blob: 3afa2d0f6c955208b21eea4cee985c263d43288d [file] [log] [blame]
use std::char;
use std::cmp::Ordering;
use std::fmt;
use std::ops;
use std::u32;
use syntax;
use literal::LiteralSearcher;
use prog::InstEmptyLook;
use utf8::{decode_last_utf8, decode_utf8};
/// Represents a location in the input.
#[derive(Clone, Copy, Debug)]
pub struct InputAt {
pos: usize,
c: Char,
byte: Option<u8>,
len: usize,
}
impl InputAt {
/// Returns true iff this position is at the beginning of the input.
pub fn is_start(&self) -> bool {
self.pos == 0
}
/// Returns true iff this position is past the end of the input.
pub fn is_end(&self) -> bool {
self.c.is_none() && self.byte.is_none()
}
/// Returns the character at this position.
///
/// If this position is just before or after the input, then an absent
/// character is returned.
pub fn char(&self) -> Char {
self.c
}
/// Returns the byte at this position.
pub fn byte(&self) -> Option<u8> {
self.byte
}
/// Returns the UTF-8 width of the character at this position.
pub fn len(&self) -> usize {
self.len
}
/// Returns whether the UTF-8 width of the character at this position
/// is zero.
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the byte offset of this position.
pub fn pos(&self) -> usize {
self.pos
}
/// Returns the byte offset of the next position in the input.
pub fn next_pos(&self) -> usize {
self.pos + self.len
}
}
/// An abstraction over input used in the matching engines.
pub trait Input: fmt::Debug {
/// Return an encoding of the position at byte offset `i`.
fn at(&self, i: usize) -> InputAt;
/// Return the Unicode character occurring next to `at`.
///
/// If no such character could be decoded, then `Char` is absent.
fn next_char(&self, at: InputAt) -> Char;
/// Return the Unicode character occurring previous to `at`.
///
/// If no such character could be decoded, then `Char` is absent.
fn previous_char(&self, at: InputAt) -> Char;
/// Return true if the given empty width instruction matches at the
/// input position given.
fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool;
/// Scan the input for a matching prefix.
fn prefix_at(
&self,
prefixes: &LiteralSearcher,
at: InputAt,
) -> Option<InputAt>;
/// The number of bytes in the input.
fn len(&self) -> usize;
/// Whether the input is empty.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return the given input as a sequence of bytes.
fn as_bytes(&self) -> &[u8];
}
impl<'a, T: Input> Input for &'a T {
fn at(&self, i: usize) -> InputAt {
(**self).at(i)
}
fn next_char(&self, at: InputAt) -> Char {
(**self).next_char(at)
}
fn previous_char(&self, at: InputAt) -> Char {
(**self).previous_char(at)
}
fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool {
(**self).is_empty_match(at, empty)
}
fn prefix_at(
&self,
prefixes: &LiteralSearcher,
at: InputAt,
) -> Option<InputAt> {
(**self).prefix_at(prefixes, at)
}
fn len(&self) -> usize {
(**self).len()
}
fn as_bytes(&self) -> &[u8] {
(**self).as_bytes()
}
}
/// An input reader over characters.
#[derive(Clone, Copy, Debug)]
pub struct CharInput<'t>(&'t [u8]);
impl<'t> CharInput<'t> {
/// Return a new character input reader for the given string.
pub fn new(s: &'t [u8]) -> CharInput<'t> {
CharInput(s)
}
}
impl<'t> ops::Deref for CharInput<'t> {
type Target = [u8];
fn deref(&self) -> &[u8] {
self.0
}
}
impl<'t> Input for CharInput<'t> {
fn at(&self, i: usize) -> InputAt {
if i >= self.len() {
InputAt { pos: self.len(), c: None.into(), byte: None, len: 0 }
} else {
let c = decode_utf8(&self[i..]).map(|(c, _)| c).into();
InputAt { pos: i, c: c, byte: None, len: c.len_utf8() }
}
}
fn next_char(&self, at: InputAt) -> Char {
at.char()
}
fn previous_char(&self, at: InputAt) -> Char {
decode_last_utf8(&self[..at.pos()]).map(|(c, _)| c).into()
}
fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool {
use prog::EmptyLook::*;
match empty.look {
StartLine => {
let c = self.previous_char(at);
at.pos() == 0 || c == '\n'
}
EndLine => {
let c = self.next_char(at);
at.pos() == self.len() || c == '\n'
}
StartText => at.pos() == 0,
EndText => at.pos() == self.len(),
WordBoundary => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
c1.is_word_char() != c2.is_word_char()
}
NotWordBoundary => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
c1.is_word_char() == c2.is_word_char()
}
WordBoundaryAscii => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
c1.is_word_byte() != c2.is_word_byte()
}
NotWordBoundaryAscii => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
c1.is_word_byte() == c2.is_word_byte()
}
}
}
fn prefix_at(
&self,
prefixes: &LiteralSearcher,
at: InputAt,
) -> Option<InputAt> {
prefixes.find(&self[at.pos()..]).map(|(s, _)| self.at(at.pos() + s))
}
fn len(&self) -> usize {
self.0.len()
}
fn as_bytes(&self) -> &[u8] {
self.0
}
}
/// An input reader over bytes.
#[derive(Clone, Copy, Debug)]
pub struct ByteInput<'t> {
text: &'t [u8],
only_utf8: bool,
}
impl<'t> ByteInput<'t> {
/// Return a new byte-based input reader for the given string.
pub fn new(text: &'t [u8], only_utf8: bool) -> ByteInput<'t> {
ByteInput { text: text, only_utf8: only_utf8 }
}
}
impl<'t> ops::Deref for ByteInput<'t> {
type Target = [u8];
fn deref(&self) -> &[u8] {
self.text
}
}
impl<'t> Input for ByteInput<'t> {
fn at(&self, i: usize) -> InputAt {
if i >= self.len() {
InputAt { pos: self.len(), c: None.into(), byte: None, len: 0 }
} else {
InputAt {
pos: i,
c: None.into(),
byte: self.get(i).cloned(),
len: 1,
}
}
}
fn next_char(&self, at: InputAt) -> Char {
decode_utf8(&self[at.pos()..]).map(|(c, _)| c).into()
}
fn previous_char(&self, at: InputAt) -> Char {
decode_last_utf8(&self[..at.pos()]).map(|(c, _)| c).into()
}
fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool {
use prog::EmptyLook::*;
match empty.look {
StartLine => {
let c = self.previous_char(at);
at.pos() == 0 || c == '\n'
}
EndLine => {
let c = self.next_char(at);
at.pos() == self.len() || c == '\n'
}
StartText => at.pos() == 0,
EndText => at.pos() == self.len(),
WordBoundary => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
c1.is_word_char() != c2.is_word_char()
}
NotWordBoundary => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
c1.is_word_char() == c2.is_word_char()
}
WordBoundaryAscii => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
if self.only_utf8 {
// If we must match UTF-8, then we can't match word
// boundaries at invalid UTF-8.
if c1.is_none() && !at.is_start() {
return false;
}
if c2.is_none() && !at.is_end() {
return false;
}
}
c1.is_word_byte() != c2.is_word_byte()
}
NotWordBoundaryAscii => {
let (c1, c2) = (self.previous_char(at), self.next_char(at));
if self.only_utf8 {
// If we must match UTF-8, then we can't match word
// boundaries at invalid UTF-8.
if c1.is_none() && !at.is_start() {
return false;
}
if c2.is_none() && !at.is_end() {
return false;
}
}
c1.is_word_byte() == c2.is_word_byte()
}
}
}
fn prefix_at(
&self,
prefixes: &LiteralSearcher,
at: InputAt,
) -> Option<InputAt> {
prefixes.find(&self[at.pos()..]).map(|(s, _)| self.at(at.pos() + s))
}
fn len(&self) -> usize {
self.text.len()
}
fn as_bytes(&self) -> &[u8] {
self.text
}
}
/// An inline representation of `Option<char>`.
///
/// This eliminates the need to do case analysis on `Option<char>` to determine
/// ordinality with other characters.
///
/// (The `Option<char>` is not related to encoding. Instead, it is used in the
/// matching engines to represent the beginning and ending boundaries of the
/// search text.)
#[derive(Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Char(u32);
impl fmt::Debug for Char {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match char::from_u32(self.0) {
None => write!(f, "Empty"),
Some(c) => write!(f, "{:?}", c),
}
}
}
impl Char {
/// Returns true iff the character is absent.
#[inline]
pub fn is_none(self) -> bool {
self.0 == u32::MAX
}
/// Returns the length of the character's UTF-8 encoding.
///
/// If the character is absent, then `1` is returned.
#[inline]
pub fn len_utf8(self) -> usize {
char::from_u32(self.0).map_or(1, |c| c.len_utf8())
}
/// Returns true iff the character is a word character.
///
/// If the character is absent, then false is returned.
pub fn is_word_char(self) -> bool {
// is_word_character can panic if the Unicode data for \w isn't
// available. However, our compiler ensures that if a Unicode word
// boundary is used, then the data must also be available. If it isn't,
// then the compiler returns an error.
char::from_u32(self.0).map_or(false, syntax::is_word_character)
}
/// Returns true iff the byte is a word byte.
///
/// If the byte is absent, then false is returned.
pub fn is_word_byte(self) -> bool {
match char::from_u32(self.0) {
Some(c) if c <= '\u{7F}' => syntax::is_word_byte(c as u8),
None | Some(_) => false,
}
}
}
impl From<char> for Char {
fn from(c: char) -> Char {
Char(c as u32)
}
}
impl From<Option<char>> for Char {
fn from(c: Option<char>) -> Char {
c.map_or(Char(u32::MAX), |c| c.into())
}
}
impl PartialEq<char> for Char {
#[inline]
fn eq(&self, other: &char) -> bool {
self.0 == *other as u32
}
}
impl PartialEq<Char> for char {
#[inline]
fn eq(&self, other: &Char) -> bool {
*self as u32 == other.0
}
}
impl PartialOrd<char> for Char {
#[inline]
fn partial_cmp(&self, other: &char) -> Option<Ordering> {
self.0.partial_cmp(&(*other as u32))
}
}
impl PartialOrd<Char> for char {
#[inline]
fn partial_cmp(&self, other: &Char) -> Option<Ordering> {
(*self as u32).partial_cmp(&other.0)
}
}