blob: 7a13890a605b73c96eba401098b1c07b1c9de6db [file] [log] [blame]
//! Synchronization primitive allowing multiple threads to synchronize the
//! beginning of some computation.
//!
//! Implementation adapted from the 'Barrier' type of the standard library. See:
//! <https://doc.rust-lang.org/std/sync/struct.Barrier.html>
//!
//! Copyright 2014 The Rust Project Developers. See the COPYRIGHT
//! file at the top-level directory of this distribution and at
//! <http://rust-lang.org/COPYRIGHT>.
//!
//! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
//! <http://www.apache.org/licenses/LICENSE-2.0>> or the MIT license
//! <LICENSE-MIT or <http://opensource.org/licenses/MIT>>, at your
//! option. This file may not be copied, modified, or distributed
//! except according to those terms.
use crate::{mutex::Mutex, RelaxStrategy, Spin};
/// A primitive that synchronizes the execution of multiple threads.
///
/// # Example
///
/// ```
/// use spin;
/// use std::sync::Arc;
/// use std::thread;
///
/// let mut handles = Vec::with_capacity(10);
/// let barrier = Arc::new(spin::Barrier::new(10));
/// for _ in 0..10 {
/// let c = barrier.clone();
/// // The same messages will be printed together.
/// // You will NOT see any interleaving.
/// handles.push(thread::spawn(move|| {
/// println!("before wait");
/// c.wait();
/// println!("after wait");
/// }));
/// }
/// // Wait for other threads to finish.
/// for handle in handles {
/// handle.join().unwrap();
/// }
/// ```
pub struct Barrier<R = Spin> {
lock: Mutex<BarrierState, R>,
num_threads: usize,
}
// The inner state of a double barrier
struct BarrierState {
count: usize,
generation_id: usize,
}
/// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`]
/// have rendezvoused.
///
/// [`wait`]: struct.Barrier.html#method.wait
/// [`Barrier`]: struct.Barrier.html
///
/// # Examples
///
/// ```
/// use spin;
///
/// let barrier = spin::Barrier::new(1);
/// let barrier_wait_result = barrier.wait();
/// ```
pub struct BarrierWaitResult(bool);
impl<R: RelaxStrategy> Barrier<R> {
/// Blocks the current thread until all threads have rendezvoused here.
///
/// Barriers are re-usable after all threads have rendezvoused once, and can
/// be used continuously.
///
/// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that
/// returns `true` from [`is_leader`] when returning from this function, and
/// all other threads will receive a result that will return `false` from
/// [`is_leader`].
///
/// [`BarrierWaitResult`]: struct.BarrierWaitResult.html
/// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader
///
/// # Examples
///
/// ```
/// use spin;
/// use std::sync::Arc;
/// use std::thread;
///
/// let mut handles = Vec::with_capacity(10);
/// let barrier = Arc::new(spin::Barrier::new(10));
/// for _ in 0..10 {
/// let c = barrier.clone();
/// // The same messages will be printed together.
/// // You will NOT see any interleaving.
/// handles.push(thread::spawn(move|| {
/// println!("before wait");
/// c.wait();
/// println!("after wait");
/// }));
/// }
/// // Wait for other threads to finish.
/// for handle in handles {
/// handle.join().unwrap();
/// }
/// ```
pub fn wait(&self) -> BarrierWaitResult {
let mut lock = self.lock.lock();
lock.count += 1;
if lock.count < self.num_threads {
// not the leader
let local_gen = lock.generation_id;
while local_gen == lock.generation_id &&
lock.count < self.num_threads {
drop(lock);
R::relax();
lock = self.lock.lock();
}
BarrierWaitResult(false)
} else {
// this thread is the leader,
// and is responsible for incrementing the generation
lock.count = 0;
lock.generation_id = lock.generation_id.wrapping_add(1);
BarrierWaitResult(true)
}
}
}
impl<R> Barrier<R> {
/// Creates a new barrier that can block a given number of threads.
///
/// A barrier will block `n`-1 threads which call [`wait`] and then wake up
/// all threads at once when the `n`th thread calls [`wait`]. A Barrier created
/// with n = 0 will behave identically to one created with n = 1.
///
/// [`wait`]: #method.wait
///
/// # Examples
///
/// ```
/// use spin;
///
/// let barrier = spin::Barrier::new(10);
/// ```
pub const fn new(n: usize) -> Self {
Self {
lock: Mutex::new(BarrierState {
count: 0,
generation_id: 0,
}),
num_threads: n,
}
}
}
impl BarrierWaitResult {
/// Returns whether this thread from [`wait`] is the "leader thread".
///
/// Only one thread will have `true` returned from their result, all other
/// threads will have `false` returned.
///
/// [`wait`]: struct.Barrier.html#method.wait
///
/// # Examples
///
/// ```
/// use spin;
///
/// let barrier = spin::Barrier::new(1);
/// let barrier_wait_result = barrier.wait();
/// println!("{:?}", barrier_wait_result.is_leader());
/// ```
pub fn is_leader(&self) -> bool { self.0 }
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::sync::mpsc::{channel, TryRecvError};
use std::sync::Arc;
use std::thread;
type Barrier = super::Barrier;
fn use_barrier(n: usize, barrier: Arc<Barrier>) {
let (tx, rx) = channel();
for _ in 0..n - 1 {
let c = barrier.clone();
let tx = tx.clone();
thread::spawn(move|| {
tx.send(c.wait().is_leader()).unwrap();
});
}
// At this point, all spawned threads should be blocked,
// so we shouldn't get anything from the port
assert!(match rx.try_recv() {
Err(TryRecvError::Empty) => true,
_ => false,
});
let mut leader_found = barrier.wait().is_leader();
// Now, the barrier is cleared and we should get data.
for _ in 0..n - 1 {
if rx.recv().unwrap() {
assert!(!leader_found);
leader_found = true;
}
}
assert!(leader_found);
}
#[test]
fn test_barrier() {
const N: usize = 10;
let barrier = Arc::new(Barrier::new(N));
use_barrier(N, barrier.clone());
// use barrier twice to ensure it is reusable
use_barrier(N, barrier.clone());
}
}