Yi Kong | ce81bb6 | 2020-08-31 01:21:33 +0800 | [diff] [blame^] | 1 | // Translated from C to Rust. The original C code can be found at |
| 2 | // https://github.com/ulfjack/ryu and carries the following license: |
| 3 | // |
| 4 | // Copyright 2018 Ulf Adams |
| 5 | // |
| 6 | // The contents of this file may be used under the terms of the Apache License, |
| 7 | // Version 2.0. |
| 8 | // |
| 9 | // (See accompanying file LICENSE-Apache or copy at |
| 10 | // http://www.apache.org/licenses/LICENSE-2.0) |
| 11 | // |
| 12 | // Alternatively, the contents of this file may be used under the terms of |
| 13 | // the Boost Software License, Version 1.0. |
| 14 | // (See accompanying file LICENSE-Boost or copy at |
| 15 | // https://www.boost.org/LICENSE_1_0.txt) |
| 16 | // |
| 17 | // Unless required by applicable law or agreed to in writing, this software |
| 18 | // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 19 | // KIND, either express or implied. |
| 20 | |
| 21 | use crate::common::*; |
| 22 | use crate::f2s_intrinsics::*; |
| 23 | |
| 24 | pub const FLOAT_MANTISSA_BITS: u32 = 23; |
| 25 | pub const FLOAT_EXPONENT_BITS: u32 = 8; |
| 26 | const FLOAT_BIAS: i32 = 127; |
| 27 | pub use crate::f2s_intrinsics::{FLOAT_POW5_BITCOUNT, FLOAT_POW5_INV_BITCOUNT}; |
| 28 | |
| 29 | // A floating decimal representing m * 10^e. |
| 30 | pub struct FloatingDecimal32 { |
| 31 | pub mantissa: u32, |
| 32 | // Decimal exponent's range is -45 to 38 |
| 33 | // inclusive, and can fit in i16 if needed. |
| 34 | pub exponent: i32, |
| 35 | } |
| 36 | |
| 37 | #[cfg_attr(feature = "no-panic", inline)] |
| 38 | pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 { |
| 39 | let (e2, m2) = if ieee_exponent == 0 { |
| 40 | ( |
| 41 | // We subtract 2 so that the bounds computation has 2 additional bits. |
| 42 | 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2, |
| 43 | ieee_mantissa, |
| 44 | ) |
| 45 | } else { |
| 46 | ( |
| 47 | ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2, |
| 48 | (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa, |
| 49 | ) |
| 50 | }; |
| 51 | let even = (m2 & 1) == 0; |
| 52 | let accept_bounds = even; |
| 53 | |
| 54 | // Step 2: Determine the interval of valid decimal representations. |
| 55 | let mv = 4 * m2; |
| 56 | let mp = 4 * m2 + 2; |
| 57 | // Implicit bool -> int conversion. True is 1, false is 0. |
| 58 | let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32; |
| 59 | let mm = 4 * m2 - 1 - mm_shift; |
| 60 | |
| 61 | // Step 3: Convert to a decimal power base using 64-bit arithmetic. |
| 62 | let mut vr: u32; |
| 63 | let mut vp: u32; |
| 64 | let mut vm: u32; |
| 65 | let e10: i32; |
| 66 | let mut vm_is_trailing_zeros = false; |
| 67 | let mut vr_is_trailing_zeros = false; |
| 68 | let mut last_removed_digit = 0u8; |
| 69 | if e2 >= 0 { |
| 70 | let q = log10_pow2(e2); |
| 71 | e10 = q as i32; |
| 72 | let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1; |
| 73 | let i = -e2 + q as i32 + k; |
| 74 | vr = mul_pow5_inv_div_pow2(mv, q, i); |
| 75 | vp = mul_pow5_inv_div_pow2(mp, q, i); |
| 76 | vm = mul_pow5_inv_div_pow2(mm, q, i); |
| 77 | if q != 0 && (vp - 1) / 10 <= vm / 10 { |
| 78 | // We need to know one removed digit even if we are not going to loop below. We could use |
| 79 | // q = X - 1 above, except that would require 33 bits for the result, and we've found that |
| 80 | // 32-bit arithmetic is faster even on 64-bit machines. |
| 81 | let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1; |
| 82 | last_removed_digit = |
| 83 | (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8; |
| 84 | } |
| 85 | if q <= 9 { |
| 86 | // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well. |
| 87 | // Only one of mp, mv, and mm can be a multiple of 5, if any. |
| 88 | if mv % 5 == 0 { |
| 89 | vr_is_trailing_zeros = multiple_of_power_of_5_32(mv, q); |
| 90 | } else if accept_bounds { |
| 91 | vm_is_trailing_zeros = multiple_of_power_of_5_32(mm, q); |
| 92 | } else { |
| 93 | vp -= multiple_of_power_of_5_32(mp, q) as u32; |
| 94 | } |
| 95 | } |
| 96 | } else { |
| 97 | let q = log10_pow5(-e2); |
| 98 | e10 = q as i32 + e2; |
| 99 | let i = -e2 - q as i32; |
| 100 | let k = pow5bits(i) - FLOAT_POW5_BITCOUNT; |
| 101 | let mut j = q as i32 - k; |
| 102 | vr = mul_pow5_div_pow2(mv, i as u32, j); |
| 103 | vp = mul_pow5_div_pow2(mp, i as u32, j); |
| 104 | vm = mul_pow5_div_pow2(mm, i as u32, j); |
| 105 | if q != 0 && (vp - 1) / 10 <= vm / 10 { |
| 106 | j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT); |
| 107 | last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8; |
| 108 | } |
| 109 | if q <= 1 { |
| 110 | // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. |
| 111 | // mv = 4 * m2, so it always has at least two trailing 0 bits. |
| 112 | vr_is_trailing_zeros = true; |
| 113 | if accept_bounds { |
| 114 | // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1. |
| 115 | vm_is_trailing_zeros = mm_shift == 1; |
| 116 | } else { |
| 117 | // mp = mv + 2, so it always has at least one trailing 0 bit. |
| 118 | vp -= 1; |
| 119 | } |
| 120 | } else if q < 31 { |
| 121 | // TODO(ulfjack): Use a tighter bound here. |
| 122 | vr_is_trailing_zeros = multiple_of_power_of_2_32(mv, q - 1); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | // Step 4: Find the shortest decimal representation in the interval of valid representations. |
| 127 | let mut removed = 0i32; |
| 128 | let output = if vm_is_trailing_zeros || vr_is_trailing_zeros { |
| 129 | // General case, which happens rarely (~4.0%). |
| 130 | while vp / 10 > vm / 10 { |
| 131 | vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0; |
| 132 | vr_is_trailing_zeros &= last_removed_digit == 0; |
| 133 | last_removed_digit = (vr % 10) as u8; |
| 134 | vr /= 10; |
| 135 | vp /= 10; |
| 136 | vm /= 10; |
| 137 | removed += 1; |
| 138 | } |
| 139 | if vm_is_trailing_zeros { |
| 140 | while vm % 10 == 0 { |
| 141 | vr_is_trailing_zeros &= last_removed_digit == 0; |
| 142 | last_removed_digit = (vr % 10) as u8; |
| 143 | vr /= 10; |
| 144 | vp /= 10; |
| 145 | vm /= 10; |
| 146 | removed += 1; |
| 147 | } |
| 148 | } |
| 149 | if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 { |
| 150 | // Round even if the exact number is .....50..0. |
| 151 | last_removed_digit = 4; |
| 152 | } |
| 153 | // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| 154 | vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5) |
| 155 | as u32 |
| 156 | } else { |
| 157 | // Specialized for the common case (~96.0%). Percentages below are relative to this. |
| 158 | // Loop iterations below (approximately): |
| 159 | // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% |
| 160 | while vp / 10 > vm / 10 { |
| 161 | last_removed_digit = (vr % 10) as u8; |
| 162 | vr /= 10; |
| 163 | vp /= 10; |
| 164 | vm /= 10; |
| 165 | removed += 1; |
| 166 | } |
| 167 | // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| 168 | vr + (vr == vm || last_removed_digit >= 5) as u32 |
| 169 | }; |
| 170 | let exp = e10 + removed; |
| 171 | |
| 172 | FloatingDecimal32 { |
| 173 | exponent: exp, |
| 174 | mantissa: output, |
| 175 | } |
| 176 | } |