Chih-Hung Hsieh | e42c505 | 2020-04-16 10:44:21 -0700 | [diff] [blame^] | 1 | /// A few elementary UTF-8 encoding and decoding functions used by the matching |
| 2 | /// engines. |
| 3 | /// |
| 4 | /// In an ideal world, the matching engines operate on `&str` and we can just |
| 5 | /// lean on the standard library for all our UTF-8 needs. However, to support |
| 6 | /// byte based regexes (that can match on arbitrary bytes which may contain |
| 7 | /// UTF-8), we need to be capable of searching and decoding UTF-8 on a `&[u8]`. |
| 8 | /// The standard library doesn't really recognize this use case, so we have |
| 9 | /// to build it out ourselves. |
| 10 | /// |
| 11 | /// Should this be factored out into a separate crate? It seems independently |
| 12 | /// useful. There are other crates that already exist (e.g., `utf-8`) that have |
| 13 | /// overlapping use cases. Not sure what to do. |
| 14 | use std::char; |
| 15 | |
| 16 | const TAG_CONT: u8 = 0b1000_0000; |
| 17 | const TAG_TWO: u8 = 0b1100_0000; |
| 18 | const TAG_THREE: u8 = 0b1110_0000; |
| 19 | const TAG_FOUR: u8 = 0b1111_0000; |
| 20 | |
| 21 | /// Returns the smallest possible index of the next valid UTF-8 sequence |
| 22 | /// starting after `i`. |
| 23 | pub fn next_utf8(text: &[u8], i: usize) -> usize { |
| 24 | let b = match text.get(i) { |
| 25 | None => return i + 1, |
| 26 | Some(&b) => b, |
| 27 | }; |
| 28 | let inc = if b <= 0x7F { |
| 29 | 1 |
| 30 | } else if b <= 0b110_11111 { |
| 31 | 2 |
| 32 | } else if b <= 0b1110_1111 { |
| 33 | 3 |
| 34 | } else { |
| 35 | 4 |
| 36 | }; |
| 37 | i + inc |
| 38 | } |
| 39 | |
| 40 | /// Decode a single UTF-8 sequence into a single Unicode codepoint from `src`. |
| 41 | /// |
| 42 | /// If no valid UTF-8 sequence could be found, then `None` is returned. |
| 43 | /// Otherwise, the decoded codepoint and the number of bytes read is returned. |
| 44 | /// The number of bytes read (for a valid UTF-8 sequence) is guaranteed to be |
| 45 | /// 1, 2, 3 or 4. |
| 46 | /// |
| 47 | /// Note that a UTF-8 sequence is invalid if it is incorrect UTF-8, encodes a |
| 48 | /// codepoint that is out of range (surrogate codepoints are out of range) or |
| 49 | /// is not the shortest possible UTF-8 sequence for that codepoint. |
| 50 | #[inline] |
| 51 | pub fn decode_utf8(src: &[u8]) -> Option<(char, usize)> { |
| 52 | let b0 = match src.get(0) { |
| 53 | None => return None, |
| 54 | Some(&b) if b <= 0x7F => return Some((b as char, 1)), |
| 55 | Some(&b) => b, |
| 56 | }; |
| 57 | match b0 { |
| 58 | 0b110_00000..=0b110_11111 => { |
| 59 | if src.len() < 2 { |
| 60 | return None; |
| 61 | } |
| 62 | let b1 = src[1]; |
| 63 | if 0b11_000000 & b1 != TAG_CONT { |
| 64 | return None; |
| 65 | } |
| 66 | let cp = ((b0 & !TAG_TWO) as u32) << 6 | ((b1 & !TAG_CONT) as u32); |
| 67 | match cp { |
| 68 | 0x80..=0x7FF => char::from_u32(cp).map(|cp| (cp, 2)), |
| 69 | _ => None, |
| 70 | } |
| 71 | } |
| 72 | 0b1110_0000..=0b1110_1111 => { |
| 73 | if src.len() < 3 { |
| 74 | return None; |
| 75 | } |
| 76 | let (b1, b2) = (src[1], src[2]); |
| 77 | if 0b11_000000 & b1 != TAG_CONT { |
| 78 | return None; |
| 79 | } |
| 80 | if 0b11_000000 & b2 != TAG_CONT { |
| 81 | return None; |
| 82 | } |
| 83 | let cp = ((b0 & !TAG_THREE) as u32) << 12 |
| 84 | | ((b1 & !TAG_CONT) as u32) << 6 |
| 85 | | ((b2 & !TAG_CONT) as u32); |
| 86 | match cp { |
| 87 | // char::from_u32 will disallow surrogate codepoints. |
| 88 | 0x800..=0xFFFF => char::from_u32(cp).map(|cp| (cp, 3)), |
| 89 | _ => None, |
| 90 | } |
| 91 | } |
| 92 | 0b11110_000..=0b11110_111 => { |
| 93 | if src.len() < 4 { |
| 94 | return None; |
| 95 | } |
| 96 | let (b1, b2, b3) = (src[1], src[2], src[3]); |
| 97 | if 0b11_000000 & b1 != TAG_CONT { |
| 98 | return None; |
| 99 | } |
| 100 | if 0b11_000000 & b2 != TAG_CONT { |
| 101 | return None; |
| 102 | } |
| 103 | if 0b11_000000 & b3 != TAG_CONT { |
| 104 | return None; |
| 105 | } |
| 106 | let cp = ((b0 & !TAG_FOUR) as u32) << 18 |
| 107 | | ((b1 & !TAG_CONT) as u32) << 12 |
| 108 | | ((b2 & !TAG_CONT) as u32) << 6 |
| 109 | | ((b3 & !TAG_CONT) as u32); |
| 110 | match cp { |
| 111 | 0x10000..=0x10FFFF => char::from_u32(cp).map(|cp| (cp, 4)), |
| 112 | _ => None, |
| 113 | } |
| 114 | } |
| 115 | _ => None, |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | /// Like `decode_utf8`, but decodes the last UTF-8 sequence in `src` instead |
| 120 | /// of the first. |
| 121 | pub fn decode_last_utf8(src: &[u8]) -> Option<(char, usize)> { |
| 122 | if src.is_empty() { |
| 123 | return None; |
| 124 | } |
| 125 | let mut start = src.len() - 1; |
| 126 | if src[start] <= 0x7F { |
| 127 | return Some((src[start] as char, 1)); |
| 128 | } |
| 129 | while start > src.len().saturating_sub(4) { |
| 130 | start -= 1; |
| 131 | if is_start_byte(src[start]) { |
| 132 | break; |
| 133 | } |
| 134 | } |
| 135 | match decode_utf8(&src[start..]) { |
| 136 | None => None, |
| 137 | Some((_, n)) if n < src.len() - start => None, |
| 138 | Some((cp, n)) => Some((cp, n)), |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | fn is_start_byte(b: u8) -> bool { |
| 143 | b & 0b11_000000 != 0b1_0000000 |
| 144 | } |
| 145 | |
| 146 | #[cfg(test)] |
| 147 | mod tests { |
| 148 | use std::str; |
| 149 | |
| 150 | use quickcheck::quickcheck; |
| 151 | |
| 152 | use super::{ |
| 153 | decode_last_utf8, decode_utf8, TAG_CONT, TAG_FOUR, TAG_THREE, TAG_TWO, |
| 154 | }; |
| 155 | |
| 156 | #[test] |
| 157 | fn prop_roundtrip() { |
| 158 | fn p(given_cp: char) -> bool { |
| 159 | let mut tmp = [0; 4]; |
| 160 | let encoded_len = given_cp.encode_utf8(&mut tmp).len(); |
| 161 | let (got_cp, got_len) = decode_utf8(&tmp[..encoded_len]).unwrap(); |
| 162 | encoded_len == got_len && given_cp == got_cp |
| 163 | } |
| 164 | quickcheck(p as fn(char) -> bool) |
| 165 | } |
| 166 | |
| 167 | #[test] |
| 168 | fn prop_roundtrip_last() { |
| 169 | fn p(given_cp: char) -> bool { |
| 170 | let mut tmp = [0; 4]; |
| 171 | let encoded_len = given_cp.encode_utf8(&mut tmp).len(); |
| 172 | let (got_cp, got_len) = |
| 173 | decode_last_utf8(&tmp[..encoded_len]).unwrap(); |
| 174 | encoded_len == got_len && given_cp == got_cp |
| 175 | } |
| 176 | quickcheck(p as fn(char) -> bool) |
| 177 | } |
| 178 | |
| 179 | #[test] |
| 180 | fn prop_encode_matches_std() { |
| 181 | fn p(cp: char) -> bool { |
| 182 | let mut got = [0; 4]; |
| 183 | let n = cp.encode_utf8(&mut got).len(); |
| 184 | let expected = cp.to_string(); |
| 185 | &got[..n] == expected.as_bytes() |
| 186 | } |
| 187 | quickcheck(p as fn(char) -> bool) |
| 188 | } |
| 189 | |
| 190 | #[test] |
| 191 | fn prop_decode_matches_std() { |
| 192 | fn p(given_cp: char) -> bool { |
| 193 | let mut tmp = [0; 4]; |
| 194 | let n = given_cp.encode_utf8(&mut tmp).len(); |
| 195 | let (got_cp, _) = decode_utf8(&tmp[..n]).unwrap(); |
| 196 | let expected_cp = |
| 197 | str::from_utf8(&tmp[..n]).unwrap().chars().next().unwrap(); |
| 198 | got_cp == expected_cp |
| 199 | } |
| 200 | quickcheck(p as fn(char) -> bool) |
| 201 | } |
| 202 | |
| 203 | #[test] |
| 204 | fn prop_decode_last_matches_std() { |
| 205 | fn p(given_cp: char) -> bool { |
| 206 | let mut tmp = [0; 4]; |
| 207 | let n = given_cp.encode_utf8(&mut tmp).len(); |
| 208 | let (got_cp, _) = decode_last_utf8(&tmp[..n]).unwrap(); |
| 209 | let expected_cp = str::from_utf8(&tmp[..n]) |
| 210 | .unwrap() |
| 211 | .chars() |
| 212 | .rev() |
| 213 | .next() |
| 214 | .unwrap(); |
| 215 | got_cp == expected_cp |
| 216 | } |
| 217 | quickcheck(p as fn(char) -> bool) |
| 218 | } |
| 219 | |
| 220 | #[test] |
| 221 | fn reject_invalid() { |
| 222 | // Invalid start byte |
| 223 | assert_eq!(decode_utf8(&[0xFF]), None); |
| 224 | // Surrogate pair |
| 225 | assert_eq!(decode_utf8(&[0xED, 0xA0, 0x81]), None); |
| 226 | // Invalid continuation byte. |
| 227 | assert_eq!(decode_utf8(&[0xD4, 0xC2]), None); |
| 228 | // Bad lengths |
| 229 | assert_eq!(decode_utf8(&[0xC3]), None); // 2 bytes |
| 230 | assert_eq!(decode_utf8(&[0xEF, 0xBF]), None); // 3 bytes |
| 231 | assert_eq!(decode_utf8(&[0xF4, 0x8F, 0xBF]), None); // 4 bytes |
| 232 | // Not a minimal UTF-8 sequence |
| 233 | assert_eq!(decode_utf8(&[TAG_TWO, TAG_CONT | b'a']), None); |
| 234 | assert_eq!(decode_utf8(&[TAG_THREE, TAG_CONT, TAG_CONT | b'a']), None); |
| 235 | assert_eq!( |
| 236 | decode_utf8(&[TAG_FOUR, TAG_CONT, TAG_CONT, TAG_CONT | b'a',]), |
| 237 | None |
| 238 | ); |
| 239 | } |
| 240 | |
| 241 | #[test] |
| 242 | fn reject_invalid_last() { |
| 243 | // Invalid start byte |
| 244 | assert_eq!(decode_last_utf8(&[0xFF]), None); |
| 245 | // Surrogate pair |
| 246 | assert_eq!(decode_last_utf8(&[0xED, 0xA0, 0x81]), None); |
| 247 | // Bad lengths |
| 248 | assert_eq!(decode_last_utf8(&[0xC3]), None); // 2 bytes |
| 249 | assert_eq!(decode_last_utf8(&[0xEF, 0xBF]), None); // 3 bytes |
| 250 | assert_eq!(decode_last_utf8(&[0xF4, 0x8F, 0xBF]), None); // 4 bytes |
| 251 | // Not a minimal UTF-8 sequence |
| 252 | assert_eq!(decode_last_utf8(&[TAG_TWO, TAG_CONT | b'a']), None); |
| 253 | assert_eq!( |
| 254 | decode_last_utf8(&[TAG_THREE, TAG_CONT, TAG_CONT | b'a',]), |
| 255 | None |
| 256 | ); |
| 257 | assert_eq!( |
| 258 | decode_last_utf8( |
| 259 | &[TAG_FOUR, TAG_CONT, TAG_CONT, TAG_CONT | b'a',] |
| 260 | ), |
| 261 | None |
| 262 | ); |
| 263 | } |
| 264 | } |