Chih-Hung Hsieh | 048fc04 | 2020-04-16 10:44:22 -0700 | [diff] [blame] | 1 | /*! |
| 2 | Converts ranges of Unicode scalar values to equivalent ranges of UTF-8 bytes. |
| 3 | |
| 4 | This is sub-module is useful for constructing byte based automatons that need |
| 5 | to embed UTF-8 decoding. The most common use of this module is in conjunction |
| 6 | with the [`hir::ClassUnicodeRange`](../hir/struct.ClassUnicodeRange.html) type. |
| 7 | |
| 8 | See the documentation on the `Utf8Sequences` iterator for more details and |
| 9 | an example. |
| 10 | |
| 11 | # Wait, what is this? |
| 12 | |
| 13 | This is simplest to explain with an example. Let's say you wanted to test |
| 14 | whether a particular byte sequence was a Cyrillic character. One possible |
| 15 | scalar value range is `[0400-04FF]`. The set of allowed bytes for this |
| 16 | range can be expressed as a sequence of byte ranges: |
| 17 | |
| 18 | ```ignore |
| 19 | [D0-D3][80-BF] |
| 20 | ``` |
| 21 | |
| 22 | This is simple enough: simply encode the boundaries, `0400` encodes to |
| 23 | `D0 80` and `04FF` encodes to `D3 BF`, and create ranges from each |
| 24 | corresponding pair of bytes: `D0` to `D3` and `80` to `BF`. |
| 25 | |
| 26 | However, what if you wanted to add the Cyrillic Supplementary characters to |
| 27 | your range? Your range might then become `[0400-052F]`. The same procedure |
| 28 | as above doesn't quite work because `052F` encodes to `D4 AF`. The byte ranges |
| 29 | you'd get from the previous transformation would be `[D0-D4][80-AF]`. However, |
| 30 | this isn't quite correct because this range doesn't capture many characters, |
| 31 | for example, `04FF` (because its last byte, `BF` isn't in the range `80-AF`). |
| 32 | |
| 33 | Instead, you need multiple sequences of byte ranges: |
| 34 | |
| 35 | ```ignore |
| 36 | [D0-D3][80-BF] # matches codepoints 0400-04FF |
| 37 | [D4][80-AF] # matches codepoints 0500-052F |
| 38 | ``` |
| 39 | |
| 40 | This gets even more complicated if you want bigger ranges, particularly if |
| 41 | they naively contain surrogate codepoints. For example, the sequence of byte |
| 42 | ranges for the basic multilingual plane (`[0000-FFFF]`) look like this: |
| 43 | |
| 44 | ```ignore |
| 45 | [0-7F] |
| 46 | [C2-DF][80-BF] |
| 47 | [E0][A0-BF][80-BF] |
| 48 | [E1-EC][80-BF][80-BF] |
| 49 | [ED][80-9F][80-BF] |
| 50 | [EE-EF][80-BF][80-BF] |
| 51 | ``` |
| 52 | |
| 53 | Note that the byte ranges above will *not* match any erroneous encoding of |
| 54 | UTF-8, including encodings of surrogate codepoints. |
| 55 | |
| 56 | And, of course, for all of Unicode (`[000000-10FFFF]`): |
| 57 | |
| 58 | ```ignore |
| 59 | [0-7F] |
| 60 | [C2-DF][80-BF] |
| 61 | [E0][A0-BF][80-BF] |
| 62 | [E1-EC][80-BF][80-BF] |
| 63 | [ED][80-9F][80-BF] |
| 64 | [EE-EF][80-BF][80-BF] |
| 65 | [F0][90-BF][80-BF][80-BF] |
| 66 | [F1-F3][80-BF][80-BF][80-BF] |
| 67 | [F4][80-8F][80-BF][80-BF] |
| 68 | ``` |
| 69 | |
| 70 | This module automates the process of creating these byte ranges from ranges of |
| 71 | Unicode scalar values. |
| 72 | |
| 73 | # Lineage |
| 74 | |
| 75 | I got the idea and general implementation strategy from Russ Cox in his |
| 76 | [article on regexps](https://web.archive.org/web/20160404141123/https://swtch.com/~rsc/regexp/regexp3.html) and RE2. |
| 77 | Russ Cox got it from Ken Thompson's `grep` (no source, folk lore?). |
| 78 | I also got the idea from |
| 79 | [Lucene](https://github.com/apache/lucene-solr/blob/ae93f4e7ac6a3908046391de35d4f50a0d3c59ca/lucene/core/src/java/org/apache/lucene/util/automaton/UTF32ToUTF8.java), |
| 80 | which uses it for executing automata on their term index. |
| 81 | */ |
| 82 | |
| 83 | #![deny(missing_docs)] |
| 84 | |
| 85 | use std::char; |
| 86 | use std::fmt; |
| 87 | use std::slice; |
| 88 | |
| 89 | const MAX_UTF8_BYTES: usize = 4; |
| 90 | |
| 91 | /// Utf8Sequence represents a sequence of byte ranges. |
| 92 | /// |
| 93 | /// To match a Utf8Sequence, a candidate byte sequence must match each |
| 94 | /// successive range. |
| 95 | /// |
| 96 | /// For example, if there are two ranges, `[C2-DF][80-BF]`, then the byte |
| 97 | /// sequence `\xDD\x61` would not match because `0x61 < 0x80`. |
| 98 | #[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord)] |
| 99 | pub enum Utf8Sequence { |
| 100 | /// One byte range. |
| 101 | One(Utf8Range), |
| 102 | /// Two successive byte ranges. |
| 103 | Two([Utf8Range; 2]), |
| 104 | /// Three successive byte ranges. |
| 105 | Three([Utf8Range; 3]), |
| 106 | /// Four successive byte ranges. |
| 107 | Four([Utf8Range; 4]), |
| 108 | } |
| 109 | |
| 110 | impl Utf8Sequence { |
| 111 | /// Creates a new UTF-8 sequence from the encoded bytes of a scalar value |
| 112 | /// range. |
| 113 | /// |
| 114 | /// This assumes that `start` and `end` have the same length. |
| 115 | fn from_encoded_range(start: &[u8], end: &[u8]) -> Self { |
| 116 | assert_eq!(start.len(), end.len()); |
| 117 | match start.len() { |
| 118 | 2 => Utf8Sequence::Two([ |
| 119 | Utf8Range::new(start[0], end[0]), |
| 120 | Utf8Range::new(start[1], end[1]), |
| 121 | ]), |
| 122 | 3 => Utf8Sequence::Three([ |
| 123 | Utf8Range::new(start[0], end[0]), |
| 124 | Utf8Range::new(start[1], end[1]), |
| 125 | Utf8Range::new(start[2], end[2]), |
| 126 | ]), |
| 127 | 4 => Utf8Sequence::Four([ |
| 128 | Utf8Range::new(start[0], end[0]), |
| 129 | Utf8Range::new(start[1], end[1]), |
| 130 | Utf8Range::new(start[2], end[2]), |
| 131 | Utf8Range::new(start[3], end[3]), |
| 132 | ]), |
| 133 | n => unreachable!("invalid encoded length: {}", n), |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | /// Returns the underlying sequence of byte ranges as a slice. |
| 138 | pub fn as_slice(&self) -> &[Utf8Range] { |
| 139 | use self::Utf8Sequence::*; |
| 140 | match *self { |
| 141 | One(ref r) => slice::from_ref(r), |
| 142 | Two(ref r) => &r[..], |
| 143 | Three(ref r) => &r[..], |
| 144 | Four(ref r) => &r[..], |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /// Returns the number of byte ranges in this sequence. |
| 149 | /// |
| 150 | /// The length is guaranteed to be in the closed interval `[1, 4]`. |
| 151 | pub fn len(&self) -> usize { |
| 152 | self.as_slice().len() |
| 153 | } |
| 154 | |
| 155 | /// Reverses the ranges in this sequence. |
| 156 | /// |
| 157 | /// For example, if this corresponds to the following sequence: |
| 158 | /// |
| 159 | /// ```ignore |
| 160 | /// [D0-D3][80-BF] |
| 161 | /// ``` |
| 162 | /// |
| 163 | /// Then after reversal, it will be |
| 164 | /// |
| 165 | /// ```ignore |
| 166 | /// [80-BF][D0-D3] |
| 167 | /// ``` |
| 168 | /// |
| 169 | /// This is useful when one is constructing a UTF-8 automaton to match |
| 170 | /// character classes in reverse. |
| 171 | pub fn reverse(&mut self) { |
| 172 | match *self { |
| 173 | Utf8Sequence::One(_) => {} |
| 174 | Utf8Sequence::Two(ref mut x) => x.reverse(), |
| 175 | Utf8Sequence::Three(ref mut x) => x.reverse(), |
| 176 | Utf8Sequence::Four(ref mut x) => x.reverse(), |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | /// Returns true if and only if a prefix of `bytes` matches this sequence |
| 181 | /// of byte ranges. |
| 182 | pub fn matches(&self, bytes: &[u8]) -> bool { |
| 183 | if bytes.len() < self.len() { |
| 184 | return false; |
| 185 | } |
| 186 | for (&b, r) in bytes.iter().zip(self) { |
| 187 | if !r.matches(b) { |
| 188 | return false; |
| 189 | } |
| 190 | } |
| 191 | true |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | impl<'a> IntoIterator for &'a Utf8Sequence { |
| 196 | type IntoIter = slice::Iter<'a, Utf8Range>; |
| 197 | type Item = &'a Utf8Range; |
| 198 | |
| 199 | fn into_iter(self) -> Self::IntoIter { |
| 200 | self.as_slice().into_iter() |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | impl fmt::Debug for Utf8Sequence { |
| 205 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 206 | use self::Utf8Sequence::*; |
| 207 | match *self { |
| 208 | One(ref r) => write!(f, "{:?}", r), |
| 209 | Two(ref r) => write!(f, "{:?}{:?}", r[0], r[1]), |
| 210 | Three(ref r) => write!(f, "{:?}{:?}{:?}", r[0], r[1], r[2]), |
| 211 | Four(ref r) => { |
| 212 | write!(f, "{:?}{:?}{:?}{:?}", r[0], r[1], r[2], r[3]) |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /// A single inclusive range of UTF-8 bytes. |
| 219 | #[derive(Clone, Copy, Eq, PartialEq, PartialOrd, Ord)] |
| 220 | pub struct Utf8Range { |
| 221 | /// Start of byte range (inclusive). |
| 222 | pub start: u8, |
| 223 | /// End of byte range (inclusive). |
| 224 | pub end: u8, |
| 225 | } |
| 226 | |
| 227 | impl Utf8Range { |
| 228 | fn new(start: u8, end: u8) -> Self { |
| 229 | Utf8Range { start, end } |
| 230 | } |
| 231 | |
| 232 | /// Returns true if and only if the given byte is in this range. |
| 233 | pub fn matches(&self, b: u8) -> bool { |
| 234 | self.start <= b && b <= self.end |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | impl fmt::Debug for Utf8Range { |
| 239 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 240 | if self.start == self.end { |
| 241 | write!(f, "[{:X}]", self.start) |
| 242 | } else { |
| 243 | write!(f, "[{:X}-{:X}]", self.start, self.end) |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /// An iterator over ranges of matching UTF-8 byte sequences. |
| 249 | /// |
| 250 | /// The iteration represents an alternation of comprehensive byte sequences |
| 251 | /// that match precisely the set of UTF-8 encoded scalar values. |
| 252 | /// |
| 253 | /// A byte sequence corresponds to one of the scalar values in the range given |
| 254 | /// if and only if it completely matches exactly one of the sequences of byte |
| 255 | /// ranges produced by this iterator. |
| 256 | /// |
| 257 | /// Each sequence of byte ranges matches a unique set of bytes. That is, no two |
| 258 | /// sequences will match the same bytes. |
| 259 | /// |
| 260 | /// # Example |
| 261 | /// |
| 262 | /// This shows how to match an arbitrary byte sequence against a range of |
| 263 | /// scalar values. |
| 264 | /// |
| 265 | /// ```rust |
| 266 | /// use regex_syntax::utf8::{Utf8Sequences, Utf8Sequence}; |
| 267 | /// |
| 268 | /// fn matches(seqs: &[Utf8Sequence], bytes: &[u8]) -> bool { |
| 269 | /// for range in seqs { |
| 270 | /// if range.matches(bytes) { |
| 271 | /// return true; |
| 272 | /// } |
| 273 | /// } |
| 274 | /// false |
| 275 | /// } |
| 276 | /// |
| 277 | /// // Test the basic multilingual plane. |
| 278 | /// let seqs: Vec<_> = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect(); |
| 279 | /// |
| 280 | /// // UTF-8 encoding of 'a'. |
| 281 | /// assert!(matches(&seqs, &[0x61])); |
| 282 | /// // UTF-8 encoding of '☃' (`\u{2603}`). |
| 283 | /// assert!(matches(&seqs, &[0xE2, 0x98, 0x83])); |
| 284 | /// // UTF-8 encoding of `\u{10348}` (outside the BMP). |
| 285 | /// assert!(!matches(&seqs, &[0xF0, 0x90, 0x8D, 0x88])); |
| 286 | /// // Tries to match against a UTF-8 encoding of a surrogate codepoint, |
| 287 | /// // which is invalid UTF-8, and therefore fails, despite the fact that |
| 288 | /// // the corresponding codepoint (0xD800) falls in the range given. |
| 289 | /// assert!(!matches(&seqs, &[0xED, 0xA0, 0x80])); |
| 290 | /// // And fails against plain old invalid UTF-8. |
| 291 | /// assert!(!matches(&seqs, &[0xFF, 0xFF])); |
| 292 | /// ``` |
| 293 | /// |
| 294 | /// If this example seems circuitous, that's because it is! It's meant to be |
| 295 | /// illustrative. In practice, you could just try to decode your byte sequence |
| 296 | /// and compare it with the scalar value range directly. However, this is not |
| 297 | /// always possible (for example, in a byte based automaton). |
| 298 | pub struct Utf8Sequences { |
| 299 | range_stack: Vec<ScalarRange>, |
| 300 | } |
| 301 | |
| 302 | impl Utf8Sequences { |
| 303 | /// Create a new iterator over UTF-8 byte ranges for the scalar value range |
| 304 | /// given. |
| 305 | pub fn new(start: char, end: char) -> Self { |
| 306 | let mut it = Utf8Sequences { range_stack: vec![] }; |
| 307 | it.push(start as u32, end as u32); |
| 308 | it |
| 309 | } |
| 310 | |
| 311 | /// reset resets the scalar value range. |
| 312 | /// Any existing state is cleared, but resources may be reused. |
| 313 | /// |
| 314 | /// N.B. Benchmarks say that this method is dubious. |
| 315 | #[doc(hidden)] |
| 316 | pub fn reset(&mut self, start: char, end: char) { |
| 317 | self.range_stack.clear(); |
| 318 | self.push(start as u32, end as u32); |
| 319 | } |
| 320 | |
| 321 | fn push(&mut self, start: u32, end: u32) { |
| 322 | self.range_stack.push(ScalarRange { start, end }); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | struct ScalarRange { |
| 327 | start: u32, |
| 328 | end: u32, |
| 329 | } |
| 330 | |
| 331 | impl fmt::Debug for ScalarRange { |
| 332 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 333 | write!(f, "ScalarRange({:X}, {:X})", self.start, self.end) |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | impl Iterator for Utf8Sequences { |
| 338 | type Item = Utf8Sequence; |
| 339 | |
| 340 | fn next(&mut self) -> Option<Self::Item> { |
| 341 | 'TOP: while let Some(mut r) = self.range_stack.pop() { |
| 342 | 'INNER: loop { |
| 343 | if let Some((r1, r2)) = r.split() { |
| 344 | self.push(r2.start, r2.end); |
| 345 | r.start = r1.start; |
| 346 | r.end = r1.end; |
| 347 | continue 'INNER; |
| 348 | } |
| 349 | if !r.is_valid() { |
| 350 | continue 'TOP; |
| 351 | } |
| 352 | for i in 1..MAX_UTF8_BYTES { |
| 353 | let max = max_scalar_value(i); |
| 354 | if r.start <= max && max < r.end { |
| 355 | self.push(max + 1, r.end); |
| 356 | r.end = max; |
| 357 | continue 'INNER; |
| 358 | } |
| 359 | } |
| 360 | if let Some(ascii_range) = r.as_ascii() { |
| 361 | return Some(Utf8Sequence::One(ascii_range)); |
| 362 | } |
| 363 | for i in 1..MAX_UTF8_BYTES { |
| 364 | let m = (1 << (6 * i)) - 1; |
| 365 | if (r.start & !m) != (r.end & !m) { |
| 366 | if (r.start & m) != 0 { |
| 367 | self.push((r.start | m) + 1, r.end); |
| 368 | r.end = r.start | m; |
| 369 | continue 'INNER; |
| 370 | } |
| 371 | if (r.end & m) != m { |
| 372 | self.push(r.end & !m, r.end); |
| 373 | r.end = (r.end & !m) - 1; |
| 374 | continue 'INNER; |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | let mut start = [0; MAX_UTF8_BYTES]; |
| 379 | let mut end = [0; MAX_UTF8_BYTES]; |
| 380 | let n = r.encode(&mut start, &mut end); |
| 381 | return Some(Utf8Sequence::from_encoded_range( |
| 382 | &start[0..n], |
| 383 | &end[0..n], |
| 384 | )); |
| 385 | } |
| 386 | } |
| 387 | None |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | impl ScalarRange { |
| 392 | /// split splits this range if it overlaps with a surrogate codepoint. |
| 393 | /// |
| 394 | /// Either or both ranges may be invalid. |
| 395 | fn split(&self) -> Option<(ScalarRange, ScalarRange)> { |
| 396 | if self.start < 0xE000 && self.end > 0xD7FF { |
| 397 | Some(( |
| 398 | ScalarRange { start: self.start, end: 0xD7FF }, |
| 399 | ScalarRange { start: 0xE000, end: self.end }, |
| 400 | )) |
| 401 | } else { |
| 402 | None |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | /// is_valid returns true if and only if start <= end. |
| 407 | fn is_valid(&self) -> bool { |
| 408 | self.start <= self.end |
| 409 | } |
| 410 | |
| 411 | /// as_ascii returns this range as a Utf8Range if and only if all scalar |
| 412 | /// values in this range can be encoded as a single byte. |
| 413 | fn as_ascii(&self) -> Option<Utf8Range> { |
| 414 | if self.is_ascii() { |
| 415 | Some(Utf8Range::new(self.start as u8, self.end as u8)) |
| 416 | } else { |
| 417 | None |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | /// is_ascii returns true if the range is ASCII only (i.e., takes a single |
| 422 | /// byte to encode any scalar value). |
| 423 | fn is_ascii(&self) -> bool { |
| 424 | self.is_valid() && self.end <= 0x7f |
| 425 | } |
| 426 | |
| 427 | /// encode writes the UTF-8 encoding of the start and end of this range |
| 428 | /// to the corresponding destination slices, and returns the number of |
| 429 | /// bytes written. |
| 430 | /// |
| 431 | /// The slices should have room for at least `MAX_UTF8_BYTES`. |
| 432 | fn encode(&self, start: &mut [u8], end: &mut [u8]) -> usize { |
| 433 | let cs = char::from_u32(self.start).unwrap(); |
| 434 | let ce = char::from_u32(self.end).unwrap(); |
| 435 | let ss = cs.encode_utf8(start); |
| 436 | let se = ce.encode_utf8(end); |
| 437 | assert_eq!(ss.len(), se.len()); |
| 438 | ss.len() |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | fn max_scalar_value(nbytes: usize) -> u32 { |
| 443 | match nbytes { |
| 444 | 1 => 0x007F, |
| 445 | 2 => 0x07FF, |
| 446 | 3 => 0xFFFF, |
| 447 | 4 => 0x10FFFF, |
| 448 | _ => unreachable!("invalid UTF-8 byte sequence size"), |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | #[cfg(test)] |
| 453 | mod tests { |
| 454 | use std::char; |
| 455 | |
| 456 | use utf8::{Utf8Range, Utf8Sequences}; |
| 457 | |
| 458 | fn rutf8(s: u8, e: u8) -> Utf8Range { |
| 459 | Utf8Range::new(s, e) |
| 460 | } |
| 461 | |
| 462 | fn never_accepts_surrogate_codepoints(start: char, end: char) { |
| 463 | for cp in 0xD800..0xE000 { |
| 464 | let buf = encode_surrogate(cp); |
| 465 | for r in Utf8Sequences::new(start, end) { |
| 466 | if r.matches(&buf) { |
| 467 | panic!( |
| 468 | "Sequence ({:X}, {:X}) contains range {:?}, \ |
| 469 | which matches surrogate code point {:X} \ |
| 470 | with encoded bytes {:?}", |
| 471 | start as u32, end as u32, r, cp, buf, |
| 472 | ); |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | #[test] |
| 479 | fn codepoints_no_surrogates() { |
| 480 | never_accepts_surrogate_codepoints('\u{0}', '\u{FFFF}'); |
| 481 | never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFF}'); |
| 482 | never_accepts_surrogate_codepoints('\u{0}', '\u{10FFFE}'); |
| 483 | never_accepts_surrogate_codepoints('\u{80}', '\u{10FFFF}'); |
| 484 | never_accepts_surrogate_codepoints('\u{D7FF}', '\u{E000}'); |
| 485 | } |
| 486 | |
| 487 | #[test] |
| 488 | fn single_codepoint_one_sequence() { |
| 489 | // Tests that every range of scalar values that contains a single |
| 490 | // scalar value is recognized by one sequence of byte ranges. |
| 491 | for i in 0x0..(0x10FFFF + 1) { |
| 492 | let c = match char::from_u32(i) { |
| 493 | None => continue, |
| 494 | Some(c) => c, |
| 495 | }; |
| 496 | let seqs: Vec<_> = Utf8Sequences::new(c, c).collect(); |
| 497 | assert_eq!(seqs.len(), 1); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | #[test] |
| 502 | fn bmp() { |
| 503 | use utf8::Utf8Sequence::*; |
| 504 | |
| 505 | let seqs = Utf8Sequences::new('\u{0}', '\u{FFFF}').collect::<Vec<_>>(); |
| 506 | assert_eq!( |
| 507 | seqs, |
| 508 | vec![ |
| 509 | One(rutf8(0x0, 0x7F)), |
| 510 | Two([rutf8(0xC2, 0xDF), rutf8(0x80, 0xBF)]), |
| 511 | Three([ |
| 512 | rutf8(0xE0, 0xE0), |
| 513 | rutf8(0xA0, 0xBF), |
| 514 | rutf8(0x80, 0xBF) |
| 515 | ]), |
| 516 | Three([ |
| 517 | rutf8(0xE1, 0xEC), |
| 518 | rutf8(0x80, 0xBF), |
| 519 | rutf8(0x80, 0xBF) |
| 520 | ]), |
| 521 | Three([ |
| 522 | rutf8(0xED, 0xED), |
| 523 | rutf8(0x80, 0x9F), |
| 524 | rutf8(0x80, 0xBF) |
| 525 | ]), |
| 526 | Three([ |
| 527 | rutf8(0xEE, 0xEF), |
| 528 | rutf8(0x80, 0xBF), |
| 529 | rutf8(0x80, 0xBF) |
| 530 | ]), |
| 531 | ] |
| 532 | ); |
| 533 | } |
| 534 | |
| 535 | #[test] |
| 536 | fn reverse() { |
| 537 | use utf8::Utf8Sequence::*; |
| 538 | |
| 539 | let mut s = One(rutf8(0xA, 0xB)); |
| 540 | s.reverse(); |
| 541 | assert_eq!(s.as_slice(), &[rutf8(0xA, 0xB)]); |
| 542 | |
| 543 | let mut s = Two([rutf8(0xA, 0xB), rutf8(0xB, 0xC)]); |
| 544 | s.reverse(); |
| 545 | assert_eq!(s.as_slice(), &[rutf8(0xB, 0xC), rutf8(0xA, 0xB)]); |
| 546 | |
| 547 | let mut s = Three([rutf8(0xA, 0xB), rutf8(0xB, 0xC), rutf8(0xC, 0xD)]); |
| 548 | s.reverse(); |
| 549 | assert_eq!( |
| 550 | s.as_slice(), |
| 551 | &[rutf8(0xC, 0xD), rutf8(0xB, 0xC), rutf8(0xA, 0xB)] |
| 552 | ); |
| 553 | |
| 554 | let mut s = Four([ |
| 555 | rutf8(0xA, 0xB), |
| 556 | rutf8(0xB, 0xC), |
| 557 | rutf8(0xC, 0xD), |
| 558 | rutf8(0xD, 0xE), |
| 559 | ]); |
| 560 | s.reverse(); |
| 561 | assert_eq!( |
| 562 | s.as_slice(), |
| 563 | &[ |
| 564 | rutf8(0xD, 0xE), |
| 565 | rutf8(0xC, 0xD), |
| 566 | rutf8(0xB, 0xC), |
| 567 | rutf8(0xA, 0xB) |
| 568 | ] |
| 569 | ); |
| 570 | } |
| 571 | |
| 572 | fn encode_surrogate(cp: u32) -> [u8; 3] { |
| 573 | const TAG_CONT: u8 = 0b1000_0000; |
| 574 | const TAG_THREE_B: u8 = 0b1110_0000; |
| 575 | |
| 576 | assert!(0xD800 <= cp && cp < 0xE000); |
| 577 | let mut dst = [0; 3]; |
| 578 | dst[0] = (cp >> 12 & 0x0F) as u8 | TAG_THREE_B; |
| 579 | dst[1] = (cp >> 6 & 0x3F) as u8 | TAG_CONT; |
| 580 | dst[2] = (cp & 0x3F) as u8 | TAG_CONT; |
| 581 | dst |
| 582 | } |
| 583 | } |