Chih-Hung Hsieh | 048fc04 | 2020-04-16 10:44:22 -0700 | [diff] [blame] | 1 | /*! |
| 2 | Defines a high-level intermediate representation for regular expressions. |
| 3 | */ |
| 4 | use std::char; |
| 5 | use std::cmp; |
| 6 | use std::error; |
| 7 | use std::fmt; |
| 8 | use std::result; |
| 9 | use std::u8; |
| 10 | |
| 11 | use ast::Span; |
| 12 | use hir::interval::{Interval, IntervalSet, IntervalSetIter}; |
| 13 | use unicode; |
| 14 | |
| 15 | pub use hir::visitor::{visit, Visitor}; |
| 16 | pub use unicode::CaseFoldError; |
| 17 | |
| 18 | mod interval; |
| 19 | pub mod literal; |
| 20 | pub mod print; |
| 21 | pub mod translate; |
| 22 | mod visitor; |
| 23 | |
| 24 | /// An error that can occur while translating an `Ast` to a `Hir`. |
| 25 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 26 | pub struct Error { |
| 27 | /// The kind of error. |
| 28 | kind: ErrorKind, |
| 29 | /// The original pattern that the translator's Ast was parsed from. Every |
| 30 | /// span in an error is a valid range into this string. |
| 31 | pattern: String, |
| 32 | /// The span of this error, derived from the Ast given to the translator. |
| 33 | span: Span, |
| 34 | } |
| 35 | |
| 36 | impl Error { |
| 37 | /// Return the type of this error. |
| 38 | pub fn kind(&self) -> &ErrorKind { |
| 39 | &self.kind |
| 40 | } |
| 41 | |
| 42 | /// The original pattern string in which this error occurred. |
| 43 | /// |
| 44 | /// Every span reported by this error is reported in terms of this string. |
| 45 | pub fn pattern(&self) -> &str { |
| 46 | &self.pattern |
| 47 | } |
| 48 | |
| 49 | /// Return the span at which this error occurred. |
| 50 | pub fn span(&self) -> &Span { |
| 51 | &self.span |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | /// The type of an error that occurred while building an `Hir`. |
| 56 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 57 | pub enum ErrorKind { |
| 58 | /// This error occurs when a Unicode feature is used when Unicode |
| 59 | /// support is disabled. For example `(?-u:\pL)` would trigger this error. |
| 60 | UnicodeNotAllowed, |
| 61 | /// This error occurs when translating a pattern that could match a byte |
| 62 | /// sequence that isn't UTF-8 and `allow_invalid_utf8` was disabled. |
| 63 | InvalidUtf8, |
| 64 | /// This occurs when an unrecognized Unicode property name could not |
| 65 | /// be found. |
| 66 | UnicodePropertyNotFound, |
| 67 | /// This occurs when an unrecognized Unicode property value could not |
| 68 | /// be found. |
| 69 | UnicodePropertyValueNotFound, |
| 70 | /// This occurs when a Unicode-aware Perl character class (`\w`, `\s` or |
| 71 | /// `\d`) could not be found. This can occur when the `unicode-perl` |
| 72 | /// crate feature is not enabled. |
| 73 | UnicodePerlClassNotFound, |
| 74 | /// This occurs when the Unicode simple case mapping tables are not |
| 75 | /// available, and the regular expression required Unicode aware case |
| 76 | /// insensitivity. |
| 77 | UnicodeCaseUnavailable, |
| 78 | /// This occurs when the translator attempts to construct a character class |
| 79 | /// that is empty. |
| 80 | /// |
| 81 | /// Note that this restriction in the translator may be removed in the |
| 82 | /// future. |
| 83 | EmptyClassNotAllowed, |
| 84 | /// Hints that destructuring should not be exhaustive. |
| 85 | /// |
| 86 | /// This enum may grow additional variants, so this makes sure clients |
| 87 | /// don't count on exhaustive matching. (Otherwise, adding a new variant |
| 88 | /// could break existing code.) |
| 89 | #[doc(hidden)] |
| 90 | __Nonexhaustive, |
| 91 | } |
| 92 | |
| 93 | impl ErrorKind { |
| 94 | // TODO: Remove this method entirely on the next breaking semver release. |
| 95 | #[allow(deprecated)] |
| 96 | fn description(&self) -> &str { |
| 97 | use self::ErrorKind::*; |
| 98 | match *self { |
| 99 | UnicodeNotAllowed => "Unicode not allowed here", |
| 100 | InvalidUtf8 => "pattern can match invalid UTF-8", |
| 101 | UnicodePropertyNotFound => "Unicode property not found", |
| 102 | UnicodePropertyValueNotFound => "Unicode property value not found", |
| 103 | UnicodePerlClassNotFound => { |
| 104 | "Unicode-aware Perl class not found \ |
| 105 | (make sure the unicode-perl feature is enabled)" |
| 106 | } |
| 107 | UnicodeCaseUnavailable => { |
| 108 | "Unicode-aware case insensitivity matching is not available \ |
| 109 | (make sure the unicode-case feature is enabled)" |
| 110 | } |
| 111 | EmptyClassNotAllowed => "empty character classes are not allowed", |
| 112 | __Nonexhaustive => unreachable!(), |
| 113 | } |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | impl error::Error for Error { |
| 118 | // TODO: Remove this method entirely on the next breaking semver release. |
| 119 | #[allow(deprecated)] |
| 120 | fn description(&self) -> &str { |
| 121 | self.kind.description() |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | impl fmt::Display for Error { |
| 126 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 127 | ::error::Formatter::from(self).fmt(f) |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | impl fmt::Display for ErrorKind { |
| 132 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 133 | // TODO: Remove this on the next breaking semver release. |
| 134 | #[allow(deprecated)] |
| 135 | f.write_str(self.description()) |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | /// A high-level intermediate representation (HIR) for a regular expression. |
| 140 | /// |
| 141 | /// The HIR of a regular expression represents an intermediate step between its |
| 142 | /// abstract syntax (a structured description of the concrete syntax) and |
| 143 | /// compiled byte codes. The purpose of HIR is to make regular expressions |
| 144 | /// easier to analyze. In particular, the AST is much more complex than the |
| 145 | /// HIR. For example, while an AST supports arbitrarily nested character |
| 146 | /// classes, the HIR will flatten all nested classes into a single set. The HIR |
| 147 | /// will also "compile away" every flag present in the concrete syntax. For |
| 148 | /// example, users of HIR expressions never need to worry about case folding; |
| 149 | /// it is handled automatically by the translator (e.g., by translating `(?i)A` |
| 150 | /// to `[aA]`). |
| 151 | /// |
| 152 | /// If the HIR was produced by a translator that disallows invalid UTF-8, then |
| 153 | /// the HIR is guaranteed to match UTF-8 exclusively. |
| 154 | /// |
| 155 | /// This type defines its own destructor that uses constant stack space and |
| 156 | /// heap space proportional to the size of the HIR. |
| 157 | /// |
| 158 | /// The specific type of an HIR expression can be accessed via its `kind` |
| 159 | /// or `into_kind` methods. This extra level of indirection exists for two |
| 160 | /// reasons: |
| 161 | /// |
| 162 | /// 1. Construction of an HIR expression *must* use the constructor methods |
| 163 | /// on this `Hir` type instead of building the `HirKind` values directly. |
| 164 | /// This permits construction to enforce invariants like "concatenations |
| 165 | /// always consist of two or more sub-expressions." |
| 166 | /// 2. Every HIR expression contains attributes that are defined inductively, |
| 167 | /// and can be computed cheaply during the construction process. For |
| 168 | /// example, one such attribute is whether the expression must match at the |
| 169 | /// beginning of the text. |
| 170 | /// |
| 171 | /// Also, an `Hir`'s `fmt::Display` implementation prints an HIR as a regular |
| 172 | /// expression pattern string, and uses constant stack space and heap space |
| 173 | /// proportional to the size of the `Hir`. |
| 174 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 175 | pub struct Hir { |
| 176 | /// The underlying HIR kind. |
| 177 | kind: HirKind, |
| 178 | /// Analysis info about this HIR, computed during construction. |
| 179 | info: HirInfo, |
| 180 | } |
| 181 | |
| 182 | /// The kind of an arbitrary `Hir` expression. |
| 183 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 184 | pub enum HirKind { |
| 185 | /// The empty regular expression, which matches everything, including the |
| 186 | /// empty string. |
| 187 | Empty, |
| 188 | /// A single literal character that matches exactly this character. |
| 189 | Literal(Literal), |
| 190 | /// A single character class that matches any of the characters in the |
| 191 | /// class. A class can either consist of Unicode scalar values as |
| 192 | /// characters, or it can use bytes. |
| 193 | Class(Class), |
| 194 | /// An anchor assertion. An anchor assertion match always has zero length. |
| 195 | Anchor(Anchor), |
| 196 | /// A word boundary assertion, which may or may not be Unicode aware. A |
| 197 | /// word boundary assertion match always has zero length. |
| 198 | WordBoundary(WordBoundary), |
| 199 | /// A repetition operation applied to a child expression. |
| 200 | Repetition(Repetition), |
| 201 | /// A possibly capturing group, which contains a child expression. |
| 202 | Group(Group), |
| 203 | /// A concatenation of expressions. A concatenation always has at least two |
| 204 | /// child expressions. |
| 205 | /// |
| 206 | /// A concatenation matches only if each of its child expression matches |
| 207 | /// one after the other. |
| 208 | Concat(Vec<Hir>), |
| 209 | /// An alternation of expressions. An alternation always has at least two |
| 210 | /// child expressions. |
| 211 | /// |
| 212 | /// An alternation matches only if at least one of its child expression |
| 213 | /// matches. If multiple expressions match, then the leftmost is preferred. |
| 214 | Alternation(Vec<Hir>), |
| 215 | } |
| 216 | |
| 217 | impl Hir { |
| 218 | /// Returns a reference to the underlying HIR kind. |
| 219 | pub fn kind(&self) -> &HirKind { |
| 220 | &self.kind |
| 221 | } |
| 222 | |
| 223 | /// Consumes ownership of this HIR expression and returns its underlying |
| 224 | /// `HirKind`. |
| 225 | pub fn into_kind(mut self) -> HirKind { |
| 226 | use std::mem; |
| 227 | mem::replace(&mut self.kind, HirKind::Empty) |
| 228 | } |
| 229 | |
| 230 | /// Returns an empty HIR expression. |
| 231 | /// |
| 232 | /// An empty HIR expression always matches, including the empty string. |
| 233 | pub fn empty() -> Hir { |
| 234 | let mut info = HirInfo::new(); |
| 235 | info.set_always_utf8(true); |
| 236 | info.set_all_assertions(true); |
| 237 | info.set_anchored_start(false); |
| 238 | info.set_anchored_end(false); |
| 239 | info.set_line_anchored_start(false); |
| 240 | info.set_line_anchored_end(false); |
| 241 | info.set_any_anchored_start(false); |
| 242 | info.set_any_anchored_end(false); |
| 243 | info.set_match_empty(true); |
Haibo Huang | 5b6434b | 2020-05-28 20:14:37 -0700 | [diff] [blame^] | 244 | info.set_literal(false); |
| 245 | info.set_alternation_literal(false); |
Chih-Hung Hsieh | 048fc04 | 2020-04-16 10:44:22 -0700 | [diff] [blame] | 246 | Hir { kind: HirKind::Empty, info: info } |
| 247 | } |
| 248 | |
| 249 | /// Creates a literal HIR expression. |
| 250 | /// |
| 251 | /// If the given literal has a `Byte` variant with an ASCII byte, then this |
| 252 | /// method panics. This enforces the invariant that `Byte` variants are |
| 253 | /// only used to express matching of invalid UTF-8. |
| 254 | pub fn literal(lit: Literal) -> Hir { |
| 255 | if let Literal::Byte(b) = lit { |
| 256 | assert!(b > 0x7F); |
| 257 | } |
| 258 | |
| 259 | let mut info = HirInfo::new(); |
| 260 | info.set_always_utf8(lit.is_unicode()); |
| 261 | info.set_all_assertions(false); |
| 262 | info.set_anchored_start(false); |
| 263 | info.set_anchored_end(false); |
| 264 | info.set_line_anchored_start(false); |
| 265 | info.set_line_anchored_end(false); |
| 266 | info.set_any_anchored_start(false); |
| 267 | info.set_any_anchored_end(false); |
| 268 | info.set_match_empty(false); |
| 269 | info.set_literal(true); |
| 270 | info.set_alternation_literal(true); |
| 271 | Hir { kind: HirKind::Literal(lit), info: info } |
| 272 | } |
| 273 | |
| 274 | /// Creates a class HIR expression. |
| 275 | pub fn class(class: Class) -> Hir { |
| 276 | let mut info = HirInfo::new(); |
| 277 | info.set_always_utf8(class.is_always_utf8()); |
| 278 | info.set_all_assertions(false); |
| 279 | info.set_anchored_start(false); |
| 280 | info.set_anchored_end(false); |
| 281 | info.set_line_anchored_start(false); |
| 282 | info.set_line_anchored_end(false); |
| 283 | info.set_any_anchored_start(false); |
| 284 | info.set_any_anchored_end(false); |
| 285 | info.set_match_empty(false); |
| 286 | info.set_literal(false); |
| 287 | info.set_alternation_literal(false); |
| 288 | Hir { kind: HirKind::Class(class), info: info } |
| 289 | } |
| 290 | |
| 291 | /// Creates an anchor assertion HIR expression. |
| 292 | pub fn anchor(anchor: Anchor) -> Hir { |
| 293 | let mut info = HirInfo::new(); |
| 294 | info.set_always_utf8(true); |
| 295 | info.set_all_assertions(true); |
| 296 | info.set_anchored_start(false); |
| 297 | info.set_anchored_end(false); |
| 298 | info.set_line_anchored_start(false); |
| 299 | info.set_line_anchored_end(false); |
| 300 | info.set_any_anchored_start(false); |
| 301 | info.set_any_anchored_end(false); |
| 302 | info.set_match_empty(true); |
| 303 | info.set_literal(false); |
| 304 | info.set_alternation_literal(false); |
| 305 | if let Anchor::StartText = anchor { |
| 306 | info.set_anchored_start(true); |
| 307 | info.set_line_anchored_start(true); |
| 308 | info.set_any_anchored_start(true); |
| 309 | } |
| 310 | if let Anchor::EndText = anchor { |
| 311 | info.set_anchored_end(true); |
| 312 | info.set_line_anchored_end(true); |
| 313 | info.set_any_anchored_end(true); |
| 314 | } |
| 315 | if let Anchor::StartLine = anchor { |
| 316 | info.set_line_anchored_start(true); |
| 317 | } |
| 318 | if let Anchor::EndLine = anchor { |
| 319 | info.set_line_anchored_end(true); |
| 320 | } |
| 321 | Hir { kind: HirKind::Anchor(anchor), info: info } |
| 322 | } |
| 323 | |
| 324 | /// Creates a word boundary assertion HIR expression. |
| 325 | pub fn word_boundary(word_boundary: WordBoundary) -> Hir { |
| 326 | let mut info = HirInfo::new(); |
| 327 | info.set_always_utf8(true); |
| 328 | info.set_all_assertions(true); |
| 329 | info.set_anchored_start(false); |
| 330 | info.set_anchored_end(false); |
| 331 | info.set_line_anchored_start(false); |
| 332 | info.set_line_anchored_end(false); |
| 333 | info.set_any_anchored_start(false); |
| 334 | info.set_any_anchored_end(false); |
| 335 | info.set_literal(false); |
| 336 | info.set_alternation_literal(false); |
| 337 | // A negated word boundary matches the empty string, but a normal |
| 338 | // word boundary does not! |
| 339 | info.set_match_empty(word_boundary.is_negated()); |
| 340 | // Negated ASCII word boundaries can match invalid UTF-8. |
| 341 | if let WordBoundary::AsciiNegate = word_boundary { |
| 342 | info.set_always_utf8(false); |
| 343 | } |
| 344 | Hir { kind: HirKind::WordBoundary(word_boundary), info: info } |
| 345 | } |
| 346 | |
| 347 | /// Creates a repetition HIR expression. |
| 348 | pub fn repetition(rep: Repetition) -> Hir { |
| 349 | let mut info = HirInfo::new(); |
| 350 | info.set_always_utf8(rep.hir.is_always_utf8()); |
| 351 | info.set_all_assertions(rep.hir.is_all_assertions()); |
| 352 | // If this operator can match the empty string, then it can never |
| 353 | // be anchored. |
| 354 | info.set_anchored_start( |
| 355 | !rep.is_match_empty() && rep.hir.is_anchored_start(), |
| 356 | ); |
| 357 | info.set_anchored_end( |
| 358 | !rep.is_match_empty() && rep.hir.is_anchored_end(), |
| 359 | ); |
| 360 | info.set_line_anchored_start( |
| 361 | !rep.is_match_empty() && rep.hir.is_anchored_start(), |
| 362 | ); |
| 363 | info.set_line_anchored_end( |
| 364 | !rep.is_match_empty() && rep.hir.is_anchored_end(), |
| 365 | ); |
| 366 | info.set_any_anchored_start(rep.hir.is_any_anchored_start()); |
| 367 | info.set_any_anchored_end(rep.hir.is_any_anchored_end()); |
| 368 | info.set_match_empty(rep.is_match_empty() || rep.hir.is_match_empty()); |
| 369 | info.set_literal(false); |
| 370 | info.set_alternation_literal(false); |
| 371 | Hir { kind: HirKind::Repetition(rep), info: info } |
| 372 | } |
| 373 | |
| 374 | /// Creates a group HIR expression. |
| 375 | pub fn group(group: Group) -> Hir { |
| 376 | let mut info = HirInfo::new(); |
| 377 | info.set_always_utf8(group.hir.is_always_utf8()); |
| 378 | info.set_all_assertions(group.hir.is_all_assertions()); |
| 379 | info.set_anchored_start(group.hir.is_anchored_start()); |
| 380 | info.set_anchored_end(group.hir.is_anchored_end()); |
| 381 | info.set_line_anchored_start(group.hir.is_line_anchored_start()); |
| 382 | info.set_line_anchored_end(group.hir.is_line_anchored_end()); |
| 383 | info.set_any_anchored_start(group.hir.is_any_anchored_start()); |
| 384 | info.set_any_anchored_end(group.hir.is_any_anchored_end()); |
| 385 | info.set_match_empty(group.hir.is_match_empty()); |
| 386 | info.set_literal(false); |
| 387 | info.set_alternation_literal(false); |
| 388 | Hir { kind: HirKind::Group(group), info: info } |
| 389 | } |
| 390 | |
| 391 | /// Returns the concatenation of the given expressions. |
| 392 | /// |
| 393 | /// This flattens the concatenation as appropriate. |
| 394 | pub fn concat(mut exprs: Vec<Hir>) -> Hir { |
| 395 | match exprs.len() { |
| 396 | 0 => Hir::empty(), |
| 397 | 1 => exprs.pop().unwrap(), |
| 398 | _ => { |
| 399 | let mut info = HirInfo::new(); |
| 400 | info.set_always_utf8(true); |
| 401 | info.set_all_assertions(true); |
| 402 | info.set_any_anchored_start(false); |
| 403 | info.set_any_anchored_end(false); |
| 404 | info.set_match_empty(true); |
| 405 | info.set_literal(true); |
| 406 | info.set_alternation_literal(true); |
| 407 | |
| 408 | // Some attributes require analyzing all sub-expressions. |
| 409 | for e in &exprs { |
| 410 | let x = info.is_always_utf8() && e.is_always_utf8(); |
| 411 | info.set_always_utf8(x); |
| 412 | |
| 413 | let x = info.is_all_assertions() && e.is_all_assertions(); |
| 414 | info.set_all_assertions(x); |
| 415 | |
| 416 | let x = info.is_any_anchored_start() |
| 417 | || e.is_any_anchored_start(); |
| 418 | info.set_any_anchored_start(x); |
| 419 | |
| 420 | let x = |
| 421 | info.is_any_anchored_end() || e.is_any_anchored_end(); |
| 422 | info.set_any_anchored_end(x); |
| 423 | |
| 424 | let x = info.is_match_empty() && e.is_match_empty(); |
| 425 | info.set_match_empty(x); |
| 426 | |
| 427 | let x = info.is_literal() && e.is_literal(); |
| 428 | info.set_literal(x); |
| 429 | |
| 430 | let x = info.is_alternation_literal() |
| 431 | && e.is_alternation_literal(); |
| 432 | info.set_alternation_literal(x); |
| 433 | } |
| 434 | // Anchored attributes require something slightly more |
| 435 | // sophisticated. Normally, WLOG, to determine whether an |
| 436 | // expression is anchored to the start, we'd only need to check |
| 437 | // the first expression of a concatenation. However, |
| 438 | // expressions like `$\b^` are still anchored to the start, |
| 439 | // but the first expression in the concatenation *isn't* |
| 440 | // anchored to the start. So the "first" expression to look at |
| 441 | // is actually one that is either not an assertion or is |
| 442 | // specifically the StartText assertion. |
| 443 | info.set_anchored_start( |
| 444 | exprs |
| 445 | .iter() |
| 446 | .take_while(|e| { |
| 447 | e.is_anchored_start() || e.is_all_assertions() |
| 448 | }) |
| 449 | .any(|e| e.is_anchored_start()), |
| 450 | ); |
| 451 | // Similarly for the end anchor, but in reverse. |
| 452 | info.set_anchored_end( |
| 453 | exprs |
| 454 | .iter() |
| 455 | .rev() |
| 456 | .take_while(|e| { |
| 457 | e.is_anchored_end() || e.is_all_assertions() |
| 458 | }) |
| 459 | .any(|e| e.is_anchored_end()), |
| 460 | ); |
| 461 | // Repeat the process for line anchors. |
| 462 | info.set_line_anchored_start( |
| 463 | exprs |
| 464 | .iter() |
| 465 | .take_while(|e| { |
| 466 | e.is_line_anchored_start() || e.is_all_assertions() |
| 467 | }) |
| 468 | .any(|e| e.is_line_anchored_start()), |
| 469 | ); |
| 470 | info.set_line_anchored_end( |
| 471 | exprs |
| 472 | .iter() |
| 473 | .rev() |
| 474 | .take_while(|e| { |
| 475 | e.is_line_anchored_end() || e.is_all_assertions() |
| 476 | }) |
| 477 | .any(|e| e.is_line_anchored_end()), |
| 478 | ); |
| 479 | Hir { kind: HirKind::Concat(exprs), info: info } |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | /// Returns the alternation of the given expressions. |
| 485 | /// |
| 486 | /// This flattens the alternation as appropriate. |
| 487 | pub fn alternation(mut exprs: Vec<Hir>) -> Hir { |
| 488 | match exprs.len() { |
| 489 | 0 => Hir::empty(), |
| 490 | 1 => exprs.pop().unwrap(), |
| 491 | _ => { |
| 492 | let mut info = HirInfo::new(); |
| 493 | info.set_always_utf8(true); |
| 494 | info.set_all_assertions(true); |
| 495 | info.set_anchored_start(true); |
| 496 | info.set_anchored_end(true); |
| 497 | info.set_line_anchored_start(true); |
| 498 | info.set_line_anchored_end(true); |
| 499 | info.set_any_anchored_start(false); |
| 500 | info.set_any_anchored_end(false); |
| 501 | info.set_match_empty(false); |
| 502 | info.set_literal(false); |
| 503 | info.set_alternation_literal(true); |
| 504 | |
| 505 | // Some attributes require analyzing all sub-expressions. |
| 506 | for e in &exprs { |
| 507 | let x = info.is_always_utf8() && e.is_always_utf8(); |
| 508 | info.set_always_utf8(x); |
| 509 | |
| 510 | let x = info.is_all_assertions() && e.is_all_assertions(); |
| 511 | info.set_all_assertions(x); |
| 512 | |
| 513 | let x = info.is_anchored_start() && e.is_anchored_start(); |
| 514 | info.set_anchored_start(x); |
| 515 | |
| 516 | let x = info.is_anchored_end() && e.is_anchored_end(); |
| 517 | info.set_anchored_end(x); |
| 518 | |
| 519 | let x = info.is_line_anchored_start() |
| 520 | && e.is_line_anchored_start(); |
| 521 | info.set_line_anchored_start(x); |
| 522 | |
| 523 | let x = info.is_line_anchored_end() |
| 524 | && e.is_line_anchored_end(); |
| 525 | info.set_line_anchored_end(x); |
| 526 | |
| 527 | let x = info.is_any_anchored_start() |
| 528 | || e.is_any_anchored_start(); |
| 529 | info.set_any_anchored_start(x); |
| 530 | |
| 531 | let x = |
| 532 | info.is_any_anchored_end() || e.is_any_anchored_end(); |
| 533 | info.set_any_anchored_end(x); |
| 534 | |
| 535 | let x = info.is_match_empty() || e.is_match_empty(); |
| 536 | info.set_match_empty(x); |
| 537 | |
| 538 | let x = info.is_alternation_literal() && e.is_literal(); |
| 539 | info.set_alternation_literal(x); |
| 540 | } |
| 541 | Hir { kind: HirKind::Alternation(exprs), info: info } |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | /// Build an HIR expression for `.`. |
| 547 | /// |
| 548 | /// A `.` expression matches any character except for `\n`. To build an |
| 549 | /// expression that matches any character, including `\n`, use the `any` |
| 550 | /// method. |
| 551 | /// |
| 552 | /// If `bytes` is `true`, then this assumes characters are limited to a |
| 553 | /// single byte. |
| 554 | pub fn dot(bytes: bool) -> Hir { |
| 555 | if bytes { |
| 556 | let mut cls = ClassBytes::empty(); |
| 557 | cls.push(ClassBytesRange::new(b'\0', b'\x09')); |
| 558 | cls.push(ClassBytesRange::new(b'\x0B', b'\xFF')); |
| 559 | Hir::class(Class::Bytes(cls)) |
| 560 | } else { |
| 561 | let mut cls = ClassUnicode::empty(); |
| 562 | cls.push(ClassUnicodeRange::new('\0', '\x09')); |
| 563 | cls.push(ClassUnicodeRange::new('\x0B', '\u{10FFFF}')); |
| 564 | Hir::class(Class::Unicode(cls)) |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | /// Build an HIR expression for `(?s).`. |
| 569 | /// |
| 570 | /// A `(?s).` expression matches any character, including `\n`. To build an |
| 571 | /// expression that matches any character except for `\n`, then use the |
| 572 | /// `dot` method. |
| 573 | /// |
| 574 | /// If `bytes` is `true`, then this assumes characters are limited to a |
| 575 | /// single byte. |
| 576 | pub fn any(bytes: bool) -> Hir { |
| 577 | if bytes { |
| 578 | let mut cls = ClassBytes::empty(); |
| 579 | cls.push(ClassBytesRange::new(b'\0', b'\xFF')); |
| 580 | Hir::class(Class::Bytes(cls)) |
| 581 | } else { |
| 582 | let mut cls = ClassUnicode::empty(); |
| 583 | cls.push(ClassUnicodeRange::new('\0', '\u{10FFFF}')); |
| 584 | Hir::class(Class::Unicode(cls)) |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | /// Return true if and only if this HIR will always match valid UTF-8. |
| 589 | /// |
| 590 | /// When this returns false, then it is possible for this HIR expression |
| 591 | /// to match invalid UTF-8. |
| 592 | pub fn is_always_utf8(&self) -> bool { |
| 593 | self.info.is_always_utf8() |
| 594 | } |
| 595 | |
| 596 | /// Returns true if and only if this entire HIR expression is made up of |
| 597 | /// zero-width assertions. |
| 598 | /// |
| 599 | /// This includes expressions like `^$\b\A\z` and even `((\b)+())*^`, but |
| 600 | /// not `^a`. |
| 601 | pub fn is_all_assertions(&self) -> bool { |
| 602 | self.info.is_all_assertions() |
| 603 | } |
| 604 | |
| 605 | /// Return true if and only if this HIR is required to match from the |
| 606 | /// beginning of text. This includes expressions like `^foo`, `^(foo|bar)`, |
| 607 | /// `^foo|^bar` but not `^foo|bar`. |
| 608 | pub fn is_anchored_start(&self) -> bool { |
| 609 | self.info.is_anchored_start() |
| 610 | } |
| 611 | |
| 612 | /// Return true if and only if this HIR is required to match at the end |
| 613 | /// of text. This includes expressions like `foo$`, `(foo|bar)$`, |
| 614 | /// `foo$|bar$` but not `foo$|bar`. |
| 615 | pub fn is_anchored_end(&self) -> bool { |
| 616 | self.info.is_anchored_end() |
| 617 | } |
| 618 | |
| 619 | /// Return true if and only if this HIR is required to match from the |
| 620 | /// beginning of text or the beginning of a line. This includes expressions |
| 621 | /// like `^foo`, `(?m)^foo`, `^(foo|bar)`, `^(foo|bar)`, `(?m)^foo|^bar` |
| 622 | /// but not `^foo|bar` or `(?m)^foo|bar`. |
| 623 | /// |
| 624 | /// Note that if `is_anchored_start` is `true`, then |
| 625 | /// `is_line_anchored_start` will also be `true`. The reverse implication |
| 626 | /// is not true. For example, `(?m)^foo` is line anchored, but not |
| 627 | /// `is_anchored_start`. |
| 628 | pub fn is_line_anchored_start(&self) -> bool { |
| 629 | self.info.is_line_anchored_start() |
| 630 | } |
| 631 | |
| 632 | /// Return true if and only if this HIR is required to match at the |
| 633 | /// end of text or the end of a line. This includes expressions like |
| 634 | /// `foo$`, `(?m)foo$`, `(foo|bar)$`, `(?m)(foo|bar)$`, `foo$|bar$`, |
| 635 | /// `(?m)(foo|bar)$`, but not `foo$|bar` or `(?m)foo$|bar`. |
| 636 | /// |
| 637 | /// Note that if `is_anchored_end` is `true`, then |
| 638 | /// `is_line_anchored_end` will also be `true`. The reverse implication |
| 639 | /// is not true. For example, `(?m)foo$` is line anchored, but not |
| 640 | /// `is_anchored_end`. |
| 641 | pub fn is_line_anchored_end(&self) -> bool { |
| 642 | self.info.is_line_anchored_end() |
| 643 | } |
| 644 | |
| 645 | /// Return true if and only if this HIR contains any sub-expression that |
| 646 | /// is required to match at the beginning of text. Specifically, this |
| 647 | /// returns true if the `^` symbol (when multiline mode is disabled) or the |
| 648 | /// `\A` escape appear anywhere in the regex. |
| 649 | pub fn is_any_anchored_start(&self) -> bool { |
| 650 | self.info.is_any_anchored_start() |
| 651 | } |
| 652 | |
| 653 | /// Return true if and only if this HIR contains any sub-expression that is |
| 654 | /// required to match at the end of text. Specifically, this returns true |
| 655 | /// if the `$` symbol (when multiline mode is disabled) or the `\z` escape |
| 656 | /// appear anywhere in the regex. |
| 657 | pub fn is_any_anchored_end(&self) -> bool { |
| 658 | self.info.is_any_anchored_end() |
| 659 | } |
| 660 | |
| 661 | /// Return true if and only if the empty string is part of the language |
| 662 | /// matched by this regular expression. |
| 663 | /// |
| 664 | /// This includes `a*`, `a?b*`, `a{0}`, `()`, `()+`, `^$`, `a|b?`, `\B`, |
| 665 | /// but not `a`, `a+` or `\b`. |
| 666 | pub fn is_match_empty(&self) -> bool { |
| 667 | self.info.is_match_empty() |
| 668 | } |
| 669 | |
| 670 | /// Return true if and only if this HIR is a simple literal. This is only |
| 671 | /// true when this HIR expression is either itself a `Literal` or a |
| 672 | /// concatenation of only `Literal`s. |
| 673 | /// |
Haibo Huang | 5b6434b | 2020-05-28 20:14:37 -0700 | [diff] [blame^] | 674 | /// For example, `f` and `foo` are literals, but `f+`, `(foo)`, `foo()`, |
| 675 | /// `` are not (even though that contain sub-expressions that are literals). |
Chih-Hung Hsieh | 048fc04 | 2020-04-16 10:44:22 -0700 | [diff] [blame] | 676 | pub fn is_literal(&self) -> bool { |
| 677 | self.info.is_literal() |
| 678 | } |
| 679 | |
| 680 | /// Return true if and only if this HIR is either a simple literal or an |
| 681 | /// alternation of simple literals. This is only |
| 682 | /// true when this HIR expression is either itself a `Literal` or a |
| 683 | /// concatenation of only `Literal`s or an alternation of only `Literal`s. |
| 684 | /// |
Haibo Huang | 5b6434b | 2020-05-28 20:14:37 -0700 | [diff] [blame^] | 685 | /// For example, `f`, `foo`, `a|b|c`, and `foo|bar|baz` are alternation |
| 686 | /// literals, but `f+`, `(foo)`, `foo()`, `` |
Chih-Hung Hsieh | 048fc04 | 2020-04-16 10:44:22 -0700 | [diff] [blame] | 687 | /// are not (even though that contain sub-expressions that are literals). |
| 688 | pub fn is_alternation_literal(&self) -> bool { |
| 689 | self.info.is_alternation_literal() |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | impl HirKind { |
| 694 | /// Return true if and only if this HIR is the empty regular expression. |
| 695 | /// |
| 696 | /// Note that this is not defined inductively. That is, it only tests if |
| 697 | /// this kind is the `Empty` variant. To get the inductive definition, |
| 698 | /// use the `is_match_empty` method on [`Hir`](struct.Hir.html). |
| 699 | pub fn is_empty(&self) -> bool { |
| 700 | match *self { |
| 701 | HirKind::Empty => true, |
| 702 | _ => false, |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | /// Returns true if and only if this kind has any (including possibly |
| 707 | /// empty) subexpressions. |
| 708 | pub fn has_subexprs(&self) -> bool { |
| 709 | match *self { |
| 710 | HirKind::Empty |
| 711 | | HirKind::Literal(_) |
| 712 | | HirKind::Class(_) |
| 713 | | HirKind::Anchor(_) |
| 714 | | HirKind::WordBoundary(_) => false, |
| 715 | HirKind::Group(_) |
| 716 | | HirKind::Repetition(_) |
| 717 | | HirKind::Concat(_) |
| 718 | | HirKind::Alternation(_) => true, |
| 719 | } |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | /// Print a display representation of this Hir. |
| 724 | /// |
| 725 | /// The result of this is a valid regular expression pattern string. |
| 726 | /// |
| 727 | /// This implementation uses constant stack space and heap space proportional |
| 728 | /// to the size of the `Hir`. |
| 729 | impl fmt::Display for Hir { |
| 730 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 731 | use hir::print::Printer; |
| 732 | Printer::new().print(self, f) |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | /// The high-level intermediate representation of a literal. |
| 737 | /// |
| 738 | /// A literal corresponds to a single character, where a character is either |
| 739 | /// defined by a Unicode scalar value or an arbitrary byte. Unicode characters |
| 740 | /// are preferred whenever possible. In particular, a `Byte` variant is only |
| 741 | /// ever produced when it could match invalid UTF-8. |
| 742 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 743 | pub enum Literal { |
| 744 | /// A single character represented by a Unicode scalar value. |
| 745 | Unicode(char), |
| 746 | /// A single character represented by an arbitrary byte. |
| 747 | Byte(u8), |
| 748 | } |
| 749 | |
| 750 | impl Literal { |
| 751 | /// Returns true if and only if this literal corresponds to a Unicode |
| 752 | /// scalar value. |
| 753 | pub fn is_unicode(&self) -> bool { |
| 754 | match *self { |
| 755 | Literal::Unicode(_) => true, |
| 756 | Literal::Byte(b) if b <= 0x7F => true, |
| 757 | Literal::Byte(_) => false, |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | /// The high-level intermediate representation of a character class. |
| 763 | /// |
| 764 | /// A character class corresponds to a set of characters. A character is either |
| 765 | /// defined by a Unicode scalar value or a byte. Unicode characters are used |
| 766 | /// by default, while bytes are used when Unicode mode (via the `u` flag) is |
| 767 | /// disabled. |
| 768 | /// |
| 769 | /// A character class, regardless of its character type, is represented by a |
| 770 | /// sequence of non-overlapping non-adjacent ranges of characters. |
| 771 | /// |
| 772 | /// Note that unlike [`Literal`](enum.Literal.html), a `Bytes` variant may |
| 773 | /// be produced even when it exclusively matches valid UTF-8. This is because |
| 774 | /// a `Bytes` variant represents an intention by the author of the regular |
| 775 | /// expression to disable Unicode mode, which in turn impacts the semantics of |
| 776 | /// case insensitive matching. For example, `(?i)k` and `(?i-u)k` will not |
| 777 | /// match the same set of strings. |
| 778 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 779 | pub enum Class { |
| 780 | /// A set of characters represented by Unicode scalar values. |
| 781 | Unicode(ClassUnicode), |
| 782 | /// A set of characters represented by arbitrary bytes (one byte per |
| 783 | /// character). |
| 784 | Bytes(ClassBytes), |
| 785 | } |
| 786 | |
| 787 | impl Class { |
| 788 | /// Apply Unicode simple case folding to this character class, in place. |
| 789 | /// The character class will be expanded to include all simple case folded |
| 790 | /// character variants. |
| 791 | /// |
| 792 | /// If this is a byte oriented character class, then this will be limited |
| 793 | /// to the ASCII ranges `A-Z` and `a-z`. |
| 794 | pub fn case_fold_simple(&mut self) { |
| 795 | match *self { |
| 796 | Class::Unicode(ref mut x) => x.case_fold_simple(), |
| 797 | Class::Bytes(ref mut x) => x.case_fold_simple(), |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | /// Negate this character class in place. |
| 802 | /// |
| 803 | /// After completion, this character class will contain precisely the |
| 804 | /// characters that weren't previously in the class. |
| 805 | pub fn negate(&mut self) { |
| 806 | match *self { |
| 807 | Class::Unicode(ref mut x) => x.negate(), |
| 808 | Class::Bytes(ref mut x) => x.negate(), |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | /// Returns true if and only if this character class will only ever match |
| 813 | /// valid UTF-8. |
| 814 | /// |
| 815 | /// A character class can match invalid UTF-8 only when the following |
| 816 | /// conditions are met: |
| 817 | /// |
| 818 | /// 1. The translator was configured to permit generating an expression |
| 819 | /// that can match invalid UTF-8. (By default, this is disabled.) |
| 820 | /// 2. Unicode mode (via the `u` flag) was disabled either in the concrete |
| 821 | /// syntax or in the parser builder. By default, Unicode mode is |
| 822 | /// enabled. |
| 823 | pub fn is_always_utf8(&self) -> bool { |
| 824 | match *self { |
| 825 | Class::Unicode(_) => true, |
| 826 | Class::Bytes(ref x) => x.is_all_ascii(), |
| 827 | } |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | /// A set of characters represented by Unicode scalar values. |
| 832 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 833 | pub struct ClassUnicode { |
| 834 | set: IntervalSet<ClassUnicodeRange>, |
| 835 | } |
| 836 | |
| 837 | impl ClassUnicode { |
| 838 | /// Create a new class from a sequence of ranges. |
| 839 | /// |
| 840 | /// The given ranges do not need to be in any specific order, and ranges |
| 841 | /// may overlap. |
| 842 | pub fn new<I>(ranges: I) -> ClassUnicode |
| 843 | where |
| 844 | I: IntoIterator<Item = ClassUnicodeRange>, |
| 845 | { |
| 846 | ClassUnicode { set: IntervalSet::new(ranges) } |
| 847 | } |
| 848 | |
| 849 | /// Create a new class with no ranges. |
| 850 | pub fn empty() -> ClassUnicode { |
| 851 | ClassUnicode::new(vec![]) |
| 852 | } |
| 853 | |
| 854 | /// Add a new range to this set. |
| 855 | pub fn push(&mut self, range: ClassUnicodeRange) { |
| 856 | self.set.push(range); |
| 857 | } |
| 858 | |
| 859 | /// Return an iterator over all ranges in this class. |
| 860 | /// |
| 861 | /// The iterator yields ranges in ascending order. |
| 862 | pub fn iter(&self) -> ClassUnicodeIter { |
| 863 | ClassUnicodeIter(self.set.iter()) |
| 864 | } |
| 865 | |
| 866 | /// Return the underlying ranges as a slice. |
| 867 | pub fn ranges(&self) -> &[ClassUnicodeRange] { |
| 868 | self.set.intervals() |
| 869 | } |
| 870 | |
| 871 | /// Expand this character class such that it contains all case folded |
| 872 | /// characters, according to Unicode's "simple" mapping. For example, if |
| 873 | /// this class consists of the range `a-z`, then applying case folding will |
| 874 | /// result in the class containing both the ranges `a-z` and `A-Z`. |
| 875 | /// |
| 876 | /// # Panics |
| 877 | /// |
| 878 | /// This routine panics when the case mapping data necessary for this |
| 879 | /// routine to complete is unavailable. This occurs when the `unicode-case` |
| 880 | /// feature is not enabled. |
| 881 | /// |
| 882 | /// Callers should prefer using `try_case_fold_simple` instead, which will |
| 883 | /// return an error instead of panicking. |
| 884 | pub fn case_fold_simple(&mut self) { |
| 885 | self.set |
| 886 | .case_fold_simple() |
| 887 | .expect("unicode-case feature must be enabled"); |
| 888 | } |
| 889 | |
| 890 | /// Expand this character class such that it contains all case folded |
| 891 | /// characters, according to Unicode's "simple" mapping. For example, if |
| 892 | /// this class consists of the range `a-z`, then applying case folding will |
| 893 | /// result in the class containing both the ranges `a-z` and `A-Z`. |
| 894 | /// |
| 895 | /// # Error |
| 896 | /// |
| 897 | /// This routine returns an error when the case mapping data necessary |
| 898 | /// for this routine to complete is unavailable. This occurs when the |
| 899 | /// `unicode-case` feature is not enabled. |
| 900 | pub fn try_case_fold_simple( |
| 901 | &mut self, |
| 902 | ) -> result::Result<(), CaseFoldError> { |
| 903 | self.set.case_fold_simple() |
| 904 | } |
| 905 | |
| 906 | /// Negate this character class. |
| 907 | /// |
| 908 | /// For all `c` where `c` is a Unicode scalar value, if `c` was in this |
| 909 | /// set, then it will not be in this set after negation. |
| 910 | pub fn negate(&mut self) { |
| 911 | self.set.negate(); |
| 912 | } |
| 913 | |
| 914 | /// Union this character class with the given character class, in place. |
| 915 | pub fn union(&mut self, other: &ClassUnicode) { |
| 916 | self.set.union(&other.set); |
| 917 | } |
| 918 | |
| 919 | /// Intersect this character class with the given character class, in |
| 920 | /// place. |
| 921 | pub fn intersect(&mut self, other: &ClassUnicode) { |
| 922 | self.set.intersect(&other.set); |
| 923 | } |
| 924 | |
| 925 | /// Subtract the given character class from this character class, in place. |
| 926 | pub fn difference(&mut self, other: &ClassUnicode) { |
| 927 | self.set.difference(&other.set); |
| 928 | } |
| 929 | |
| 930 | /// Compute the symmetric difference of the given character classes, in |
| 931 | /// place. |
| 932 | /// |
| 933 | /// This computes the symmetric difference of two character classes. This |
| 934 | /// removes all elements in this class that are also in the given class, |
| 935 | /// but all adds all elements from the given class that aren't in this |
| 936 | /// class. That is, the class will contain all elements in either class, |
| 937 | /// but will not contain any elements that are in both classes. |
| 938 | pub fn symmetric_difference(&mut self, other: &ClassUnicode) { |
| 939 | self.set.symmetric_difference(&other.set); |
| 940 | } |
| 941 | |
| 942 | /// Returns true if and only if this character class will either match |
| 943 | /// nothing or only ASCII bytes. Stated differently, this returns false |
| 944 | /// if and only if this class contains a non-ASCII codepoint. |
| 945 | pub fn is_all_ascii(&self) -> bool { |
| 946 | self.set.intervals().last().map_or(true, |r| r.end <= '\x7F') |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | /// An iterator over all ranges in a Unicode character class. |
| 951 | /// |
| 952 | /// The lifetime `'a` refers to the lifetime of the underlying class. |
| 953 | #[derive(Debug)] |
| 954 | pub struct ClassUnicodeIter<'a>(IntervalSetIter<'a, ClassUnicodeRange>); |
| 955 | |
| 956 | impl<'a> Iterator for ClassUnicodeIter<'a> { |
| 957 | type Item = &'a ClassUnicodeRange; |
| 958 | |
| 959 | fn next(&mut self) -> Option<&'a ClassUnicodeRange> { |
| 960 | self.0.next() |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | /// A single range of characters represented by Unicode scalar values. |
| 965 | /// |
| 966 | /// The range is closed. That is, the start and end of the range are included |
| 967 | /// in the range. |
| 968 | #[derive(Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] |
| 969 | pub struct ClassUnicodeRange { |
| 970 | start: char, |
| 971 | end: char, |
| 972 | } |
| 973 | |
| 974 | impl fmt::Debug for ClassUnicodeRange { |
| 975 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 976 | let start = if !self.start.is_whitespace() && !self.start.is_control() |
| 977 | { |
| 978 | self.start.to_string() |
| 979 | } else { |
| 980 | format!("0x{:X}", self.start as u32) |
| 981 | }; |
| 982 | let end = if !self.end.is_whitespace() && !self.end.is_control() { |
| 983 | self.end.to_string() |
| 984 | } else { |
| 985 | format!("0x{:X}", self.end as u32) |
| 986 | }; |
| 987 | f.debug_struct("ClassUnicodeRange") |
| 988 | .field("start", &start) |
| 989 | .field("end", &end) |
| 990 | .finish() |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | impl Interval for ClassUnicodeRange { |
| 995 | type Bound = char; |
| 996 | |
| 997 | #[inline] |
| 998 | fn lower(&self) -> char { |
| 999 | self.start |
| 1000 | } |
| 1001 | #[inline] |
| 1002 | fn upper(&self) -> char { |
| 1003 | self.end |
| 1004 | } |
| 1005 | #[inline] |
| 1006 | fn set_lower(&mut self, bound: char) { |
| 1007 | self.start = bound; |
| 1008 | } |
| 1009 | #[inline] |
| 1010 | fn set_upper(&mut self, bound: char) { |
| 1011 | self.end = bound; |
| 1012 | } |
| 1013 | |
| 1014 | /// Apply simple case folding to this Unicode scalar value range. |
| 1015 | /// |
| 1016 | /// Additional ranges are appended to the given vector. Canonical ordering |
| 1017 | /// is *not* maintained in the given vector. |
| 1018 | fn case_fold_simple( |
| 1019 | &self, |
| 1020 | ranges: &mut Vec<ClassUnicodeRange>, |
| 1021 | ) -> Result<(), unicode::CaseFoldError> { |
| 1022 | if !unicode::contains_simple_case_mapping(self.start, self.end)? { |
| 1023 | return Ok(()); |
| 1024 | } |
| 1025 | let start = self.start as u32; |
| 1026 | let end = (self.end as u32).saturating_add(1); |
| 1027 | let mut next_simple_cp = None; |
| 1028 | for cp in (start..end).filter_map(char::from_u32) { |
| 1029 | if next_simple_cp.map_or(false, |next| cp < next) { |
| 1030 | continue; |
| 1031 | } |
| 1032 | let it = match unicode::simple_fold(cp)? { |
| 1033 | Ok(it) => it, |
| 1034 | Err(next) => { |
| 1035 | next_simple_cp = next; |
| 1036 | continue; |
| 1037 | } |
| 1038 | }; |
| 1039 | for cp_folded in it { |
| 1040 | ranges.push(ClassUnicodeRange::new(cp_folded, cp_folded)); |
| 1041 | } |
| 1042 | } |
| 1043 | Ok(()) |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | impl ClassUnicodeRange { |
| 1048 | /// Create a new Unicode scalar value range for a character class. |
| 1049 | /// |
| 1050 | /// The returned range is always in a canonical form. That is, the range |
| 1051 | /// returned always satisfies the invariant that `start <= end`. |
| 1052 | pub fn new(start: char, end: char) -> ClassUnicodeRange { |
| 1053 | ClassUnicodeRange::create(start, end) |
| 1054 | } |
| 1055 | |
| 1056 | /// Return the start of this range. |
| 1057 | /// |
| 1058 | /// The start of a range is always less than or equal to the end of the |
| 1059 | /// range. |
| 1060 | pub fn start(&self) -> char { |
| 1061 | self.start |
| 1062 | } |
| 1063 | |
| 1064 | /// Return the end of this range. |
| 1065 | /// |
| 1066 | /// The end of a range is always greater than or equal to the start of the |
| 1067 | /// range. |
| 1068 | pub fn end(&self) -> char { |
| 1069 | self.end |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | /// A set of characters represented by arbitrary bytes (where one byte |
| 1074 | /// corresponds to one character). |
| 1075 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1076 | pub struct ClassBytes { |
| 1077 | set: IntervalSet<ClassBytesRange>, |
| 1078 | } |
| 1079 | |
| 1080 | impl ClassBytes { |
| 1081 | /// Create a new class from a sequence of ranges. |
| 1082 | /// |
| 1083 | /// The given ranges do not need to be in any specific order, and ranges |
| 1084 | /// may overlap. |
| 1085 | pub fn new<I>(ranges: I) -> ClassBytes |
| 1086 | where |
| 1087 | I: IntoIterator<Item = ClassBytesRange>, |
| 1088 | { |
| 1089 | ClassBytes { set: IntervalSet::new(ranges) } |
| 1090 | } |
| 1091 | |
| 1092 | /// Create a new class with no ranges. |
| 1093 | pub fn empty() -> ClassBytes { |
| 1094 | ClassBytes::new(vec![]) |
| 1095 | } |
| 1096 | |
| 1097 | /// Add a new range to this set. |
| 1098 | pub fn push(&mut self, range: ClassBytesRange) { |
| 1099 | self.set.push(range); |
| 1100 | } |
| 1101 | |
| 1102 | /// Return an iterator over all ranges in this class. |
| 1103 | /// |
| 1104 | /// The iterator yields ranges in ascending order. |
| 1105 | pub fn iter(&self) -> ClassBytesIter { |
| 1106 | ClassBytesIter(self.set.iter()) |
| 1107 | } |
| 1108 | |
| 1109 | /// Return the underlying ranges as a slice. |
| 1110 | pub fn ranges(&self) -> &[ClassBytesRange] { |
| 1111 | self.set.intervals() |
| 1112 | } |
| 1113 | |
| 1114 | /// Expand this character class such that it contains all case folded |
| 1115 | /// characters. For example, if this class consists of the range `a-z`, |
| 1116 | /// then applying case folding will result in the class containing both the |
| 1117 | /// ranges `a-z` and `A-Z`. |
| 1118 | /// |
| 1119 | /// Note that this only applies ASCII case folding, which is limited to the |
| 1120 | /// characters `a-z` and `A-Z`. |
| 1121 | pub fn case_fold_simple(&mut self) { |
| 1122 | self.set.case_fold_simple().expect("ASCII case folding never fails"); |
| 1123 | } |
| 1124 | |
| 1125 | /// Negate this byte class. |
| 1126 | /// |
| 1127 | /// For all `b` where `b` is a any byte, if `b` was in this set, then it |
| 1128 | /// will not be in this set after negation. |
| 1129 | pub fn negate(&mut self) { |
| 1130 | self.set.negate(); |
| 1131 | } |
| 1132 | |
| 1133 | /// Union this byte class with the given byte class, in place. |
| 1134 | pub fn union(&mut self, other: &ClassBytes) { |
| 1135 | self.set.union(&other.set); |
| 1136 | } |
| 1137 | |
| 1138 | /// Intersect this byte class with the given byte class, in place. |
| 1139 | pub fn intersect(&mut self, other: &ClassBytes) { |
| 1140 | self.set.intersect(&other.set); |
| 1141 | } |
| 1142 | |
| 1143 | /// Subtract the given byte class from this byte class, in place. |
| 1144 | pub fn difference(&mut self, other: &ClassBytes) { |
| 1145 | self.set.difference(&other.set); |
| 1146 | } |
| 1147 | |
| 1148 | /// Compute the symmetric difference of the given byte classes, in place. |
| 1149 | /// |
| 1150 | /// This computes the symmetric difference of two byte classes. This |
| 1151 | /// removes all elements in this class that are also in the given class, |
| 1152 | /// but all adds all elements from the given class that aren't in this |
| 1153 | /// class. That is, the class will contain all elements in either class, |
| 1154 | /// but will not contain any elements that are in both classes. |
| 1155 | pub fn symmetric_difference(&mut self, other: &ClassBytes) { |
| 1156 | self.set.symmetric_difference(&other.set); |
| 1157 | } |
| 1158 | |
| 1159 | /// Returns true if and only if this character class will either match |
| 1160 | /// nothing or only ASCII bytes. Stated differently, this returns false |
| 1161 | /// if and only if this class contains a non-ASCII byte. |
| 1162 | pub fn is_all_ascii(&self) -> bool { |
| 1163 | self.set.intervals().last().map_or(true, |r| r.end <= 0x7F) |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | /// An iterator over all ranges in a byte character class. |
| 1168 | /// |
| 1169 | /// The lifetime `'a` refers to the lifetime of the underlying class. |
| 1170 | #[derive(Debug)] |
| 1171 | pub struct ClassBytesIter<'a>(IntervalSetIter<'a, ClassBytesRange>); |
| 1172 | |
| 1173 | impl<'a> Iterator for ClassBytesIter<'a> { |
| 1174 | type Item = &'a ClassBytesRange; |
| 1175 | |
| 1176 | fn next(&mut self) -> Option<&'a ClassBytesRange> { |
| 1177 | self.0.next() |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | /// A single range of characters represented by arbitrary bytes. |
| 1182 | /// |
| 1183 | /// The range is closed. That is, the start and end of the range are included |
| 1184 | /// in the range. |
| 1185 | #[derive(Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] |
| 1186 | pub struct ClassBytesRange { |
| 1187 | start: u8, |
| 1188 | end: u8, |
| 1189 | } |
| 1190 | |
| 1191 | impl Interval for ClassBytesRange { |
| 1192 | type Bound = u8; |
| 1193 | |
| 1194 | #[inline] |
| 1195 | fn lower(&self) -> u8 { |
| 1196 | self.start |
| 1197 | } |
| 1198 | #[inline] |
| 1199 | fn upper(&self) -> u8 { |
| 1200 | self.end |
| 1201 | } |
| 1202 | #[inline] |
| 1203 | fn set_lower(&mut self, bound: u8) { |
| 1204 | self.start = bound; |
| 1205 | } |
| 1206 | #[inline] |
| 1207 | fn set_upper(&mut self, bound: u8) { |
| 1208 | self.end = bound; |
| 1209 | } |
| 1210 | |
| 1211 | /// Apply simple case folding to this byte range. Only ASCII case mappings |
| 1212 | /// (for a-z) are applied. |
| 1213 | /// |
| 1214 | /// Additional ranges are appended to the given vector. Canonical ordering |
| 1215 | /// is *not* maintained in the given vector. |
| 1216 | fn case_fold_simple( |
| 1217 | &self, |
| 1218 | ranges: &mut Vec<ClassBytesRange>, |
| 1219 | ) -> Result<(), unicode::CaseFoldError> { |
| 1220 | if !ClassBytesRange::new(b'a', b'z').is_intersection_empty(self) { |
| 1221 | let lower = cmp::max(self.start, b'a'); |
| 1222 | let upper = cmp::min(self.end, b'z'); |
| 1223 | ranges.push(ClassBytesRange::new(lower - 32, upper - 32)); |
| 1224 | } |
| 1225 | if !ClassBytesRange::new(b'A', b'Z').is_intersection_empty(self) { |
| 1226 | let lower = cmp::max(self.start, b'A'); |
| 1227 | let upper = cmp::min(self.end, b'Z'); |
| 1228 | ranges.push(ClassBytesRange::new(lower + 32, upper + 32)); |
| 1229 | } |
| 1230 | Ok(()) |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | impl ClassBytesRange { |
| 1235 | /// Create a new byte range for a character class. |
| 1236 | /// |
| 1237 | /// The returned range is always in a canonical form. That is, the range |
| 1238 | /// returned always satisfies the invariant that `start <= end`. |
| 1239 | pub fn new(start: u8, end: u8) -> ClassBytesRange { |
| 1240 | ClassBytesRange::create(start, end) |
| 1241 | } |
| 1242 | |
| 1243 | /// Return the start of this range. |
| 1244 | /// |
| 1245 | /// The start of a range is always less than or equal to the end of the |
| 1246 | /// range. |
| 1247 | pub fn start(&self) -> u8 { |
| 1248 | self.start |
| 1249 | } |
| 1250 | |
| 1251 | /// Return the end of this range. |
| 1252 | /// |
| 1253 | /// The end of a range is always greater than or equal to the start of the |
| 1254 | /// range. |
| 1255 | pub fn end(&self) -> u8 { |
| 1256 | self.end |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | impl fmt::Debug for ClassBytesRange { |
| 1261 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1262 | let mut debug = f.debug_struct("ClassBytesRange"); |
| 1263 | if self.start <= 0x7F { |
| 1264 | debug.field("start", &(self.start as char)); |
| 1265 | } else { |
| 1266 | debug.field("start", &self.start); |
| 1267 | } |
| 1268 | if self.end <= 0x7F { |
| 1269 | debug.field("end", &(self.end as char)); |
| 1270 | } else { |
| 1271 | debug.field("end", &self.end); |
| 1272 | } |
| 1273 | debug.finish() |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | /// The high-level intermediate representation for an anchor assertion. |
| 1278 | /// |
| 1279 | /// A matching anchor assertion is always zero-length. |
| 1280 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1281 | pub enum Anchor { |
| 1282 | /// Match the beginning of a line or the beginning of text. Specifically, |
| 1283 | /// this matches at the starting position of the input, or at the position |
| 1284 | /// immediately following a `\n` character. |
| 1285 | StartLine, |
| 1286 | /// Match the end of a line or the end of text. Specifically, |
| 1287 | /// this matches at the end position of the input, or at the position |
| 1288 | /// immediately preceding a `\n` character. |
| 1289 | EndLine, |
| 1290 | /// Match the beginning of text. Specifically, this matches at the starting |
| 1291 | /// position of the input. |
| 1292 | StartText, |
| 1293 | /// Match the end of text. Specifically, this matches at the ending |
| 1294 | /// position of the input. |
| 1295 | EndText, |
| 1296 | } |
| 1297 | |
| 1298 | /// The high-level intermediate representation for a word-boundary assertion. |
| 1299 | /// |
| 1300 | /// A matching word boundary assertion is always zero-length. |
| 1301 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1302 | pub enum WordBoundary { |
| 1303 | /// Match a Unicode-aware word boundary. That is, this matches a position |
| 1304 | /// where the left adjacent character and right adjacent character |
| 1305 | /// correspond to a word and non-word or a non-word and word character. |
| 1306 | Unicode, |
| 1307 | /// Match a Unicode-aware negation of a word boundary. |
| 1308 | UnicodeNegate, |
| 1309 | /// Match an ASCII-only word boundary. That is, this matches a position |
| 1310 | /// where the left adjacent character and right adjacent character |
| 1311 | /// correspond to a word and non-word or a non-word and word character. |
| 1312 | Ascii, |
| 1313 | /// Match an ASCII-only negation of a word boundary. |
| 1314 | AsciiNegate, |
| 1315 | } |
| 1316 | |
| 1317 | impl WordBoundary { |
| 1318 | /// Returns true if and only if this word boundary assertion is negated. |
| 1319 | pub fn is_negated(&self) -> bool { |
| 1320 | match *self { |
| 1321 | WordBoundary::Unicode | WordBoundary::Ascii => false, |
| 1322 | WordBoundary::UnicodeNegate | WordBoundary::AsciiNegate => true, |
| 1323 | } |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | /// The high-level intermediate representation for a group. |
| 1328 | /// |
| 1329 | /// This represents one of three possible group types: |
| 1330 | /// |
| 1331 | /// 1. A non-capturing group (e.g., `(?:expr)`). |
| 1332 | /// 2. A capturing group (e.g., `(expr)`). |
| 1333 | /// 3. A named capturing group (e.g., `(?P<name>expr)`). |
| 1334 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1335 | pub struct Group { |
| 1336 | /// The kind of this group. If it is a capturing group, then the kind |
| 1337 | /// contains the capture group index (and the name, if it is a named |
| 1338 | /// group). |
| 1339 | pub kind: GroupKind, |
| 1340 | /// The expression inside the capturing group, which may be empty. |
| 1341 | pub hir: Box<Hir>, |
| 1342 | } |
| 1343 | |
| 1344 | /// The kind of group. |
| 1345 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1346 | pub enum GroupKind { |
| 1347 | /// A normal unnamed capturing group. |
| 1348 | /// |
| 1349 | /// The value is the capture index of the group. |
| 1350 | CaptureIndex(u32), |
| 1351 | /// A named capturing group. |
| 1352 | CaptureName { |
| 1353 | /// The name of the group. |
| 1354 | name: String, |
| 1355 | /// The capture index of the group. |
| 1356 | index: u32, |
| 1357 | }, |
| 1358 | /// A non-capturing group. |
| 1359 | NonCapturing, |
| 1360 | } |
| 1361 | |
| 1362 | /// The high-level intermediate representation of a repetition operator. |
| 1363 | /// |
| 1364 | /// A repetition operator permits the repetition of an arbitrary |
| 1365 | /// sub-expression. |
| 1366 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1367 | pub struct Repetition { |
| 1368 | /// The kind of this repetition operator. |
| 1369 | pub kind: RepetitionKind, |
| 1370 | /// Whether this repetition operator is greedy or not. A greedy operator |
| 1371 | /// will match as much as it can. A non-greedy operator will match as |
| 1372 | /// little as it can. |
| 1373 | /// |
| 1374 | /// Typically, operators are greedy by default and are only non-greedy when |
| 1375 | /// a `?` suffix is used, e.g., `(expr)*` is greedy while `(expr)*?` is |
| 1376 | /// not. However, this can be inverted via the `U` "ungreedy" flag. |
| 1377 | pub greedy: bool, |
| 1378 | /// The expression being repeated. |
| 1379 | pub hir: Box<Hir>, |
| 1380 | } |
| 1381 | |
| 1382 | impl Repetition { |
| 1383 | /// Returns true if and only if this repetition operator makes it possible |
| 1384 | /// to match the empty string. |
| 1385 | /// |
| 1386 | /// Note that this is not defined inductively. For example, while `a*` |
| 1387 | /// will report `true`, `()+` will not, even though `()` matches the empty |
| 1388 | /// string and one or more occurrences of something that matches the empty |
| 1389 | /// string will always match the empty string. In order to get the |
| 1390 | /// inductive definition, see the corresponding method on |
| 1391 | /// [`Hir`](struct.Hir.html). |
| 1392 | pub fn is_match_empty(&self) -> bool { |
| 1393 | match self.kind { |
| 1394 | RepetitionKind::ZeroOrOne => true, |
| 1395 | RepetitionKind::ZeroOrMore => true, |
| 1396 | RepetitionKind::OneOrMore => false, |
| 1397 | RepetitionKind::Range(RepetitionRange::Exactly(m)) => m == 0, |
| 1398 | RepetitionKind::Range(RepetitionRange::AtLeast(m)) => m == 0, |
| 1399 | RepetitionKind::Range(RepetitionRange::Bounded(m, _)) => m == 0, |
| 1400 | } |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | /// The kind of a repetition operator. |
| 1405 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1406 | pub enum RepetitionKind { |
| 1407 | /// Matches a sub-expression zero or one times. |
| 1408 | ZeroOrOne, |
| 1409 | /// Matches a sub-expression zero or more times. |
| 1410 | ZeroOrMore, |
| 1411 | /// Matches a sub-expression one or more times. |
| 1412 | OneOrMore, |
| 1413 | /// Matches a sub-expression within a bounded range of times. |
| 1414 | Range(RepetitionRange), |
| 1415 | } |
| 1416 | |
| 1417 | /// The kind of a counted repetition operator. |
| 1418 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1419 | pub enum RepetitionRange { |
| 1420 | /// Matches a sub-expression exactly this many times. |
| 1421 | Exactly(u32), |
| 1422 | /// Matches a sub-expression at least this many times. |
| 1423 | AtLeast(u32), |
| 1424 | /// Matches a sub-expression at least `m` times and at most `n` times. |
| 1425 | Bounded(u32, u32), |
| 1426 | } |
| 1427 | |
| 1428 | /// A custom `Drop` impl is used for `HirKind` such that it uses constant stack |
| 1429 | /// space but heap space proportional to the depth of the total `Hir`. |
| 1430 | impl Drop for Hir { |
| 1431 | fn drop(&mut self) { |
| 1432 | use std::mem; |
| 1433 | |
| 1434 | match *self.kind() { |
| 1435 | HirKind::Empty |
| 1436 | | HirKind::Literal(_) |
| 1437 | | HirKind::Class(_) |
| 1438 | | HirKind::Anchor(_) |
| 1439 | | HirKind::WordBoundary(_) => return, |
| 1440 | HirKind::Group(ref x) if !x.hir.kind.has_subexprs() => return, |
| 1441 | HirKind::Repetition(ref x) if !x.hir.kind.has_subexprs() => return, |
| 1442 | HirKind::Concat(ref x) if x.is_empty() => return, |
| 1443 | HirKind::Alternation(ref x) if x.is_empty() => return, |
| 1444 | _ => {} |
| 1445 | } |
| 1446 | |
| 1447 | let mut stack = vec![mem::replace(self, Hir::empty())]; |
| 1448 | while let Some(mut expr) = stack.pop() { |
| 1449 | match expr.kind { |
| 1450 | HirKind::Empty |
| 1451 | | HirKind::Literal(_) |
| 1452 | | HirKind::Class(_) |
| 1453 | | HirKind::Anchor(_) |
| 1454 | | HirKind::WordBoundary(_) => {} |
| 1455 | HirKind::Group(ref mut x) => { |
| 1456 | stack.push(mem::replace(&mut x.hir, Hir::empty())); |
| 1457 | } |
| 1458 | HirKind::Repetition(ref mut x) => { |
| 1459 | stack.push(mem::replace(&mut x.hir, Hir::empty())); |
| 1460 | } |
| 1461 | HirKind::Concat(ref mut x) => { |
| 1462 | stack.extend(x.drain(..)); |
| 1463 | } |
| 1464 | HirKind::Alternation(ref mut x) => { |
| 1465 | stack.extend(x.drain(..)); |
| 1466 | } |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | /// A type that documents various attributes of an HIR expression. |
| 1473 | /// |
| 1474 | /// These attributes are typically defined inductively on the HIR. |
| 1475 | #[derive(Clone, Debug, Eq, PartialEq)] |
| 1476 | struct HirInfo { |
| 1477 | /// Represent yes/no questions by a bitfield to conserve space, since |
| 1478 | /// this is included in every HIR expression. |
| 1479 | /// |
| 1480 | /// If more attributes need to be added, it is OK to increase the size of |
| 1481 | /// this as appropriate. |
| 1482 | bools: u16, |
| 1483 | } |
| 1484 | |
| 1485 | // A simple macro for defining bitfield accessors/mutators. |
| 1486 | macro_rules! define_bool { |
| 1487 | ($bit:expr, $is_fn_name:ident, $set_fn_name:ident) => { |
| 1488 | fn $is_fn_name(&self) -> bool { |
| 1489 | self.bools & (0b1 << $bit) > 0 |
| 1490 | } |
| 1491 | |
| 1492 | fn $set_fn_name(&mut self, yes: bool) { |
| 1493 | if yes { |
| 1494 | self.bools |= 1 << $bit; |
| 1495 | } else { |
| 1496 | self.bools &= !(1 << $bit); |
| 1497 | } |
| 1498 | } |
Haibo Huang | 5b6434b | 2020-05-28 20:14:37 -0700 | [diff] [blame^] | 1499 | }; |
Chih-Hung Hsieh | 048fc04 | 2020-04-16 10:44:22 -0700 | [diff] [blame] | 1500 | } |
| 1501 | |
| 1502 | impl HirInfo { |
| 1503 | fn new() -> HirInfo { |
| 1504 | HirInfo { bools: 0 } |
| 1505 | } |
| 1506 | |
| 1507 | define_bool!(0, is_always_utf8, set_always_utf8); |
| 1508 | define_bool!(1, is_all_assertions, set_all_assertions); |
| 1509 | define_bool!(2, is_anchored_start, set_anchored_start); |
| 1510 | define_bool!(3, is_anchored_end, set_anchored_end); |
| 1511 | define_bool!(4, is_line_anchored_start, set_line_anchored_start); |
| 1512 | define_bool!(5, is_line_anchored_end, set_line_anchored_end); |
| 1513 | define_bool!(6, is_any_anchored_start, set_any_anchored_start); |
| 1514 | define_bool!(7, is_any_anchored_end, set_any_anchored_end); |
| 1515 | define_bool!(8, is_match_empty, set_match_empty); |
| 1516 | define_bool!(9, is_literal, set_literal); |
| 1517 | define_bool!(10, is_alternation_literal, set_alternation_literal); |
| 1518 | } |
| 1519 | |
| 1520 | #[cfg(test)] |
| 1521 | mod tests { |
| 1522 | use super::*; |
| 1523 | |
| 1524 | fn uclass(ranges: &[(char, char)]) -> ClassUnicode { |
| 1525 | let ranges: Vec<ClassUnicodeRange> = ranges |
| 1526 | .iter() |
| 1527 | .map(|&(s, e)| ClassUnicodeRange::new(s, e)) |
| 1528 | .collect(); |
| 1529 | ClassUnicode::new(ranges) |
| 1530 | } |
| 1531 | |
| 1532 | fn bclass(ranges: &[(u8, u8)]) -> ClassBytes { |
| 1533 | let ranges: Vec<ClassBytesRange> = |
| 1534 | ranges.iter().map(|&(s, e)| ClassBytesRange::new(s, e)).collect(); |
| 1535 | ClassBytes::new(ranges) |
| 1536 | } |
| 1537 | |
| 1538 | fn uranges(cls: &ClassUnicode) -> Vec<(char, char)> { |
| 1539 | cls.iter().map(|x| (x.start(), x.end())).collect() |
| 1540 | } |
| 1541 | |
| 1542 | #[cfg(feature = "unicode-case")] |
| 1543 | fn ucasefold(cls: &ClassUnicode) -> ClassUnicode { |
| 1544 | let mut cls_ = cls.clone(); |
| 1545 | cls_.case_fold_simple(); |
| 1546 | cls_ |
| 1547 | } |
| 1548 | |
| 1549 | fn uunion(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
| 1550 | let mut cls_ = cls1.clone(); |
| 1551 | cls_.union(cls2); |
| 1552 | cls_ |
| 1553 | } |
| 1554 | |
| 1555 | fn uintersect(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
| 1556 | let mut cls_ = cls1.clone(); |
| 1557 | cls_.intersect(cls2); |
| 1558 | cls_ |
| 1559 | } |
| 1560 | |
| 1561 | fn udifference(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
| 1562 | let mut cls_ = cls1.clone(); |
| 1563 | cls_.difference(cls2); |
| 1564 | cls_ |
| 1565 | } |
| 1566 | |
| 1567 | fn usymdifference( |
| 1568 | cls1: &ClassUnicode, |
| 1569 | cls2: &ClassUnicode, |
| 1570 | ) -> ClassUnicode { |
| 1571 | let mut cls_ = cls1.clone(); |
| 1572 | cls_.symmetric_difference(cls2); |
| 1573 | cls_ |
| 1574 | } |
| 1575 | |
| 1576 | fn unegate(cls: &ClassUnicode) -> ClassUnicode { |
| 1577 | let mut cls_ = cls.clone(); |
| 1578 | cls_.negate(); |
| 1579 | cls_ |
| 1580 | } |
| 1581 | |
| 1582 | fn branges(cls: &ClassBytes) -> Vec<(u8, u8)> { |
| 1583 | cls.iter().map(|x| (x.start(), x.end())).collect() |
| 1584 | } |
| 1585 | |
| 1586 | fn bcasefold(cls: &ClassBytes) -> ClassBytes { |
| 1587 | let mut cls_ = cls.clone(); |
| 1588 | cls_.case_fold_simple(); |
| 1589 | cls_ |
| 1590 | } |
| 1591 | |
| 1592 | fn bunion(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
| 1593 | let mut cls_ = cls1.clone(); |
| 1594 | cls_.union(cls2); |
| 1595 | cls_ |
| 1596 | } |
| 1597 | |
| 1598 | fn bintersect(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
| 1599 | let mut cls_ = cls1.clone(); |
| 1600 | cls_.intersect(cls2); |
| 1601 | cls_ |
| 1602 | } |
| 1603 | |
| 1604 | fn bdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
| 1605 | let mut cls_ = cls1.clone(); |
| 1606 | cls_.difference(cls2); |
| 1607 | cls_ |
| 1608 | } |
| 1609 | |
| 1610 | fn bsymdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
| 1611 | let mut cls_ = cls1.clone(); |
| 1612 | cls_.symmetric_difference(cls2); |
| 1613 | cls_ |
| 1614 | } |
| 1615 | |
| 1616 | fn bnegate(cls: &ClassBytes) -> ClassBytes { |
| 1617 | let mut cls_ = cls.clone(); |
| 1618 | cls_.negate(); |
| 1619 | cls_ |
| 1620 | } |
| 1621 | |
| 1622 | #[test] |
| 1623 | fn class_range_canonical_unicode() { |
| 1624 | let range = ClassUnicodeRange::new('\u{00FF}', '\0'); |
| 1625 | assert_eq!('\0', range.start()); |
| 1626 | assert_eq!('\u{00FF}', range.end()); |
| 1627 | } |
| 1628 | |
| 1629 | #[test] |
| 1630 | fn class_range_canonical_bytes() { |
| 1631 | let range = ClassBytesRange::new(b'\xFF', b'\0'); |
| 1632 | assert_eq!(b'\0', range.start()); |
| 1633 | assert_eq!(b'\xFF', range.end()); |
| 1634 | } |
| 1635 | |
| 1636 | #[test] |
| 1637 | fn class_canonicalize_unicode() { |
| 1638 | let cls = uclass(&[('a', 'c'), ('x', 'z')]); |
| 1639 | let expected = vec![('a', 'c'), ('x', 'z')]; |
| 1640 | assert_eq!(expected, uranges(&cls)); |
| 1641 | |
| 1642 | let cls = uclass(&[('x', 'z'), ('a', 'c')]); |
| 1643 | let expected = vec![('a', 'c'), ('x', 'z')]; |
| 1644 | assert_eq!(expected, uranges(&cls)); |
| 1645 | |
| 1646 | let cls = uclass(&[('x', 'z'), ('w', 'y')]); |
| 1647 | let expected = vec![('w', 'z')]; |
| 1648 | assert_eq!(expected, uranges(&cls)); |
| 1649 | |
| 1650 | let cls = uclass(&[ |
| 1651 | ('c', 'f'), |
| 1652 | ('a', 'g'), |
| 1653 | ('d', 'j'), |
| 1654 | ('a', 'c'), |
| 1655 | ('m', 'p'), |
| 1656 | ('l', 's'), |
| 1657 | ]); |
| 1658 | let expected = vec![('a', 'j'), ('l', 's')]; |
| 1659 | assert_eq!(expected, uranges(&cls)); |
| 1660 | |
| 1661 | let cls = uclass(&[('x', 'z'), ('u', 'w')]); |
| 1662 | let expected = vec![('u', 'z')]; |
| 1663 | assert_eq!(expected, uranges(&cls)); |
| 1664 | |
| 1665 | let cls = uclass(&[('\x00', '\u{10FFFF}'), ('\x00', '\u{10FFFF}')]); |
| 1666 | let expected = vec![('\x00', '\u{10FFFF}')]; |
| 1667 | assert_eq!(expected, uranges(&cls)); |
| 1668 | |
| 1669 | let cls = uclass(&[('a', 'a'), ('b', 'b')]); |
| 1670 | let expected = vec![('a', 'b')]; |
| 1671 | assert_eq!(expected, uranges(&cls)); |
| 1672 | } |
| 1673 | |
| 1674 | #[test] |
| 1675 | fn class_canonicalize_bytes() { |
| 1676 | let cls = bclass(&[(b'a', b'c'), (b'x', b'z')]); |
| 1677 | let expected = vec![(b'a', b'c'), (b'x', b'z')]; |
| 1678 | assert_eq!(expected, branges(&cls)); |
| 1679 | |
| 1680 | let cls = bclass(&[(b'x', b'z'), (b'a', b'c')]); |
| 1681 | let expected = vec![(b'a', b'c'), (b'x', b'z')]; |
| 1682 | assert_eq!(expected, branges(&cls)); |
| 1683 | |
| 1684 | let cls = bclass(&[(b'x', b'z'), (b'w', b'y')]); |
| 1685 | let expected = vec![(b'w', b'z')]; |
| 1686 | assert_eq!(expected, branges(&cls)); |
| 1687 | |
| 1688 | let cls = bclass(&[ |
| 1689 | (b'c', b'f'), |
| 1690 | (b'a', b'g'), |
| 1691 | (b'd', b'j'), |
| 1692 | (b'a', b'c'), |
| 1693 | (b'm', b'p'), |
| 1694 | (b'l', b's'), |
| 1695 | ]); |
| 1696 | let expected = vec![(b'a', b'j'), (b'l', b's')]; |
| 1697 | assert_eq!(expected, branges(&cls)); |
| 1698 | |
| 1699 | let cls = bclass(&[(b'x', b'z'), (b'u', b'w')]); |
| 1700 | let expected = vec![(b'u', b'z')]; |
| 1701 | assert_eq!(expected, branges(&cls)); |
| 1702 | |
| 1703 | let cls = bclass(&[(b'\x00', b'\xFF'), (b'\x00', b'\xFF')]); |
| 1704 | let expected = vec![(b'\x00', b'\xFF')]; |
| 1705 | assert_eq!(expected, branges(&cls)); |
| 1706 | |
| 1707 | let cls = bclass(&[(b'a', b'a'), (b'b', b'b')]); |
| 1708 | let expected = vec![(b'a', b'b')]; |
| 1709 | assert_eq!(expected, branges(&cls)); |
| 1710 | } |
| 1711 | |
| 1712 | #[test] |
| 1713 | #[cfg(feature = "unicode-case")] |
| 1714 | fn class_case_fold_unicode() { |
| 1715 | let cls = uclass(&[ |
| 1716 | ('C', 'F'), |
| 1717 | ('A', 'G'), |
| 1718 | ('D', 'J'), |
| 1719 | ('A', 'C'), |
| 1720 | ('M', 'P'), |
| 1721 | ('L', 'S'), |
| 1722 | ('c', 'f'), |
| 1723 | ]); |
| 1724 | let expected = uclass(&[ |
| 1725 | ('A', 'J'), |
| 1726 | ('L', 'S'), |
| 1727 | ('a', 'j'), |
| 1728 | ('l', 's'), |
| 1729 | ('\u{17F}', '\u{17F}'), |
| 1730 | ]); |
| 1731 | assert_eq!(expected, ucasefold(&cls)); |
| 1732 | |
| 1733 | let cls = uclass(&[('A', 'Z')]); |
| 1734 | let expected = uclass(&[ |
| 1735 | ('A', 'Z'), |
| 1736 | ('a', 'z'), |
| 1737 | ('\u{17F}', '\u{17F}'), |
| 1738 | ('\u{212A}', '\u{212A}'), |
| 1739 | ]); |
| 1740 | assert_eq!(expected, ucasefold(&cls)); |
| 1741 | |
| 1742 | let cls = uclass(&[('a', 'z')]); |
| 1743 | let expected = uclass(&[ |
| 1744 | ('A', 'Z'), |
| 1745 | ('a', 'z'), |
| 1746 | ('\u{17F}', '\u{17F}'), |
| 1747 | ('\u{212A}', '\u{212A}'), |
| 1748 | ]); |
| 1749 | assert_eq!(expected, ucasefold(&cls)); |
| 1750 | |
| 1751 | let cls = uclass(&[('A', 'A'), ('_', '_')]); |
| 1752 | let expected = uclass(&[('A', 'A'), ('_', '_'), ('a', 'a')]); |
| 1753 | assert_eq!(expected, ucasefold(&cls)); |
| 1754 | |
| 1755 | let cls = uclass(&[('A', 'A'), ('=', '=')]); |
| 1756 | let expected = uclass(&[('=', '='), ('A', 'A'), ('a', 'a')]); |
| 1757 | assert_eq!(expected, ucasefold(&cls)); |
| 1758 | |
| 1759 | let cls = uclass(&[('\x00', '\x10')]); |
| 1760 | assert_eq!(cls, ucasefold(&cls)); |
| 1761 | |
| 1762 | let cls = uclass(&[('k', 'k')]); |
| 1763 | let expected = |
| 1764 | uclass(&[('K', 'K'), ('k', 'k'), ('\u{212A}', '\u{212A}')]); |
| 1765 | assert_eq!(expected, ucasefold(&cls)); |
| 1766 | |
| 1767 | let cls = uclass(&[('@', '@')]); |
| 1768 | assert_eq!(cls, ucasefold(&cls)); |
| 1769 | } |
| 1770 | |
| 1771 | #[test] |
| 1772 | #[cfg(not(feature = "unicode-case"))] |
| 1773 | fn class_case_fold_unicode_disabled() { |
| 1774 | let mut cls = uclass(&[ |
| 1775 | ('C', 'F'), |
| 1776 | ('A', 'G'), |
| 1777 | ('D', 'J'), |
| 1778 | ('A', 'C'), |
| 1779 | ('M', 'P'), |
| 1780 | ('L', 'S'), |
| 1781 | ('c', 'f'), |
| 1782 | ]); |
| 1783 | assert!(cls.try_case_fold_simple().is_err()); |
| 1784 | } |
| 1785 | |
| 1786 | #[test] |
| 1787 | #[should_panic] |
| 1788 | #[cfg(not(feature = "unicode-case"))] |
| 1789 | fn class_case_fold_unicode_disabled_panics() { |
| 1790 | let mut cls = uclass(&[ |
| 1791 | ('C', 'F'), |
| 1792 | ('A', 'G'), |
| 1793 | ('D', 'J'), |
| 1794 | ('A', 'C'), |
| 1795 | ('M', 'P'), |
| 1796 | ('L', 'S'), |
| 1797 | ('c', 'f'), |
| 1798 | ]); |
| 1799 | cls.case_fold_simple(); |
| 1800 | } |
| 1801 | |
| 1802 | #[test] |
| 1803 | fn class_case_fold_bytes() { |
| 1804 | let cls = bclass(&[ |
| 1805 | (b'C', b'F'), |
| 1806 | (b'A', b'G'), |
| 1807 | (b'D', b'J'), |
| 1808 | (b'A', b'C'), |
| 1809 | (b'M', b'P'), |
| 1810 | (b'L', b'S'), |
| 1811 | (b'c', b'f'), |
| 1812 | ]); |
| 1813 | let expected = |
| 1814 | bclass(&[(b'A', b'J'), (b'L', b'S'), (b'a', b'j'), (b'l', b's')]); |
| 1815 | assert_eq!(expected, bcasefold(&cls)); |
| 1816 | |
| 1817 | let cls = bclass(&[(b'A', b'Z')]); |
| 1818 | let expected = bclass(&[(b'A', b'Z'), (b'a', b'z')]); |
| 1819 | assert_eq!(expected, bcasefold(&cls)); |
| 1820 | |
| 1821 | let cls = bclass(&[(b'a', b'z')]); |
| 1822 | let expected = bclass(&[(b'A', b'Z'), (b'a', b'z')]); |
| 1823 | assert_eq!(expected, bcasefold(&cls)); |
| 1824 | |
| 1825 | let cls = bclass(&[(b'A', b'A'), (b'_', b'_')]); |
| 1826 | let expected = bclass(&[(b'A', b'A'), (b'_', b'_'), (b'a', b'a')]); |
| 1827 | assert_eq!(expected, bcasefold(&cls)); |
| 1828 | |
| 1829 | let cls = bclass(&[(b'A', b'A'), (b'=', b'=')]); |
| 1830 | let expected = bclass(&[(b'=', b'='), (b'A', b'A'), (b'a', b'a')]); |
| 1831 | assert_eq!(expected, bcasefold(&cls)); |
| 1832 | |
| 1833 | let cls = bclass(&[(b'\x00', b'\x10')]); |
| 1834 | assert_eq!(cls, bcasefold(&cls)); |
| 1835 | |
| 1836 | let cls = bclass(&[(b'k', b'k')]); |
| 1837 | let expected = bclass(&[(b'K', b'K'), (b'k', b'k')]); |
| 1838 | assert_eq!(expected, bcasefold(&cls)); |
| 1839 | |
| 1840 | let cls = bclass(&[(b'@', b'@')]); |
| 1841 | assert_eq!(cls, bcasefold(&cls)); |
| 1842 | } |
| 1843 | |
| 1844 | #[test] |
| 1845 | fn class_negate_unicode() { |
| 1846 | let cls = uclass(&[('a', 'a')]); |
| 1847 | let expected = uclass(&[('\x00', '\x60'), ('\x62', '\u{10FFFF}')]); |
| 1848 | assert_eq!(expected, unegate(&cls)); |
| 1849 | |
| 1850 | let cls = uclass(&[('a', 'a'), ('b', 'b')]); |
| 1851 | let expected = uclass(&[('\x00', '\x60'), ('\x63', '\u{10FFFF}')]); |
| 1852 | assert_eq!(expected, unegate(&cls)); |
| 1853 | |
| 1854 | let cls = uclass(&[('a', 'c'), ('x', 'z')]); |
| 1855 | let expected = uclass(&[ |
| 1856 | ('\x00', '\x60'), |
| 1857 | ('\x64', '\x77'), |
| 1858 | ('\x7B', '\u{10FFFF}'), |
| 1859 | ]); |
| 1860 | assert_eq!(expected, unegate(&cls)); |
| 1861 | |
| 1862 | let cls = uclass(&[('\x00', 'a')]); |
| 1863 | let expected = uclass(&[('\x62', '\u{10FFFF}')]); |
| 1864 | assert_eq!(expected, unegate(&cls)); |
| 1865 | |
| 1866 | let cls = uclass(&[('a', '\u{10FFFF}')]); |
| 1867 | let expected = uclass(&[('\x00', '\x60')]); |
| 1868 | assert_eq!(expected, unegate(&cls)); |
| 1869 | |
| 1870 | let cls = uclass(&[('\x00', '\u{10FFFF}')]); |
| 1871 | let expected = uclass(&[]); |
| 1872 | assert_eq!(expected, unegate(&cls)); |
| 1873 | |
| 1874 | let cls = uclass(&[]); |
| 1875 | let expected = uclass(&[('\x00', '\u{10FFFF}')]); |
| 1876 | assert_eq!(expected, unegate(&cls)); |
| 1877 | |
| 1878 | let cls = |
| 1879 | uclass(&[('\x00', '\u{10FFFD}'), ('\u{10FFFF}', '\u{10FFFF}')]); |
| 1880 | let expected = uclass(&[('\u{10FFFE}', '\u{10FFFE}')]); |
| 1881 | assert_eq!(expected, unegate(&cls)); |
| 1882 | |
| 1883 | let cls = uclass(&[('\x00', '\u{D7FF}')]); |
| 1884 | let expected = uclass(&[('\u{E000}', '\u{10FFFF}')]); |
| 1885 | assert_eq!(expected, unegate(&cls)); |
| 1886 | |
| 1887 | let cls = uclass(&[('\x00', '\u{D7FE}')]); |
| 1888 | let expected = uclass(&[('\u{D7FF}', '\u{10FFFF}')]); |
| 1889 | assert_eq!(expected, unegate(&cls)); |
| 1890 | |
| 1891 | let cls = uclass(&[('\u{E000}', '\u{10FFFF}')]); |
| 1892 | let expected = uclass(&[('\x00', '\u{D7FF}')]); |
| 1893 | assert_eq!(expected, unegate(&cls)); |
| 1894 | |
| 1895 | let cls = uclass(&[('\u{E001}', '\u{10FFFF}')]); |
| 1896 | let expected = uclass(&[('\x00', '\u{E000}')]); |
| 1897 | assert_eq!(expected, unegate(&cls)); |
| 1898 | } |
| 1899 | |
| 1900 | #[test] |
| 1901 | fn class_negate_bytes() { |
| 1902 | let cls = bclass(&[(b'a', b'a')]); |
| 1903 | let expected = bclass(&[(b'\x00', b'\x60'), (b'\x62', b'\xFF')]); |
| 1904 | assert_eq!(expected, bnegate(&cls)); |
| 1905 | |
| 1906 | let cls = bclass(&[(b'a', b'a'), (b'b', b'b')]); |
| 1907 | let expected = bclass(&[(b'\x00', b'\x60'), (b'\x63', b'\xFF')]); |
| 1908 | assert_eq!(expected, bnegate(&cls)); |
| 1909 | |
| 1910 | let cls = bclass(&[(b'a', b'c'), (b'x', b'z')]); |
| 1911 | let expected = bclass(&[ |
| 1912 | (b'\x00', b'\x60'), |
| 1913 | (b'\x64', b'\x77'), |
| 1914 | (b'\x7B', b'\xFF'), |
| 1915 | ]); |
| 1916 | assert_eq!(expected, bnegate(&cls)); |
| 1917 | |
| 1918 | let cls = bclass(&[(b'\x00', b'a')]); |
| 1919 | let expected = bclass(&[(b'\x62', b'\xFF')]); |
| 1920 | assert_eq!(expected, bnegate(&cls)); |
| 1921 | |
| 1922 | let cls = bclass(&[(b'a', b'\xFF')]); |
| 1923 | let expected = bclass(&[(b'\x00', b'\x60')]); |
| 1924 | assert_eq!(expected, bnegate(&cls)); |
| 1925 | |
| 1926 | let cls = bclass(&[(b'\x00', b'\xFF')]); |
| 1927 | let expected = bclass(&[]); |
| 1928 | assert_eq!(expected, bnegate(&cls)); |
| 1929 | |
| 1930 | let cls = bclass(&[]); |
| 1931 | let expected = bclass(&[(b'\x00', b'\xFF')]); |
| 1932 | assert_eq!(expected, bnegate(&cls)); |
| 1933 | |
| 1934 | let cls = bclass(&[(b'\x00', b'\xFD'), (b'\xFF', b'\xFF')]); |
| 1935 | let expected = bclass(&[(b'\xFE', b'\xFE')]); |
| 1936 | assert_eq!(expected, bnegate(&cls)); |
| 1937 | } |
| 1938 | |
| 1939 | #[test] |
| 1940 | fn class_union_unicode() { |
| 1941 | let cls1 = uclass(&[('a', 'g'), ('m', 't'), ('A', 'C')]); |
| 1942 | let cls2 = uclass(&[('a', 'z')]); |
| 1943 | let expected = uclass(&[('a', 'z'), ('A', 'C')]); |
| 1944 | assert_eq!(expected, uunion(&cls1, &cls2)); |
| 1945 | } |
| 1946 | |
| 1947 | #[test] |
| 1948 | fn class_union_bytes() { |
| 1949 | let cls1 = bclass(&[(b'a', b'g'), (b'm', b't'), (b'A', b'C')]); |
| 1950 | let cls2 = bclass(&[(b'a', b'z')]); |
| 1951 | let expected = bclass(&[(b'a', b'z'), (b'A', b'C')]); |
| 1952 | assert_eq!(expected, bunion(&cls1, &cls2)); |
| 1953 | } |
| 1954 | |
| 1955 | #[test] |
| 1956 | fn class_intersect_unicode() { |
| 1957 | let cls1 = uclass(&[]); |
| 1958 | let cls2 = uclass(&[('a', 'a')]); |
| 1959 | let expected = uclass(&[]); |
| 1960 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1961 | |
| 1962 | let cls1 = uclass(&[('a', 'a')]); |
| 1963 | let cls2 = uclass(&[('a', 'a')]); |
| 1964 | let expected = uclass(&[('a', 'a')]); |
| 1965 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1966 | |
| 1967 | let cls1 = uclass(&[('a', 'a')]); |
| 1968 | let cls2 = uclass(&[('b', 'b')]); |
| 1969 | let expected = uclass(&[]); |
| 1970 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1971 | |
| 1972 | let cls1 = uclass(&[('a', 'a')]); |
| 1973 | let cls2 = uclass(&[('a', 'c')]); |
| 1974 | let expected = uclass(&[('a', 'a')]); |
| 1975 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1976 | |
| 1977 | let cls1 = uclass(&[('a', 'b')]); |
| 1978 | let cls2 = uclass(&[('a', 'c')]); |
| 1979 | let expected = uclass(&[('a', 'b')]); |
| 1980 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1981 | |
| 1982 | let cls1 = uclass(&[('a', 'b')]); |
| 1983 | let cls2 = uclass(&[('b', 'c')]); |
| 1984 | let expected = uclass(&[('b', 'b')]); |
| 1985 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1986 | |
| 1987 | let cls1 = uclass(&[('a', 'b')]); |
| 1988 | let cls2 = uclass(&[('c', 'd')]); |
| 1989 | let expected = uclass(&[]); |
| 1990 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1991 | |
| 1992 | let cls1 = uclass(&[('b', 'c')]); |
| 1993 | let cls2 = uclass(&[('a', 'd')]); |
| 1994 | let expected = uclass(&[('b', 'c')]); |
| 1995 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 1996 | |
| 1997 | let cls1 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); |
| 1998 | let cls2 = uclass(&[('a', 'h')]); |
| 1999 | let expected = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); |
| 2000 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 2001 | |
| 2002 | let cls1 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); |
| 2003 | let cls2 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); |
| 2004 | let expected = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); |
| 2005 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 2006 | |
| 2007 | let cls1 = uclass(&[('a', 'b'), ('g', 'h')]); |
| 2008 | let cls2 = uclass(&[('d', 'e'), ('k', 'l')]); |
| 2009 | let expected = uclass(&[]); |
| 2010 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 2011 | |
| 2012 | let cls1 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); |
| 2013 | let cls2 = uclass(&[('h', 'h')]); |
| 2014 | let expected = uclass(&[('h', 'h')]); |
| 2015 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 2016 | |
| 2017 | let cls1 = uclass(&[('a', 'b'), ('e', 'f'), ('i', 'j')]); |
| 2018 | let cls2 = uclass(&[('c', 'd'), ('g', 'h'), ('k', 'l')]); |
| 2019 | let expected = uclass(&[]); |
| 2020 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 2021 | |
| 2022 | let cls1 = uclass(&[('a', 'b'), ('c', 'd'), ('e', 'f')]); |
| 2023 | let cls2 = uclass(&[('b', 'c'), ('d', 'e'), ('f', 'g')]); |
| 2024 | let expected = uclass(&[('b', 'f')]); |
| 2025 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
| 2026 | } |
| 2027 | |
| 2028 | #[test] |
| 2029 | fn class_intersect_bytes() { |
| 2030 | let cls1 = bclass(&[]); |
| 2031 | let cls2 = bclass(&[(b'a', b'a')]); |
| 2032 | let expected = bclass(&[]); |
| 2033 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2034 | |
| 2035 | let cls1 = bclass(&[(b'a', b'a')]); |
| 2036 | let cls2 = bclass(&[(b'a', b'a')]); |
| 2037 | let expected = bclass(&[(b'a', b'a')]); |
| 2038 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2039 | |
| 2040 | let cls1 = bclass(&[(b'a', b'a')]); |
| 2041 | let cls2 = bclass(&[(b'b', b'b')]); |
| 2042 | let expected = bclass(&[]); |
| 2043 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2044 | |
| 2045 | let cls1 = bclass(&[(b'a', b'a')]); |
| 2046 | let cls2 = bclass(&[(b'a', b'c')]); |
| 2047 | let expected = bclass(&[(b'a', b'a')]); |
| 2048 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2049 | |
| 2050 | let cls1 = bclass(&[(b'a', b'b')]); |
| 2051 | let cls2 = bclass(&[(b'a', b'c')]); |
| 2052 | let expected = bclass(&[(b'a', b'b')]); |
| 2053 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2054 | |
| 2055 | let cls1 = bclass(&[(b'a', b'b')]); |
| 2056 | let cls2 = bclass(&[(b'b', b'c')]); |
| 2057 | let expected = bclass(&[(b'b', b'b')]); |
| 2058 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2059 | |
| 2060 | let cls1 = bclass(&[(b'a', b'b')]); |
| 2061 | let cls2 = bclass(&[(b'c', b'd')]); |
| 2062 | let expected = bclass(&[]); |
| 2063 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2064 | |
| 2065 | let cls1 = bclass(&[(b'b', b'c')]); |
| 2066 | let cls2 = bclass(&[(b'a', b'd')]); |
| 2067 | let expected = bclass(&[(b'b', b'c')]); |
| 2068 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2069 | |
| 2070 | let cls1 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); |
| 2071 | let cls2 = bclass(&[(b'a', b'h')]); |
| 2072 | let expected = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); |
| 2073 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2074 | |
| 2075 | let cls1 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); |
| 2076 | let cls2 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); |
| 2077 | let expected = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); |
| 2078 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2079 | |
| 2080 | let cls1 = bclass(&[(b'a', b'b'), (b'g', b'h')]); |
| 2081 | let cls2 = bclass(&[(b'd', b'e'), (b'k', b'l')]); |
| 2082 | let expected = bclass(&[]); |
| 2083 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2084 | |
| 2085 | let cls1 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); |
| 2086 | let cls2 = bclass(&[(b'h', b'h')]); |
| 2087 | let expected = bclass(&[(b'h', b'h')]); |
| 2088 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2089 | |
| 2090 | let cls1 = bclass(&[(b'a', b'b'), (b'e', b'f'), (b'i', b'j')]); |
| 2091 | let cls2 = bclass(&[(b'c', b'd'), (b'g', b'h'), (b'k', b'l')]); |
| 2092 | let expected = bclass(&[]); |
| 2093 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2094 | |
| 2095 | let cls1 = bclass(&[(b'a', b'b'), (b'c', b'd'), (b'e', b'f')]); |
| 2096 | let cls2 = bclass(&[(b'b', b'c'), (b'd', b'e'), (b'f', b'g')]); |
| 2097 | let expected = bclass(&[(b'b', b'f')]); |
| 2098 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
| 2099 | } |
| 2100 | |
| 2101 | #[test] |
| 2102 | fn class_difference_unicode() { |
| 2103 | let cls1 = uclass(&[('a', 'a')]); |
| 2104 | let cls2 = uclass(&[('a', 'a')]); |
| 2105 | let expected = uclass(&[]); |
| 2106 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2107 | |
| 2108 | let cls1 = uclass(&[('a', 'a')]); |
| 2109 | let cls2 = uclass(&[]); |
| 2110 | let expected = uclass(&[('a', 'a')]); |
| 2111 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2112 | |
| 2113 | let cls1 = uclass(&[]); |
| 2114 | let cls2 = uclass(&[('a', 'a')]); |
| 2115 | let expected = uclass(&[]); |
| 2116 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2117 | |
| 2118 | let cls1 = uclass(&[('a', 'z')]); |
| 2119 | let cls2 = uclass(&[('a', 'a')]); |
| 2120 | let expected = uclass(&[('b', 'z')]); |
| 2121 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2122 | |
| 2123 | let cls1 = uclass(&[('a', 'z')]); |
| 2124 | let cls2 = uclass(&[('z', 'z')]); |
| 2125 | let expected = uclass(&[('a', 'y')]); |
| 2126 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2127 | |
| 2128 | let cls1 = uclass(&[('a', 'z')]); |
| 2129 | let cls2 = uclass(&[('m', 'm')]); |
| 2130 | let expected = uclass(&[('a', 'l'), ('n', 'z')]); |
| 2131 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2132 | |
| 2133 | let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); |
| 2134 | let cls2 = uclass(&[('a', 'z')]); |
| 2135 | let expected = uclass(&[]); |
| 2136 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2137 | |
| 2138 | let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); |
| 2139 | let cls2 = uclass(&[('d', 'v')]); |
| 2140 | let expected = uclass(&[('a', 'c')]); |
| 2141 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2142 | |
| 2143 | let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); |
| 2144 | let cls2 = uclass(&[('b', 'g'), ('s', 'u')]); |
| 2145 | let expected = uclass(&[('a', 'a'), ('h', 'i'), ('r', 'r')]); |
| 2146 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2147 | |
| 2148 | let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); |
| 2149 | let cls2 = uclass(&[('b', 'd'), ('e', 'g'), ('s', 'u')]); |
| 2150 | let expected = uclass(&[('a', 'a'), ('h', 'i'), ('r', 'r')]); |
| 2151 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2152 | |
| 2153 | let cls1 = uclass(&[('x', 'z')]); |
| 2154 | let cls2 = uclass(&[('a', 'c'), ('e', 'g'), ('s', 'u')]); |
| 2155 | let expected = uclass(&[('x', 'z')]); |
| 2156 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2157 | |
| 2158 | let cls1 = uclass(&[('a', 'z')]); |
| 2159 | let cls2 = uclass(&[('a', 'c'), ('e', 'g'), ('s', 'u')]); |
| 2160 | let expected = uclass(&[('d', 'd'), ('h', 'r'), ('v', 'z')]); |
| 2161 | assert_eq!(expected, udifference(&cls1, &cls2)); |
| 2162 | } |
| 2163 | |
| 2164 | #[test] |
| 2165 | fn class_difference_bytes() { |
| 2166 | let cls1 = bclass(&[(b'a', b'a')]); |
| 2167 | let cls2 = bclass(&[(b'a', b'a')]); |
| 2168 | let expected = bclass(&[]); |
| 2169 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2170 | |
| 2171 | let cls1 = bclass(&[(b'a', b'a')]); |
| 2172 | let cls2 = bclass(&[]); |
| 2173 | let expected = bclass(&[(b'a', b'a')]); |
| 2174 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2175 | |
| 2176 | let cls1 = bclass(&[]); |
| 2177 | let cls2 = bclass(&[(b'a', b'a')]); |
| 2178 | let expected = bclass(&[]); |
| 2179 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2180 | |
| 2181 | let cls1 = bclass(&[(b'a', b'z')]); |
| 2182 | let cls2 = bclass(&[(b'a', b'a')]); |
| 2183 | let expected = bclass(&[(b'b', b'z')]); |
| 2184 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2185 | |
| 2186 | let cls1 = bclass(&[(b'a', b'z')]); |
| 2187 | let cls2 = bclass(&[(b'z', b'z')]); |
| 2188 | let expected = bclass(&[(b'a', b'y')]); |
| 2189 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2190 | |
| 2191 | let cls1 = bclass(&[(b'a', b'z')]); |
| 2192 | let cls2 = bclass(&[(b'm', b'm')]); |
| 2193 | let expected = bclass(&[(b'a', b'l'), (b'n', b'z')]); |
| 2194 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2195 | |
| 2196 | let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); |
| 2197 | let cls2 = bclass(&[(b'a', b'z')]); |
| 2198 | let expected = bclass(&[]); |
| 2199 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2200 | |
| 2201 | let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); |
| 2202 | let cls2 = bclass(&[(b'd', b'v')]); |
| 2203 | let expected = bclass(&[(b'a', b'c')]); |
| 2204 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2205 | |
| 2206 | let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); |
| 2207 | let cls2 = bclass(&[(b'b', b'g'), (b's', b'u')]); |
| 2208 | let expected = bclass(&[(b'a', b'a'), (b'h', b'i'), (b'r', b'r')]); |
| 2209 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2210 | |
| 2211 | let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); |
| 2212 | let cls2 = bclass(&[(b'b', b'd'), (b'e', b'g'), (b's', b'u')]); |
| 2213 | let expected = bclass(&[(b'a', b'a'), (b'h', b'i'), (b'r', b'r')]); |
| 2214 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2215 | |
| 2216 | let cls1 = bclass(&[(b'x', b'z')]); |
| 2217 | let cls2 = bclass(&[(b'a', b'c'), (b'e', b'g'), (b's', b'u')]); |
| 2218 | let expected = bclass(&[(b'x', b'z')]); |
| 2219 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2220 | |
| 2221 | let cls1 = bclass(&[(b'a', b'z')]); |
| 2222 | let cls2 = bclass(&[(b'a', b'c'), (b'e', b'g'), (b's', b'u')]); |
| 2223 | let expected = bclass(&[(b'd', b'd'), (b'h', b'r'), (b'v', b'z')]); |
| 2224 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
| 2225 | } |
| 2226 | |
| 2227 | #[test] |
| 2228 | fn class_symmetric_difference_unicode() { |
| 2229 | let cls1 = uclass(&[('a', 'm')]); |
| 2230 | let cls2 = uclass(&[('g', 't')]); |
| 2231 | let expected = uclass(&[('a', 'f'), ('n', 't')]); |
| 2232 | assert_eq!(expected, usymdifference(&cls1, &cls2)); |
| 2233 | } |
| 2234 | |
| 2235 | #[test] |
| 2236 | fn class_symmetric_difference_bytes() { |
| 2237 | let cls1 = bclass(&[(b'a', b'm')]); |
| 2238 | let cls2 = bclass(&[(b'g', b't')]); |
| 2239 | let expected = bclass(&[(b'a', b'f'), (b'n', b't')]); |
| 2240 | assert_eq!(expected, bsymdifference(&cls1, &cls2)); |
| 2241 | } |
| 2242 | |
| 2243 | #[test] |
| 2244 | #[should_panic] |
| 2245 | fn hir_byte_literal_non_ascii() { |
| 2246 | Hir::literal(Literal::Byte(b'a')); |
| 2247 | } |
| 2248 | |
| 2249 | // We use a thread with an explicit stack size to test that our destructor |
| 2250 | // for Hir can handle arbitrarily sized expressions in constant stack |
| 2251 | // space. In case we run on a platform without threads (WASM?), we limit |
| 2252 | // this test to Windows/Unix. |
| 2253 | #[test] |
| 2254 | #[cfg(any(unix, windows))] |
| 2255 | fn no_stack_overflow_on_drop() { |
| 2256 | use std::thread; |
| 2257 | |
| 2258 | let run = || { |
| 2259 | let mut expr = Hir::empty(); |
| 2260 | for _ in 0..100 { |
| 2261 | expr = Hir::group(Group { |
| 2262 | kind: GroupKind::NonCapturing, |
| 2263 | hir: Box::new(expr), |
| 2264 | }); |
| 2265 | expr = Hir::repetition(Repetition { |
| 2266 | kind: RepetitionKind::ZeroOrOne, |
| 2267 | greedy: true, |
| 2268 | hir: Box::new(expr), |
| 2269 | }); |
| 2270 | |
| 2271 | expr = Hir { |
| 2272 | kind: HirKind::Concat(vec![expr]), |
| 2273 | info: HirInfo::new(), |
| 2274 | }; |
| 2275 | expr = Hir { |
| 2276 | kind: HirKind::Alternation(vec![expr]), |
| 2277 | info: HirInfo::new(), |
| 2278 | }; |
| 2279 | } |
| 2280 | assert!(!expr.kind.is_empty()); |
| 2281 | }; |
| 2282 | |
| 2283 | // We run our test on a thread with a small stack size so we can |
| 2284 | // force the issue more easily. |
| 2285 | thread::Builder::new() |
| 2286 | .stack_size(1 << 10) |
| 2287 | .spawn(run) |
| 2288 | .unwrap() |
| 2289 | .join() |
| 2290 | .unwrap(); |
| 2291 | } |
| 2292 | } |