| /* Copyright 2019 Google LLC. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| // # What is "packing"? |
| // |
| // Before feeding data to the gemm kernels (the parts of Ruy that do lots |
| // of multiply-add operations), Ruy first performs a data transformation (which |
| // we call "packing") on the input matrices. This transformation has two main |
| // goals: |
| // - rearrange data into blocks that are a convenient size/layout for the gemm |
| // kernels to consume. This helps make the memory access pattern of the gemm |
| // kernel simpler and more contiguous, and puts the data in a layout most |
| // convenient for specific arithmetic instructions in the gemm kernel. |
| // - compute row/column sums needed for handling quantization with non-symmetric |
| // zero points. |
| // |
| // # Simplified algorithmic analysis of packing |
| // |
| // Packing is a relatively simple transformation which does a small constant |
| // amount of work on each element of an input matrix, and hence for an NxM |
| // matrix performs O(N*M) work. If N and M are of the same order, then this is |
| // O(N^2) work. |
| // |
| // A NxKxM matrix multiplication requires N*K*M multiply-accumulate operations. |
| // Note that if N, K, and M are all the same order, then the number of |
| // multiply-accumulate operations is O(N^3). |
| // |
| // Thus, the O(N^2) cost of packing is small compared to the O(N^3) work, in the |
| // case of all dimensions being roughly the same order. |
| // |
| // # Packing cost can be significant |
| // |
| // When matrix * matrix multiplications begin to look more like matrix * vector |
| // multiplications, packing cost can become significant. We sometimes call these |
| // cases "gemv-like". |
| // |
| // Continuing the algorithmic analysis above, if we consider a case where an |
| // NxKxM matrix multiplication has either N = O(1) or M = O(1), then the |
| // situation is different. In this case, the multiply-accumulate work is only |
| // quadratic, so the quadratic cost of packing can be come significant. |
| // |
| // Another way to say this is that the cost of packing an input matrix (either |
| // the LHS or RHS) is amortized across the non-depth dimension of the opposite |
| // input matrix. Thus, when the LHS has very few rows or the RHS has very few |
| // columns, the cost of packing the opposite input matrix can become |
| // significant. |
| // |
| // As a rough rule of thumb, the cost of packing starts to become significant |
| // when either N or M is below 32 (and other dimensions are hundreds), with very |
| // significant packing costs at 8 or below. This varies by data type, Path, and |
| // tuning, so these numbers are only rough guides. |
| // |
| // One practical use case that is affected by this is inference of |
| // fully connected neural network layers with a low batch size. The weight |
| // matrix (which is a constant for inference) is the one affected by significant |
| // packing cost. |
| // |
| // Ruy provides an API in ruy_advanced.h for advanced users to pre-pack |
| // input matrices that are affected by significant packing costs. |
| // |
| // # Implementation notes |
| // |
| // Ruy's packing routines always operate on a range of columns and can be |
| // applied to either the LHS or RHS. This is possible because Ruy internally |
| // implements a TrMul, so the accumulation along depth is done along columns of |
| // both the LHS and RHS (whereas for a normal Mul the accumulation along depth |
| // for the LHS is along rows). As another example, we are always computing |
| // column sums for quantization (and never row sums, since the LHS is |
| // transposed). |
| |
| #ifndef TENSORFLOW_LITE_EXPERIMENTAL_RUY_PACK_X86_H_ |
| #define TENSORFLOW_LITE_EXPERIMENTAL_RUY_PACK_X86_H_ |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <type_traits> |
| |
| #include "third_party/gemmlowp/profiling/instrumentation.h" |
| #include "check_macros.h" |
| #include "common.h" |
| #include "internal_matrix.h" |
| #include "matrix.h" |
| #include "opt_set.h" |
| #include "pack_common.h" |
| #include "path.h" |
| #include "platform.h" |
| #include "tune.h" |
| |
| namespace ruy { |
| |
| #if RUY_PLATFORM(X86) |
| // Note that source and zero buffers can be uint8 type, but in the packing |
| // function are reinterpreted as int8, and are XOR-ed with input_xor. |
| void Pack8bitAvx2(const std::int8_t* src_ptr, std::int8_t input_xor, |
| const std::int8_t* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, std::int8_t* packed_ptr, |
| std::int32_t* sums_ptr); |
| |
| template <typename Scalar> |
| struct PackImpl<Path::kAvx2, FixedKernelLayout<Order::kColMajor, 4, 8>, Scalar, |
| std::int8_t, std::int32_t> { |
| static_assert(std::is_same<Scalar, std::int8_t>::value || |
| std::is_same<Scalar, std::uint8_t>::value, |
| ""); |
| using Layout = FixedKernelLayout<Order::kColMajor, 4, 8>; |
| static constexpr std::int8_t kInputXor = |
| std::is_same<Scalar, std::int8_t>::value ? 0 : 0x80; |
| |
| static void Run(Tuning tuning, const Matrix<Scalar>& src_matrix, |
| PackedMatrix<std::int8_t>* packed_matrix, int start_col, |
| int end_col) { |
| gemmlowp::ScopedProfilingLabel label("Pack (AVX-512)"); |
| |
| RUY_DCHECK(IsColMajor(src_matrix.layout)); |
| RUY_DCHECK(IsColMajor(packed_matrix->layout)); |
| RUY_DCHECK_EQ((end_col - start_col) % Layout::kCols, 0); |
| RUY_DCHECK_EQ(start_col % Layout::kCols, 0); |
| std::int32_t* sums = packed_matrix->sums; |
| Scalar zerobuf[Layout::kCols * Layout::kRows]; |
| memset(zerobuf, packed_matrix->zero_point ^ kInputXor, |
| Layout::kCols * Layout::kRows * sizeof(Scalar)); |
| for (int block_col = start_col; block_col < end_col; |
| block_col += Layout::kCols) { |
| std::int32_t* sums_ptr = sums ? sums + block_col : nullptr; |
| int src_stride = src_matrix.layout.stride; |
| const Scalar* src_ptr = src_matrix.data.get() + src_stride * block_col; |
| int remaining_src_cols = src_matrix.layout.cols - block_col; |
| |
| static constexpr int block_col_mask = ~(Layout::kCols - 1); // High bits. |
| std::int8_t* packed_ptr = |
| packed_matrix->data + |
| packed_matrix->layout.stride * (block_col & block_col_mask); |
| Pack8bitAvx2(reinterpret_cast<const std::int8_t*>(src_ptr), kInputXor, |
| reinterpret_cast<const std::int8_t*>(zerobuf), src_stride, |
| remaining_src_cols, src_matrix.layout.rows, packed_ptr, |
| sums_ptr); |
| } |
| } |
| }; |
| |
| void PackFloatAvx2(const float* src_ptr, const float* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, float* packed_ptr); |
| |
| template <> |
| struct PackImpl<Path::kAvx2, FixedKernelLayout<Order::kRowMajor, 1, 8>, float, |
| float, float> { |
| using Layout = FixedKernelLayout<Order::kRowMajor, 1, 8>; |
| static void Run(Tuning, const Matrix<float>& src_matrix, |
| PackedMatrix<float>* packed_matrix, int start_col, |
| int end_col) { |
| RUY_DCHECK(IsColMajor(src_matrix.layout)); |
| RUY_DCHECK(IsColMajor(packed_matrix->layout)); |
| RUY_DCHECK_EQ((end_col - start_col) % Layout::kCols, 0); |
| RUY_DCHECK_EQ(start_col % Layout::kCols, 0); |
| const float zerobuf[Layout::kCols] = { |
| 0.0f}; // Remainder default inits to 0.0f. |
| for (int block_col = start_col; block_col < end_col; |
| block_col += Layout::kCols) { |
| int src_stride = src_matrix.layout.stride; |
| const float* src_ptr = src_matrix.data.get() + src_stride * block_col; |
| int remaining_src_cols = src_matrix.layout.cols - block_col; |
| |
| static constexpr int block_col_mask = ~(Layout::kCols - 1); // High bits. |
| float* packed_ptr = |
| packed_matrix->data + |
| packed_matrix->layout.stride * (block_col & block_col_mask); |
| PackFloatAvx2(src_ptr, zerobuf, src_stride, remaining_src_cols, |
| src_matrix.layout.rows, packed_ptr); |
| } |
| } |
| }; |
| |
| // Note that source and zero buffers can be uint8 type, but in the packing |
| // function are reinterpreted as int8, and are XOR-ed with input_xor. |
| void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor, |
| const std::int8_t* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, |
| std::int8_t* packed_ptr, std::int32_t* sums_ptr); |
| |
| template <typename Scalar> |
| struct PackImpl<Path::kAvx512, FixedKernelLayout<Order::kColMajor, 4, 16>, |
| Scalar, std::int8_t, std::int32_t> { |
| static_assert(std::is_same<Scalar, std::int8_t>::value || |
| std::is_same<Scalar, std::uint8_t>::value, |
| ""); |
| using Layout = FixedKernelLayout<Order::kColMajor, 4, 16>; |
| static constexpr int kHalfLayoutCols = |
| 8; // Half the number of cols in a block. |
| static constexpr std::int8_t kInputXor = |
| std::is_same<Scalar, std::int8_t>::value ? 0 : 0x80; |
| |
| static void Run(Tuning tuning, const Matrix<Scalar>& src_matrix, |
| PackedMatrix<std::int8_t>* packed_matrix, int start_col, |
| int end_col) { |
| gemmlowp::ScopedProfilingLabel label("Pack (AVX-512)"); |
| |
| RUY_DCHECK(IsColMajor(src_matrix.layout)); |
| RUY_DCHECK(IsColMajor(packed_matrix->layout)); |
| RUY_DCHECK_EQ((end_col - start_col) % Layout::kCols, 0); |
| RUY_DCHECK_EQ(start_col % Layout::kCols, 0); |
| RUY_DCHECK_EQ(kHalfLayoutCols * 2, Layout::kCols); |
| std::int32_t* sums = packed_matrix->sums; |
| Scalar zerobuf[kHalfLayoutCols * Layout::kRows]; |
| memset(zerobuf, packed_matrix->zero_point ^ kInputXor, |
| kHalfLayoutCols * Layout::kRows * sizeof(Scalar)); |
| for (int block_col = start_col; block_col < end_col; |
| block_col += Layout::kCols) { |
| std::int32_t* sums_ptr = sums ? sums + block_col : nullptr; |
| int src_stride = src_matrix.layout.stride; |
| const Scalar* src_ptr = src_matrix.data.get() + src_stride * block_col; |
| int remaining_src_cols = src_matrix.layout.cols - block_col; |
| |
| static constexpr int block_col_mask = ~(Layout::kCols - 1); // High bits. |
| std::int8_t* packed_ptr = |
| packed_matrix->data + |
| packed_matrix->layout.stride * (block_col & block_col_mask); |
| Pack8bitAvx512(reinterpret_cast<const std::int8_t*>(src_ptr), kInputXor, |
| reinterpret_cast<const std::int8_t*>(zerobuf), src_stride, |
| remaining_src_cols, src_matrix.layout.rows, packed_ptr, |
| sums_ptr); |
| } |
| } |
| }; |
| |
| void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, float* packed_ptr); |
| |
| template <> |
| struct PackImpl<Path::kAvx512, FixedKernelLayout<Order::kRowMajor, 1, 16>, |
| float, float, float> { |
| static void Run(Tuning, const Matrix<float>& src_matrix, |
| PackedMatrix<float>* packed_matrix, int start_col, |
| int end_col) { |
| using Layout = FixedKernelLayout<Order::kRowMajor, 1, 16>; |
| RUY_DCHECK(IsColMajor(src_matrix.layout)); |
| RUY_DCHECK(IsColMajor(packed_matrix->layout)); |
| RUY_DCHECK_EQ((end_col - start_col) % Layout::kCols, 0); |
| RUY_DCHECK_EQ(start_col % Layout::kCols, 0); |
| const float zerobuf[Layout::kCols] = { |
| 0.0f}; // Remainder default inits to 0.0f. |
| for (int block_col = start_col; block_col < end_col; |
| block_col += Layout::kCols) { |
| int src_stride = src_matrix.layout.stride; |
| const float* src_ptr = src_matrix.data.get() + src_stride * block_col; |
| int remaining_src_cols = src_matrix.layout.cols - block_col; |
| |
| static constexpr int block_col_mask = ~(Layout::kCols - 1); // High bits. |
| float* packed_ptr = |
| packed_matrix->data + |
| packed_matrix->layout.stride * (block_col & block_col_mask); |
| PackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols, |
| src_matrix.layout.rows, packed_ptr); |
| } |
| } |
| }; |
| #endif // RUY_PLATFORM(X86) |
| |
| } // namespace ruy |
| |
| #endif // TENSORFLOW_LITE_EXPERIMENTAL_RUY_PACK_X86_H_ |