0xFEFF { |
| 869 | panic!( |
| 870 | "endianness mismatch, expected 0xFEFF but got 0x{:X}. \ |
| 871 | are you trying to load a SparseDFA serialized with a \ |
| 872 | different endianness?", |
| 873 | endian_check, |
| 874 | ); |
| 875 | } |
| 876 | |
| 877 | // check that the version number is supported |
| 878 | let version = NativeEndian::read_u16(buf); |
| 879 | buf = &buf[2..]; |
| 880 | if version != 1 { |
| 881 | panic!( |
| 882 | "expected version 1, but found unsupported version {}", |
| 883 | version, |
| 884 | ); |
| 885 | } |
| 886 | |
| 887 | // read size of state |
| 888 | let state_size = NativeEndian::read_u16(buf) as usize; |
| 889 | if state_size != size_of::<S>() { |
| 890 | panic!( |
| 891 | "state size of SparseDFA ({}) does not match \ |
| 892 | requested state size ({})", |
| 893 | state_size, |
| 894 | size_of::<S>(), |
| 895 | ); |
| 896 | } |
| 897 | buf = &buf[2..]; |
| 898 | |
| 899 | // read miscellaneous options |
| 900 | let opts = NativeEndian::read_u16(buf); |
| 901 | buf = &buf[2..]; |
| 902 | |
| 903 | // read start state |
| 904 | let start = S::from_usize(NativeEndian::read_u64(buf) as usize); |
| 905 | buf = &buf[8..]; |
| 906 | |
| 907 | // read state count |
| 908 | let state_count = NativeEndian::read_u64(buf) as usize; |
| 909 | buf = &buf[8..]; |
| 910 | |
| 911 | // read max match state |
| 912 | let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize); |
| 913 | buf = &buf[8..]; |
| 914 | |
| 915 | // read byte classes |
| 916 | let byte_classes = ByteClasses::from_slice(&buf[..256]); |
| 917 | buf = &buf[256..]; |
| 918 | |
| 919 | Repr { |
| 920 | anchored: opts & dense::MASK_ANCHORED > 0, |
| 921 | start, |
| 922 | state_count, |
| 923 | max_match, |
| 924 | byte_classes, |
| 925 | trans: buf, |
| 926 | } |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | #[cfg(feature = "std")] |
| 931 | impl<S: StateID> Repr<Vec<u8>, S> { |
| 932 | /// The implementation for constructing a sparse DFA from a dense DFA. |
| 933 | fn from_dense_sized<T: AsRef<[S]>, A: StateID>( |
| 934 | dfa: &dense::Repr<T, S>, |
| 935 | ) -> Result<Repr<Vec<u8>, A>> { |
| 936 | // In order to build the transition table, we need to be able to write |
| 937 | // state identifiers for each of the "next" transitions in each state. |
| 938 | // Our state identifiers correspond to the byte offset in the |
| 939 | // transition table at which the state is encoded. Therefore, we do not |
| 940 | // actually know what the state identifiers are until we've allocated |
| 941 | // exactly as much space as we need for each state. Thus, construction |
| 942 | // of the transition table happens in two passes. |
| 943 | // |
| 944 | // In the first pass, we fill out the shell of each state, which |
| 945 | // includes the transition count, the input byte ranges and zero-filled |
| 946 | // space for the transitions. In this first pass, we also build up a |
| 947 | // map from the state identifier index of the dense DFA to the state |
| 948 | // identifier in this sparse DFA. |
| 949 | // |
| 950 | // In the second pass, we fill in the transitions based on the map |
| 951 | // built in the first pass. |
| 952 | |
| 953 | let mut trans = Vec::with_capacity(size_of::<A>() * dfa.state_count()); |
| 954 | let mut remap: Vec<A> = vec![dead_id(); dfa.state_count()]; |
| 955 | for (old_id, state) in dfa.states() { |
| 956 | let pos = trans.len(); |
| 957 | |
| 958 | remap[dfa.state_id_to_index(old_id)] = usize_to_state_id(pos)?; |
| 959 | // zero-filled space for the transition count |
| 960 | trans.push(0); |
| 961 | trans.push(0); |
| 962 | |
| 963 | let mut trans_count = 0; |
| 964 | for (b1, b2, _) in state.sparse_transitions() { |
| 965 | trans_count += 1; |
| 966 | trans.push(b1); |
| 967 | trans.push(b2); |
| 968 | } |
| 969 | // fill in the transition count |
| 970 | NativeEndian::write_u16(&mut trans[pos..], trans_count); |
| 971 | |
| 972 | // zero-fill the actual transitions |
| 973 | let zeros = trans_count as usize * size_of::<A>(); |
| 974 | trans.extend(iter::repeat(0).take(zeros)); |
| 975 | } |
| 976 | |
| 977 | let mut new = Repr { |
| 978 | anchored: dfa.is_anchored(), |
| 979 | start: remap[dfa.state_id_to_index(dfa.start_state())], |
| 980 | state_count: dfa.state_count(), |
| 981 | max_match: remap[dfa.state_id_to_index(dfa.max_match_state())], |
| 982 | byte_classes: dfa.byte_classes().clone(), |
| 983 | trans, |
| 984 | }; |
| 985 | for (old_id, old_state) in dfa.states() { |
| 986 | let new_id = remap[dfa.state_id_to_index(old_id)]; |
| 987 | let mut new_state = new.state_mut(new_id); |
| 988 | let sparse = old_state.sparse_transitions(); |
| 989 | for (i, (_, _, next)) in sparse.enumerate() { |
| 990 | let next = remap[dfa.state_id_to_index(next)]; |
| 991 | new_state.set_next_at(i, next); |
| 992 | } |
| 993 | } |
| 994 | Ok(new) |
| 995 | } |
| 996 | |
| 997 | /// Return a convenient mutable representation of the given state. |
| 998 | fn state_mut<'a>(&'a mut self, id: S) -> StateMut<'a, S> { |
| 999 | let mut pos = id.to_usize(); |
| 1000 | let ntrans = NativeEndian::read_u16(&self.trans[pos..]) as usize; |
| 1001 | pos += 2; |
| 1002 | |
| 1003 | let size = (ntrans * 2) + (ntrans * size_of::<S>()); |
| 1004 | let ranges_and_next = &mut self.trans[pos..pos + size]; |
| 1005 | let (input_ranges, next) = ranges_and_next.split_at_mut(ntrans * 2); |
| 1006 | StateMut { _state_id_repr: PhantomData, ntrans, input_ranges, next } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | #[cfg(feature = "std")] |
| 1011 | impl<T: AsRef<[u8]>, S: StateID> fmt::Debug for Repr<T, S> { |
| 1012 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1013 | fn state_status<T: AsRef<[u8]>, S: StateID>( |
| 1014 | dfa: &Repr<T, S>, |
| 1015 | id: S, |
| 1016 | ) -> &'static str { |
| 1017 | if id == dead_id() { |
| 1018 | if dfa.is_match_state(id) { |
| 1019 | "D*" |
| 1020 | } else { |
| 1021 | "D " |
| 1022 | } |
| 1023 | } else if id == dfa.start_state() { |
| 1024 | if dfa.is_match_state(id) { |
| 1025 | ">*" |
| 1026 | } else { |
| 1027 | "> " |
| 1028 | } |
| 1029 | } else { |
| 1030 | if dfa.is_match_state(id) { |
| 1031 | " *" |
| 1032 | } else { |
| 1033 | " " |
| 1034 | } |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | writeln!(f, "SparseDFA(")?; |
| 1039 | for (id, state) in self.states() { |
| 1040 | let status = state_status(self, id); |
| 1041 | writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?; |
| 1042 | } |
| 1043 | writeln!(f, ")")?; |
| 1044 | Ok(()) |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | /// An iterator over all states in a sparse DFA. |
| 1049 | /// |
| 1050 | /// This iterator yields tuples, where the first element is the state ID and |
| 1051 | /// the second element is the state itself. |
| 1052 | #[cfg(feature = "std")] |
| 1053 | #[derive(Debug)] |
| 1054 | struct StateIter<'a, T: AsRef<[u8]> + 'a, S: StateID + 'a = usize> { |
| 1055 | dfa: &'a Repr<T, S>, |
| 1056 | id: S, |
| 1057 | } |
| 1058 | |
| 1059 | #[cfg(feature = "std")] |
| 1060 | impl<'a, T: AsRef<[u8]>, S: StateID> Iterator for StateIter<'a, T, S> { |
| 1061 | type Item = (S, State<'a, S>); |
| 1062 | |
| 1063 | fn next(&mut self) -> Option<(S, State<'a, S>)> { |
| 1064 | if self.id.to_usize() >= self.dfa.trans().len() { |
| 1065 | return None; |
| 1066 | } |
| 1067 | let id = self.id; |
| 1068 | let state = self.dfa.state(id); |
| 1069 | self.id = S::from_usize(self.id.to_usize() + state.bytes()); |
| 1070 | Some((id, state)) |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | /// A representation of a sparse DFA state that can be cheaply materialized |
| 1075 | /// from a state identifier. |
| 1076 | #[derive(Clone)] |
| 1077 | struct State<'a, S: StateID = usize> { |
| 1078 | /// The state identifier representation used by the DFA from which this |
| 1079 | /// state was extracted. Since our transition table is compacted in a |
| 1080 | /// &[u8], we don't actually use the state ID type parameter explicitly |
| 1081 | /// anywhere, so we fake it. This prevents callers from using an incorrect |
| 1082 | /// state ID representation to read from this state. |
| 1083 | _state_id_repr: PhantomData<S>, |
| 1084 | /// The number of transitions in this state. |
| 1085 | ntrans: usize, |
| 1086 | /// Pairs of input ranges, where there is one pair for each transition. |
| 1087 | /// Each pair specifies an inclusive start and end byte range for the |
| 1088 | /// corresponding transition. |
| 1089 | input_ranges: &'a [u8], |
| 1090 | /// Transitions to the next state. This slice contains native endian |
| 1091 | /// encoded state identifiers, with `S` as the representation. Thus, there |
| 1092 | /// are `ntrans * size_of::<S>()` bytes in this slice. |
| 1093 | next: &'a [u8], |
| 1094 | } |
| 1095 | |
| 1096 | impl<'a, S: StateID> State<'a, S> { |
| 1097 | /// Searches for the next transition given an input byte. If no such |
| 1098 | /// transition could be found, then a dead state is returned. |
| 1099 | fn next(&self, input: u8) -> S { |
| 1100 | // This straight linear search was observed to be much better than |
| 1101 | // binary search on ASCII haystacks, likely because a binary search |
| 1102 | // visits the ASCII case last but a linear search sees it first. A |
| 1103 | // binary search does do a little better on non-ASCII haystacks, but |
| 1104 | // not by much. There might be a better trade off lurking here. |
| 1105 | for i in 0..self.ntrans { |
| 1106 | let (start, end) = self.range(i); |
| 1107 | if start <= input && input <= end { |
| 1108 | return self.next_at(i); |
| 1109 | } |
| 1110 | // We could bail early with an extra branch: if input < b1, then |
| 1111 | // we know we'll never find a matching transition. Interestingly, |
| 1112 | // this extra branch seems to not help performance, or will even |
| 1113 | // hurt it. It's likely very dependent on the DFA itself and what |
| 1114 | // is being searched. |
| 1115 | } |
| 1116 | dead_id() |
| 1117 | } |
| 1118 | |
| 1119 | /// Returns the inclusive input byte range for the ith transition in this |
| 1120 | /// state. |
| 1121 | fn range(&self, i: usize) -> (u8, u8) { |
| 1122 | (self.input_ranges[i * 2], self.input_ranges[i * 2 + 1]) |
| 1123 | } |
| 1124 | |
| 1125 | /// Returns the next state for the ith transition in this state. |
| 1126 | fn next_at(&self, i: usize) -> S { |
| 1127 | S::read_bytes(&self.next[i * size_of::<S>()..]) |
| 1128 | } |
| 1129 | |
| 1130 | /// Return the total number of bytes that this state consumes in its |
| 1131 | /// encoded form. |
| 1132 | #[cfg(feature = "std")] |
| 1133 | fn bytes(&self) -> usize { |
| 1134 | 2 + (self.ntrans * 2) + (self.ntrans * size_of::<S>()) |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | #[cfg(feature = "std")] |
| 1139 | impl<'a, S: StateID> fmt::Debug for State<'a, S> { |
| 1140 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1141 | let mut transitions = vec![]; |
| 1142 | for i in 0..self.ntrans { |
| 1143 | let next = self.next_at(i); |
| 1144 | if next == dead_id() { |
| 1145 | continue; |
| 1146 | } |
| 1147 | |
| 1148 | let (start, end) = self.range(i); |
| 1149 | if start == end { |
| 1150 | transitions.push(format!( |
| 1151 | "{} => {}", |
| 1152 | escape(start), |
| 1153 | next.to_usize() |
| 1154 | )); |
| 1155 | } else { |
| 1156 | transitions.push(format!( |
| 1157 | "{}-{} => {}", |
| 1158 | escape(start), |
| 1159 | escape(end), |
| 1160 | next.to_usize(), |
| 1161 | )); |
| 1162 | } |
| 1163 | } |
| 1164 | write!(f, "{}", transitions.join(", ")) |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | /// A representation of a mutable sparse DFA state that can be cheaply |
| 1169 | /// materialized from a state identifier. |
| 1170 | #[cfg(feature = "std")] |
| 1171 | struct StateMut<'a, S: StateID = usize> { |
| 1172 | /// The state identifier representation used by the DFA from which this |
| 1173 | /// state was extracted. Since our transition table is compacted in a |
| 1174 | /// &[u8], we don't actually use the state ID type parameter explicitly |
| 1175 | /// anywhere, so we fake it. This prevents callers from using an incorrect |
| 1176 | /// state ID representation to read from this state. |
| 1177 | _state_id_repr: PhantomData<S>, |
| 1178 | /// The number of transitions in this state. |
| 1179 | ntrans: usize, |
| 1180 | /// Pairs of input ranges, where there is one pair for each transition. |
| 1181 | /// Each pair specifies an inclusive start and end byte range for the |
| 1182 | /// corresponding transition. |
| 1183 | input_ranges: &'a mut [u8], |
| 1184 | /// Transitions to the next state. This slice contains native endian |
| 1185 | /// encoded state identifiers, with `S` as the representation. Thus, there |
| 1186 | /// are `ntrans * size_of::<S>()` bytes in this slice. |
| 1187 | next: &'a mut [u8], |
| 1188 | } |
| 1189 | |
| 1190 | #[cfg(feature = "std")] |
| 1191 | impl<'a, S: StateID> StateMut<'a, S> { |
| 1192 | /// Sets the ith transition to the given state. |
| 1193 | fn set_next_at(&mut self, i: usize, next: S) { |
| 1194 | next.write_bytes(&mut self.next[i * size_of::<S>()..]); |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | #[cfg(feature = "std")] |
| 1199 | impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> { |
| 1200 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1201 | let state = State { |
| 1202 | _state_id_repr: self._state_id_repr, |
| 1203 | ntrans: self.ntrans, |
| 1204 | input_ranges: self.input_ranges, |
| 1205 | next: self.next, |
| 1206 | }; |
| 1207 | fmt::Debug::fmt(&state, f) |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | /// Return the given byte as its escaped string form. |
| 1212 | #[cfg(feature = "std")] |
| 1213 | fn escape(b: u8) -> String { |
| 1214 | use std::ascii; |
| 1215 | |
| 1216 | String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap() |
| 1217 | } |
| 1218 | |
| 1219 | /// A binary search routine specialized specifically to a sparse DFA state's |
| 1220 | /// transitions. Specifically, the transitions are defined as a set of pairs |
| 1221 | /// of input bytes that delineate an inclusive range of bytes. If the input |
| 1222 | /// byte is in the range, then the corresponding transition is a match. |
| 1223 | /// |
| 1224 | /// This binary search accepts a slice of these pairs and returns the position |
| 1225 | /// of the matching pair (the ith transition), or None if no matching pair |
| 1226 | /// could be found. |
| 1227 | /// |
| 1228 | /// Note that this routine is not currently used since it was observed to |
| 1229 | /// either decrease performance when searching ASCII, or did not provide enough |
| 1230 | /// of a boost on non-ASCII haystacks to be worth it. However, we leave it here |
| 1231 | /// for posterity in case we can find a way to use it. |
| 1232 | /// |
| 1233 | /// In theory, we could use the standard library's search routine if we could |
| 1234 | /// cast a `&[u8]` to a `&[(u8, u8)]`, but I don't believe this is currently |
| 1235 | /// guaranteed to be safe and is thus UB (since I don't think the in-memory |
| 1236 | /// representation of `(u8, u8)` has been nailed down). |
| 1237 | #[inline(always)] |
| 1238 | #[allow(dead_code)] |
| 1239 | fn binary_search_ranges(ranges: &[u8], needle: u8) -> Option<usize> { |
| 1240 | debug_assert!(ranges.len() % 2 == 0, "ranges must have even length"); |
| 1241 | debug_assert!(ranges.len() <= 512, "ranges should be short"); |
| 1242 | |
| 1243 | let (mut left, mut right) = (0, ranges.len() / 2); |
| 1244 | while left < right { |
| 1245 | let mid = (left + right) / 2; |
| 1246 | let (b1, b2) = (ranges[mid * 2], ranges[mid * 2 + 1]); |
| 1247 | if needle < b1 { |
| 1248 | right = mid; |
| 1249 | } else if needle > b2 { |
| 1250 | left = mid + 1; |
| 1251 | } else { |
| 1252 | return Some(mid); |
| 1253 | } |
| 1254 | } |
| 1255 | None |
| 1256 | } |