| /* Copyright 2019 Google LLC. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <cstdint> |
| #include <cstring> |
| |
| #include "third_party/gemmlowp/profiling/instrumentation.h" |
| #include "check_macros.h" |
| #include "matrix.h" |
| #include "opt_set.h" |
| #include "pack.h" |
| #include "path.h" |
| #include "platform.h" |
| |
| #if RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_INTRINSICS) |
| #include <immintrin.h> // IWYU pragma: keep |
| #endif |
| |
| namespace ruy { |
| |
| #if !(RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_ASM)) |
| |
| void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor, |
| const std::int8_t* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, |
| std::int8_t* packed_ptr, std::int32_t* sums_ptr) { |
| // CPU-ID-based checks should disable the path that would reach this point. |
| RUY_DCHECK(false); |
| } |
| |
| void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, float* packed_ptr) { |
| // CPU-ID-based checks should disable the path that would reach this point. |
| RUY_DCHECK(false); |
| } |
| |
| #else // RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_ASM) |
| |
| // The first int8_t template parameter is arbitrary: this routine is common to |
| // all 8-bit source matrix types. |
| using PackImpl8bitAvx512 = |
| PackImpl<Path::kAvx512, FixedKernelLayout<Order::kColMajor, 4, 16>, |
| std::int8_t, std::int8_t, std::int32_t>; |
| |
| namespace { |
| |
| inline void ZeroHalf8bitAvx512(int src_rows, std::int8_t packed_zero_point, |
| std::int8_t* packed_ptr) { |
| using Layout = PackImpl8bitAvx512::Layout; |
| static constexpr int kHalfLayoutCols = |
| PackImpl8bitAvx512::kHalfLayoutCols; // Half the number of cols in a |
| // block. |
| RUY_DCHECK_EQ(kHalfLayoutCols, 8); |
| RUY_DCHECK_EQ(Layout::kCols, 16); |
| RUY_DCHECK_EQ(Layout::kRows, 4); |
| |
| const int non_trailing_blocks = (src_rows & ~31) >> 2; |
| // This routine fills half blocks, and typically fills the second halves. |
| // Thus packed_ptr is already offset by 8 * 4. |
| for (int k = 0; k < non_trailing_blocks; ++k) { |
| for (int j = 0; j < (kHalfLayoutCols * Layout::kRows); ++j) { |
| packed_ptr[Layout::kCols * Layout::kRows * k + j] = packed_zero_point; |
| } |
| } |
| } |
| |
| inline __m512i LoaduTwo(const std::int8_t* addr_lo, |
| const std::int8_t* addr_hi) { |
| __m512i lower_filled = _mm512_castsi256_si512(_mm256_loadu_epi8(addr_lo)); |
| return _mm512_inserti32x8(lower_filled, _mm256_loadu_epi8(addr_hi), 1); |
| } |
| |
| inline __m512i MaskLoaduTwo(__mmask32 row_mask, const __m256i default_value_v, |
| const std::int8_t* addr_lo, |
| const std::int8_t* addr_hi) { |
| const __m512i lower_filled = _mm512_castsi256_si512( |
| _mm256_mask_loadu_epi8(default_value_v, row_mask, addr_lo)); |
| return _mm512_inserti32x8( |
| lower_filled, _mm256_mask_loadu_epi8(default_value_v, row_mask, addr_hi), |
| 1); |
| } |
| |
| inline void HalfPack8bitAvx512(const std::int8_t* src_ptr, |
| std::int8_t input_xor, |
| const std::int8_t* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, |
| std::int8_t* packed_ptr, std::int32_t* sums_ptr, |
| std::int8_t* trailing_buf) { |
| using Layout = PackImpl8bitAvx512::Layout; |
| RUY_DCHECK_EQ(Layout::kCols, 16); |
| RUY_DCHECK_EQ(Layout::kRows, 4); |
| // Each Layout::Rows is 4 contiguous input, contiguous packed elements. |
| // We process 8 of these chunks at a time, padding short input chunks. |
| constexpr int kNumRowChunks = 8; |
| constexpr int kNumChunkedSrcRows = kNumRowChunks * Layout::kRows; |
| |
| const std::int8_t* src_ptr0 = src_ptr; |
| const std::int8_t* src_ptr1 = src_ptr0 + src_stride; |
| const std::int8_t* src_ptr2 = src_ptr1 + src_stride; |
| const std::int8_t* src_ptr3 = src_ptr2 + src_stride; |
| const std::int8_t* src_ptr4 = src_ptr3 + src_stride; |
| const std::int8_t* src_ptr5 = src_ptr4 + src_stride; |
| const std::int8_t* src_ptr6 = src_ptr5 + src_stride; |
| const std::int8_t* src_ptr7 = src_ptr6 + src_stride; |
| std::int64_t src_inc0 = kNumChunkedSrcRows; |
| std::int64_t src_inc1 = kNumChunkedSrcRows; |
| std::int64_t src_inc2 = kNumChunkedSrcRows; |
| std::int64_t src_inc3 = kNumChunkedSrcRows; |
| std::int64_t src_inc4 = kNumChunkedSrcRows; |
| std::int64_t src_inc5 = kNumChunkedSrcRows; |
| std::int64_t src_inc6 = kNumChunkedSrcRows; |
| std::int64_t src_inc7 = kNumChunkedSrcRows; |
| // Handle cases where source does not have kHalfLayoutCols (8) columns. |
| if (remaining_src_cols < 8) { |
| if (remaining_src_cols <= 0) { |
| src_ptr0 = zerobuf; |
| src_inc0 = 0; |
| } |
| if (remaining_src_cols <= 1) { |
| src_ptr1 = zerobuf; |
| src_inc1 = 0; |
| } |
| if (remaining_src_cols <= 2) { |
| src_ptr2 = zerobuf; |
| src_inc2 = 0; |
| } |
| if (remaining_src_cols <= 3) { |
| src_ptr3 = zerobuf; |
| src_inc3 = 0; |
| } |
| if (remaining_src_cols <= 4) { |
| src_ptr4 = zerobuf; |
| src_inc4 = 0; |
| } |
| if (remaining_src_cols <= 5) { |
| src_ptr5 = zerobuf; |
| src_inc5 = 0; |
| } |
| if (remaining_src_cols <= 6) { |
| src_ptr6 = zerobuf; |
| src_inc6 = 0; |
| } |
| src_ptr7 = zerobuf; |
| src_inc7 = 0; |
| } |
| |
| const std::int8_t zero_point = zerobuf[0]; |
| |
| if (sums_ptr) { |
| // i: kHalfLayoutCols. |
| for (int i = 0; i < 8; ++i) { |
| sums_ptr[i] = 0; |
| } |
| } |
| std::int32_t sums_adjustment = 0; |
| const __m512i ones_16bit = _mm512_set1_epi16(1); |
| __m512i sums_8x2_32bit = _mm512_set1_epi32(0); |
| |
| // The overall packing effectively pads the source rows to |
| // (src_rows + 63) & ~63. The iteration over k may skip when m=1, and then we |
| // only pack for (src_rows + 31) & ~31. When there is an incomplete |
| // destination block, this is stored into trailing_buf instead of packed_ptr. |
| for (int k = 0; k < src_rows; k += 2 * kNumChunkedSrcRows) { |
| // m: {0, 1} for 2 chunks of rows. |
| for (int m = 0; m < 2; ++m) { |
| // Available source rows. |
| // If this is less than 0 (for m=1), we skip, having filled trailing |
| // buffer for m=0. Also, if source rows is zero on m=1, then we filled |
| // exactly to the end of the column in the packed buffer. |
| const int available_src_rows = src_rows - k - m * kNumChunkedSrcRows; |
| // Effectively, |
| // available rows = std::max(0, std::min(8, src_rows - k - 8 * 4 * m)); |
| // treat each case separately. |
| if (available_src_rows >= kNumChunkedSrcRows) { |
| // i: chunks, s: Layout::Rows. |
| if (sums_ptr) { |
| __m512i t0, t1, t2, t3; |
| __m512i r0, r1, r2, r3; |
| const __m512i input_xor_v = _mm512_set1_epi8(input_xor); |
| |
| t0 = LoaduTwo(src_ptr0, src_ptr4); |
| t1 = LoaduTwo(src_ptr1, src_ptr5); |
| t2 = LoaduTwo(src_ptr2, src_ptr6); |
| t3 = LoaduTwo(src_ptr3, src_ptr7); |
| |
| r0 = _mm512_unpacklo_epi32(t0, t1); |
| r2 = _mm512_unpackhi_epi32(t0, t1); |
| r1 = _mm512_unpacklo_epi32(t2, t3); |
| r3 = _mm512_unpackhi_epi32(t2, t3); |
| |
| t0 = _mm512_unpacklo_epi64(r0, r1); |
| t2 = _mm512_unpackhi_epi64(r0, r1); |
| t1 = _mm512_unpacklo_epi64(r2, r3); |
| t3 = _mm512_unpackhi_epi64(r2, r3); |
| |
| r0 = _mm512_shuffle_i32x4(t0, t1, 0x88); |
| r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd); |
| r2 = _mm512_shuffle_i32x4(t2, t3, 0x88); |
| r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd); |
| |
| r0 = _mm512_xor_si512(r0, input_xor_v); |
| r1 = _mm512_xor_si512(r1, input_xor_v); |
| r2 = _mm512_xor_si512(r2, input_xor_v); |
| r3 = _mm512_xor_si512(r3, input_xor_v); |
| |
| const __m256i r0_0 = _mm512_castsi512_si256(r0); |
| const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1); |
| const __m256i r1_0 = _mm512_castsi512_si256(r1); |
| const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1); |
| const __m256i r2_0 = _mm512_castsi512_si256(r2); |
| const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1); |
| const __m256i r3_0 = _mm512_castsi512_si256(r3); |
| const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1); |
| |
| __m512i sums_8x4_16bit; |
| sums_8x4_16bit = _mm512_cvtepi8_epi16(r0_0); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r0_1)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_0)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_1)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_0)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_1)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_0)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_1)); |
| // The sums have been performed across columns, and now we have |
| // 4x16-bit sums packed together. We use madd for pairwise 32-bit |
| // sums. |
| const __m512i sums_8x2_32bit_new = |
| _mm512_madd_epi16(sums_8x4_16bit, ones_16bit); |
| sums_8x2_32bit = _mm512_add_epi32(sums_8x2_32bit, sums_8x2_32bit_new); |
| |
| _mm256_storeu_epi8(packed_ptr + 0 * 16 * 4, r0_0); |
| _mm256_storeu_epi8(packed_ptr + 2 * 16 * 4, r0_1); |
| _mm256_storeu_epi8(packed_ptr + 4 * 16 * 4, r1_0); |
| _mm256_storeu_epi8(packed_ptr + 6 * 16 * 4, r1_1); |
| _mm256_storeu_epi8(packed_ptr + 1 * 16 * 4, r2_0); |
| _mm256_storeu_epi8(packed_ptr + 3 * 16 * 4, r2_1); |
| _mm256_storeu_epi8(packed_ptr + 5 * 16 * 4, r3_0); |
| _mm256_storeu_epi8(packed_ptr + 7 * 16 * 4, r3_1); |
| } else { |
| __m512i t0, t1, t2, t3; |
| __m512i r0, r1, r2, r3; |
| const __m512i input_xor_v = _mm512_set1_epi8(input_xor); |
| |
| t0 = LoaduTwo(src_ptr0, src_ptr4); |
| t1 = LoaduTwo(src_ptr1, src_ptr5); |
| t2 = LoaduTwo(src_ptr2, src_ptr6); |
| t3 = LoaduTwo(src_ptr3, src_ptr7); |
| |
| r0 = _mm512_unpacklo_epi32(t0, t1); |
| r2 = _mm512_unpackhi_epi32(t0, t1); |
| r1 = _mm512_unpacklo_epi32(t2, t3); |
| r3 = _mm512_unpackhi_epi32(t2, t3); |
| |
| t0 = _mm512_unpacklo_epi64(r0, r1); |
| t2 = _mm512_unpackhi_epi64(r0, r1); |
| t1 = _mm512_unpacklo_epi64(r2, r3); |
| t3 = _mm512_unpackhi_epi64(r2, r3); |
| |
| r0 = _mm512_shuffle_i32x4(t0, t1, 0x88); |
| r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd); |
| r2 = _mm512_shuffle_i32x4(t2, t3, 0x88); |
| r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd); |
| |
| r0 = _mm512_xor_si512(r0, input_xor_v); |
| r1 = _mm512_xor_si512(r1, input_xor_v); |
| r2 = _mm512_xor_si512(r2, input_xor_v); |
| r3 = _mm512_xor_si512(r3, input_xor_v); |
| |
| const __m256i r0_0 = _mm512_castsi512_si256(r0); |
| const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1); |
| const __m256i r1_0 = _mm512_castsi512_si256(r1); |
| const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1); |
| const __m256i r2_0 = _mm512_castsi512_si256(r2); |
| const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1); |
| const __m256i r3_0 = _mm512_castsi512_si256(r3); |
| const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1); |
| _mm256_storeu_epi8(packed_ptr + 0 * 16 * 4, r0_0); |
| _mm256_storeu_epi8(packed_ptr + 2 * 16 * 4, r0_1); |
| _mm256_storeu_epi8(packed_ptr + 4 * 16 * 4, r1_0); |
| _mm256_storeu_epi8(packed_ptr + 6 * 16 * 4, r1_1); |
| _mm256_storeu_epi8(packed_ptr + 1 * 16 * 4, r2_0); |
| _mm256_storeu_epi8(packed_ptr + 3 * 16 * 4, r2_1); |
| _mm256_storeu_epi8(packed_ptr + 5 * 16 * 4, r3_0); |
| _mm256_storeu_epi8(packed_ptr + 7 * 16 * 4, r3_1); |
| } |
| } else if (available_src_rows > 0) { |
| RUY_DCHECK_LT(available_src_rows >> 2, kNumChunkedSrcRows); |
| const __mmask32 row_mask = |
| (static_cast<std::uint64_t>(1) << available_src_rows) - 1; |
| |
| // We do not care what goes into the trailing buffer, but we want |
| // in_data[...] ^ input_xor == 0 for irrelevant values in the summation. |
| // |
| // We compensate for padding-with-zero_point by initializing the |
| // summations with the compensating offset, effectively |
| // ((input_xor ^ input_xor) - (zero_point ^ input_xor)) * |
| // 4 * (8 - ((available_src_rows + 3) >> 2)). |
| // |
| // Note that (zero_point ^ input_xor) is performed in 8-bits and then |
| // cast. |
| sums_adjustment += -(zero_point ^ input_xor) * 4 * |
| (8 - ((available_src_rows + 3) >> 2)); |
| |
| __m512i t0, t1, t2, t3; |
| __m512i r0, r1, r2, r3; |
| const __m512i input_xor_v = _mm512_set1_epi8(input_xor); |
| const __m256i zero_point_v = _mm256_set1_epi8(zero_point); |
| |
| t0 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr0, src_ptr4); |
| t1 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr1, src_ptr5); |
| t2 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr2, src_ptr6); |
| t3 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr3, src_ptr7); |
| |
| r0 = _mm512_unpacklo_epi32(t0, t1); |
| r2 = _mm512_unpackhi_epi32(t0, t1); |
| r1 = _mm512_unpacklo_epi32(t2, t3); |
| r3 = _mm512_unpackhi_epi32(t2, t3); |
| |
| t0 = _mm512_unpacklo_epi64(r0, r1); |
| t2 = _mm512_unpackhi_epi64(r0, r1); |
| t1 = _mm512_unpacklo_epi64(r2, r3); |
| t3 = _mm512_unpackhi_epi64(r2, r3); |
| |
| r0 = _mm512_shuffle_i32x4(t0, t1, 0x88); |
| r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd); |
| r2 = _mm512_shuffle_i32x4(t2, t3, 0x88); |
| r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd); |
| |
| r0 = _mm512_xor_si512(r0, input_xor_v); |
| r1 = _mm512_xor_si512(r1, input_xor_v); |
| r2 = _mm512_xor_si512(r2, input_xor_v); |
| r3 = _mm512_xor_si512(r3, input_xor_v); |
| |
| const __m256i r0_0 = _mm512_castsi512_si256(r0); |
| const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1); |
| const __m256i r1_0 = _mm512_castsi512_si256(r1); |
| const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1); |
| const __m256i r2_0 = _mm512_castsi512_si256(r2); |
| const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1); |
| const __m256i r3_0 = _mm512_castsi512_si256(r3); |
| const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1); |
| |
| __m512i sums_8x4_16bit; |
| sums_8x4_16bit = _mm512_cvtepi8_epi16(r0_0); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r0_1)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_0)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_1)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_0)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_1)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_0)); |
| sums_8x4_16bit = |
| _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_1)); |
| // The sums have been performed across columns, and now we have |
| // 4x16-bit sums packed together. We use madd for pairwise 32-bit |
| // sums. |
| const __m512i sums_8x2_32bit_new = |
| _mm512_madd_epi16(sums_8x4_16bit, ones_16bit); |
| sums_8x2_32bit = _mm512_add_epi32(sums_8x2_32bit, sums_8x2_32bit_new); |
| |
| _mm256_storeu_epi8(trailing_buf + 0 * 16 * 4, r0_0); |
| _mm256_storeu_epi8(trailing_buf + 2 * 16 * 4, r0_1); |
| _mm256_storeu_epi8(trailing_buf + 4 * 16 * 4, r1_0); |
| _mm256_storeu_epi8(trailing_buf + 6 * 16 * 4, r1_1); |
| _mm256_storeu_epi8(trailing_buf + 1 * 16 * 4, r2_0); |
| _mm256_storeu_epi8(trailing_buf + 3 * 16 * 4, r2_1); |
| _mm256_storeu_epi8(trailing_buf + 5 * 16 * 4, r3_0); |
| _mm256_storeu_epi8(trailing_buf + 7 * 16 * 4, r3_1); |
| } |
| |
| packed_ptr += 16 * kNumChunkedSrcRows; |
| src_ptr0 += src_inc0; |
| src_ptr1 += src_inc1; |
| src_ptr2 += src_inc2; |
| src_ptr3 += src_inc3; |
| src_ptr4 += src_inc4; |
| src_ptr5 += src_inc5; |
| src_ptr6 += src_inc6; |
| src_ptr7 += src_inc7; |
| } |
| } |
| |
| if (sums_ptr) { |
| const __m256i sums_adjustment_v = _mm256_set1_epi32(sums_adjustment); |
| |
| __m256i sums = _mm256_loadu_epi32(sums_ptr); |
| const __m512i idx = |
| _mm512_set_epi32(15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0); |
| |
| // We earlier used madd for pairwise 32-bit sums, and now we deinterlace the |
| // neighbours, finshing up by adding them to the stored accumulated sums. |
| const __m512i sums_2x8_32bit = |
| _mm512_permutexvar_epi32(idx, sums_8x2_32bit); |
| sums = _mm256_add_epi32(sums, sums_adjustment_v); |
| sums = _mm256_add_epi32(sums, _mm512_castsi512_si256(sums_2x8_32bit)); |
| sums = _mm256_add_epi32(sums, _mm512_extracti32x8_epi32(sums_2x8_32bit, 1)); |
| |
| _mm256_storeu_epi32(sums_ptr, sums); |
| } |
| } |
| |
| inline __m512 LoaduTwo(const float* addr_lo, const float* addr_hi) { |
| const __m512 lower_filled = _mm512_castps256_ps512(_mm256_loadu_ps(addr_lo)); |
| return _mm512_insertf32x8(lower_filled, _mm256_loadu_ps(addr_hi), 1); |
| } |
| |
| inline __m512 MaskLoaduTwo(__mmask8 row_mask, const float* addr_lo, |
| const float* addr_hi) { |
| const __m512 lower_filled = |
| _mm512_castps256_ps512(_mm256_maskz_loadu_ps(row_mask, addr_lo)); |
| return _mm512_insertf32x8(lower_filled, |
| _mm256_maskz_loadu_ps(row_mask, addr_hi), 1); |
| } |
| |
| inline __m512 Mm512UnpackloPsx2(const __m512 a, const __m512 b) { |
| return _mm512_castpd_ps( |
| _mm512_unpacklo_pd(_mm512_castps_pd(a), _mm512_castps_pd(b))); |
| } |
| |
| inline __m512 Mm512UnpackhiPsx2(const __m512 a, const __m512 b) { |
| return _mm512_castpd_ps( |
| _mm512_unpackhi_pd(_mm512_castps_pd(a), _mm512_castps_pd(b))); |
| } |
| |
| inline void HalfPackFloatAvx512(const float* src_ptr, const float* zerobuf, |
| int src_stride, int remaining_src_cols, |
| int src_rows, float* packed_ptr, |
| float* trailing_buf) { |
| const float* src_ptr0 = src_ptr; |
| const float* src_ptr1 = src_ptr0 + src_stride; |
| const float* src_ptr2 = src_ptr1 + src_stride; |
| const float* src_ptr3 = src_ptr2 + src_stride; |
| const float* src_ptr4 = src_ptr3 + src_stride; |
| const float* src_ptr5 = src_ptr4 + src_stride; |
| const float* src_ptr6 = src_ptr5 + src_stride; |
| const float* src_ptr7 = src_ptr6 + src_stride; |
| std::int64_t src_inc0 = 8; |
| std::int64_t src_inc1 = 8; |
| std::int64_t src_inc2 = 8; |
| std::int64_t src_inc3 = 8; |
| std::int64_t src_inc4 = 8; |
| std::int64_t src_inc5 = 8; |
| std::int64_t src_inc6 = 8; |
| std::int64_t src_inc7 = 8; |
| if (remaining_src_cols < 8) { |
| if (remaining_src_cols <= 0) { |
| src_ptr0 = zerobuf; |
| src_inc0 = 0; |
| } |
| if (remaining_src_cols <= 1) { |
| src_ptr1 = zerobuf; |
| src_inc1 = 0; |
| } |
| if (remaining_src_cols <= 2) { |
| src_ptr2 = zerobuf; |
| src_inc2 = 0; |
| } |
| if (remaining_src_cols <= 3) { |
| src_ptr3 = zerobuf; |
| src_inc3 = 0; |
| } |
| if (remaining_src_cols <= 4) { |
| src_ptr4 = zerobuf; |
| src_inc4 = 0; |
| } |
| if (remaining_src_cols <= 5) { |
| src_ptr5 = zerobuf; |
| src_inc5 = 0; |
| } |
| if (remaining_src_cols <= 6) { |
| src_ptr6 = zerobuf; |
| src_inc6 = 0; |
| } |
| src_ptr7 = zerobuf; |
| src_inc7 = 0; |
| } |
| |
| for (int k = 0; k < src_rows; k += 16) { |
| for (int m = 0; m < 2; ++m) { |
| const int available_src_rows = src_rows - k - 8 * m; |
| // Effectively, |
| // available_src_rows = std::max(0, std::min(8, src_rows - k - 8 * m)); |
| // but treat each case separately. |
| if (available_src_rows > 7) { |
| __m512 t0, t1, t2, t3; |
| __m512 r0, r1, r2, r3; |
| |
| t0 = LoaduTwo(src_ptr0, src_ptr4); |
| t1 = LoaduTwo(src_ptr1, src_ptr5); |
| t2 = LoaduTwo(src_ptr2, src_ptr6); |
| t3 = LoaduTwo(src_ptr3, src_ptr7); |
| |
| r0 = _mm512_unpacklo_ps(t0, t1); |
| r2 = _mm512_unpackhi_ps(t0, t1); |
| r1 = _mm512_unpacklo_ps(t2, t3); |
| r3 = _mm512_unpackhi_ps(t2, t3); |
| |
| t0 = Mm512UnpackloPsx2(r0, r1); |
| t2 = Mm512UnpackhiPsx2(r0, r1); |
| t1 = Mm512UnpackloPsx2(r2, r3); |
| t3 = Mm512UnpackhiPsx2(r2, r3); |
| |
| r0 = _mm512_shuffle_f32x4(t0, t1, 0x88); |
| r1 = _mm512_shuffle_f32x4(t0, t1, 0xdd); |
| r2 = _mm512_shuffle_f32x4(t2, t3, 0x88); |
| r3 = _mm512_shuffle_f32x4(t2, t3, 0xdd); |
| |
| _mm256_storeu_ps(packed_ptr + 0 * 16, _mm512_castps512_ps256(r0)); |
| _mm256_storeu_ps(packed_ptr + 2 * 16, _mm512_extractf32x8_ps(r0, 1)); |
| _mm256_storeu_ps(packed_ptr + 4 * 16, _mm512_castps512_ps256(r1)); |
| _mm256_storeu_ps(packed_ptr + 6 * 16, _mm512_extractf32x8_ps(r1, 1)); |
| _mm256_storeu_ps(packed_ptr + 1 * 16, _mm512_castps512_ps256(r2)); |
| _mm256_storeu_ps(packed_ptr + 3 * 16, _mm512_extractf32x8_ps(r2, 1)); |
| _mm256_storeu_ps(packed_ptr + 5 * 16, _mm512_castps512_ps256(r3)); |
| _mm256_storeu_ps(packed_ptr + 7 * 16, _mm512_extractf32x8_ps(r3, 1)); |
| } else if (available_src_rows > 0) { |
| const __mmask8 row_mask = |
| (static_cast<std::uint32_t>(1) << available_src_rows) - 1; |
| |
| __m512 t0, t1, t2, t3; |
| __m512 r0, r1, r2, r3; |
| |
| t0 = MaskLoaduTwo(row_mask, src_ptr0, src_ptr4); |
| t1 = MaskLoaduTwo(row_mask, src_ptr1, src_ptr5); |
| t2 = MaskLoaduTwo(row_mask, src_ptr2, src_ptr6); |
| t3 = MaskLoaduTwo(row_mask, src_ptr3, src_ptr7); |
| |
| r0 = _mm512_unpacklo_ps(t0, t1); |
| r2 = _mm512_unpackhi_ps(t0, t1); |
| r1 = _mm512_unpacklo_ps(t2, t3); |
| r3 = _mm512_unpackhi_ps(t2, t3); |
| |
| t0 = Mm512UnpackloPsx2(r0, r1); |
| t2 = Mm512UnpackhiPsx2(r0, r1); |
| t1 = Mm512UnpackloPsx2(r2, r3); |
| t3 = Mm512UnpackhiPsx2(r2, r3); |
| |
| r0 = _mm512_shuffle_f32x4(t0, t1, 0x88); |
| r1 = _mm512_shuffle_f32x4(t0, t1, 0xdd); |
| r2 = _mm512_shuffle_f32x4(t2, t3, 0x88); |
| r3 = _mm512_shuffle_f32x4(t2, t3, 0xdd); |
| |
| _mm256_storeu_ps(trailing_buf + 0 * 16, _mm512_castps512_ps256(r0)); |
| _mm256_storeu_ps(trailing_buf + 2 * 16, _mm512_extractf32x8_ps(r0, 1)); |
| _mm256_storeu_ps(trailing_buf + 4 * 16, _mm512_castps512_ps256(r1)); |
| _mm256_storeu_ps(trailing_buf + 6 * 16, _mm512_extractf32x8_ps(r1, 1)); |
| _mm256_storeu_ps(trailing_buf + 1 * 16, _mm512_castps512_ps256(r2)); |
| _mm256_storeu_ps(trailing_buf + 3 * 16, _mm512_extractf32x8_ps(r2, 1)); |
| _mm256_storeu_ps(trailing_buf + 5 * 16, _mm512_castps512_ps256(r3)); |
| // Do not store _mm512_extractf32x8_ps(r3, 1). |
| } |
| |
| packed_ptr += 16 * 8; |
| src_ptr0 += src_inc0; |
| src_ptr1 += src_inc1; |
| src_ptr2 += src_inc2; |
| src_ptr3 += src_inc3; |
| src_ptr4 += src_inc4; |
| src_ptr5 += src_inc5; |
| src_ptr6 += src_inc6; |
| src_ptr7 += src_inc7; |
| } |
| } |
| } |
| |
| inline void ZeroHalfFloatAvx512(int src_rows, float* packed_ptr) { |
| const int non_trailing_rows = src_rows & ~7; |
| for (int k = 0; k < non_trailing_rows; ++k) { |
| for (int j = 0; j < 8; ++j) { |
| packed_ptr[j] = 0.0f; |
| } |
| packed_ptr += 16; |
| } |
| } |
| |
| } // namespace. |
| |
| void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor, |
| const std::int8_t* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, |
| std::int8_t* packed_ptr, std::int32_t* sums_ptr) { |
| gemmlowp::ScopedProfilingLabel label("Pack kAvx512 8bit"); |
| |
| using Layout = PackImpl8bitAvx512::Layout; |
| constexpr int kHalfBlockOffset = 32; |
| RUY_DCHECK_EQ(kHalfBlockOffset * 2, Layout::kRows * Layout::kCols); |
| static constexpr int kHalfLayoutCols = |
| PackImpl8bitAvx512::kHalfLayoutCols; // Half the number of cols in a |
| // block. |
| RUY_DCHECK_EQ(kHalfLayoutCols, 8); |
| RUY_DCHECK_EQ(Layout::kCols, 16); |
| RUY_DCHECK_EQ(Layout::kRows, 4); |
| |
| // Each Layout::Rows is 4 contiguous input, contiguous packed elements. |
| // We process 8 of these chunks at a time, padding short input chunks. |
| constexpr int kNumRowChunks = 8; |
| |
| // Each packed block is 4*16, and there are normally 8. The trailing block is |
| // only slightly shorter. |
| constexpr int kTrailingBufSize = |
| kNumRowChunks * Layout::kCols * Layout::kRows; |
| std::int8_t trailing_buf[kTrailingBufSize]; |
| memset(trailing_buf, 0, kTrailingBufSize * sizeof(std::int8_t)); |
| |
| std::int32_t* second_sums_ptr = |
| sums_ptr ? sums_ptr + kHalfLayoutCols : nullptr; |
| if (remaining_src_cols > kHalfLayoutCols) { |
| HalfPack8bitAvx512(src_ptr, input_xor, zerobuf, src_stride, |
| remaining_src_cols, src_rows, packed_ptr, sums_ptr, |
| trailing_buf); |
| HalfPack8bitAvx512(src_ptr + src_stride * kHalfLayoutCols, input_xor, |
| zerobuf, src_stride, |
| remaining_src_cols - kHalfLayoutCols, src_rows, |
| packed_ptr + kHalfBlockOffset, second_sums_ptr, |
| trailing_buf + kHalfBlockOffset); |
| } else { |
| HalfPack8bitAvx512(src_ptr, input_xor, zerobuf, src_stride, |
| remaining_src_cols, src_rows, packed_ptr, sums_ptr, |
| trailing_buf); |
| ZeroHalf8bitAvx512(src_rows, zerobuf[0] ^ input_xor, |
| packed_ptr + kHalfBlockOffset); |
| // The kernel may not need the second half-blocks sums to be set. |
| if (second_sums_ptr) { |
| for (int i = 0; i < kHalfLayoutCols; ++i) { |
| second_sums_ptr[i] = (zerobuf[0] ^ input_xor) * ((src_rows + 3) & ~3); |
| } |
| } |
| } |
| constexpr int kChunkedRowMask = kNumRowChunks * Layout::kRows - 1; |
| const bool trailing_data = (src_rows & kChunkedRowMask) > 0; |
| // If the number of source rows is not a multiple of kChunkedRowMask, there |
| // will be data in the trailing buffer, |
| if (trailing_data > 0) { |
| const int non_trailing_rows = src_rows & ~kChunkedRowMask; |
| // Destination "rows" are padded to next highest multiple of Layout::kRows. |
| const int dst_rows = (src_rows + 3) & ~3; |
| const int trailing_rows = dst_rows - non_trailing_rows; |
| memcpy(packed_ptr + Layout::kCols * non_trailing_rows, trailing_buf, |
| Layout::kCols * trailing_rows * sizeof(std::int8_t)); |
| } |
| } |
| |
| void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride, |
| int remaining_src_cols, int src_rows, float* packed_ptr) { |
| gemmlowp::ScopedProfilingLabel label("Pack kAvx512 float"); |
| float trailing_buf[7 * 16]; |
| if (remaining_src_cols > 8) { |
| HalfPackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols, |
| src_rows, packed_ptr, trailing_buf); |
| HalfPackFloatAvx512(src_ptr + src_stride * 8, zerobuf, src_stride, |
| remaining_src_cols - 8, src_rows, packed_ptr + 8, |
| trailing_buf + 8); |
| } else { |
| memset(trailing_buf, 0, sizeof(trailing_buf)); |
| HalfPackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols, |
| src_rows, packed_ptr, trailing_buf); |
| ZeroHalfFloatAvx512(src_rows, packed_ptr + 8); |
| } |
| const int trailing_rows = src_rows & 7; |
| if (trailing_rows > 0) { |
| const int non_trailing_rows = src_rows & ~7; |
| memcpy(packed_ptr + 16 * non_trailing_rows, trailing_buf, |
| 16 * trailing_rows * sizeof(float)); |
| } |
| } |
| |
| #endif // RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_INTRINSICS) |
| |
| } // namespace ruy |