blob: dc5bb881d2151c07a787073ab9b5825aace03ade [file] [log] [blame]
Michael Bolin6fb46572011-09-22 15:24:39 -04001/*
2 * Copyright 2005 Google Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16package com.google.common.geometry;
17
18
19/**
20 * An S2Cell is an S2Region object that represents a cell. Unlike S2CellIds, it
21 * supports efficient containment and intersection tests. However, it is also a
22 * more expensive representation.
23 *
24 */
25
David Beaumont0095e3d2011-10-31 18:43:31 -040026public final strictfp class S2Cell implements S2Region {
Michael Bolin6fb46572011-09-22 15:24:39 -040027
28 private static final int MAX_CELL_SIZE = 1 << S2CellId.MAX_LEVEL;
29
Michael Bolin6fb46572011-09-22 15:24:39 -040030 byte face;
31 byte level;
32 byte orientation;
33 S2CellId cellId;
34 double[][] uv = new double[2][2];
35
36 /**
37 * Default constructor used only internally.
38 */
39 S2Cell() {
40 }
41
42 /**
43 * An S2Cell always corresponds to a particular S2CellId. The other
44 * constructors are just convenience methods.
45 */
46 public S2Cell(S2CellId id) {
47 init(id);
48 }
49
50 // This is a static method in order to provide named parameters.
51 public static S2Cell fromFacePosLevel(int face, byte pos, int level) {
52 return new S2Cell(S2CellId.fromFacePosLevel(face, pos, level));
53 }
54
55 // Convenience methods.
56 public S2Cell(S2Point p) {
57 init(S2CellId.fromPoint(p));
58 }
59
60 public S2Cell(S2LatLng ll) {
61 init(S2CellId.fromLatLng(ll));
62 }
63
64
65 public S2CellId id() {
66 return cellId;
67 }
68
69 public int face() {
70 return face;
71 }
72
73 public byte level() {
74 return level;
75 }
76
77 public byte orientation() {
78 return orientation;
79 }
80
81 public boolean isLeaf() {
82 return level == S2CellId.MAX_LEVEL;
83 }
84
85 public S2Point getVertex(int k) {
86 return S2Point.normalize(getVertexRaw(k));
87 }
88
89 /**
90 * Return the k-th vertex of the cell (k = 0,1,2,3). Vertices are returned in
91 * CCW order. The points returned by GetVertexRaw are not necessarily unit
92 * length.
93 */
94 public S2Point getVertexRaw(int k) {
95 // Vertices are returned in the order SW, SE, NE, NW.
96 return S2Projections.faceUvToXyz(face, uv[0][(k >> 1) ^ (k & 1)], uv[1][k >> 1]);
97 }
98
99 public S2Point getEdge(int k) {
100 return S2Point.normalize(getEdgeRaw(k));
101 }
102
103 public S2Point getEdgeRaw(int k) {
104 switch (k) {
105 case 0:
106 return S2Projections.getVNorm(face, uv[1][0]); // South
107 case 1:
108 return S2Projections.getUNorm(face, uv[0][1]); // East
109 case 2:
110 return S2Point.neg(S2Projections.getVNorm(face, uv[1][1])); // North
111 default:
112 return S2Point.neg(S2Projections.getUNorm(face, uv[0][0])); // West
113 }
114 }
115
116 /**
117 * Return the inward-facing normal of the great circle passing through the
118 * edge from vertex k to vertex k+1 (mod 4). The normals returned by
119 * GetEdgeRaw are not necessarily unit length.
120 *
121 * If this is not a leaf cell, set children[0..3] to the four children of
122 * this cell (in traversal order) and return true. Otherwise returns false.
123 * This method is equivalent to the following:
124 *
125 * for (pos=0, id=child_begin(); id != child_end(); id = id.next(), ++pos)
126 * children[i] = S2Cell(id);
127 *
128 * except that it is more than two times faster.
129 */
130 public boolean subdivide(S2Cell children[]) {
131 // This function is equivalent to just iterating over the child cell ids
132 // and calling the S2Cell constructor, but it is about 2.5 times faster.
133
134 if (cellId.isLeaf()) {
135 return false;
136 }
137
138 // Compute the cell midpoint in uv-space.
139 R2Vector uvMid = getCenterUV();
140
141 // Create four children with the appropriate bounds.
142 S2CellId id = cellId.childBegin();
143 for (int pos = 0; pos < 4; ++pos, id = id.next()) {
144 S2Cell child = children[pos];
145 child.face = face;
146 child.level = (byte) (level + 1);
David Beaumont89b87702011-10-31 18:44:08 -0400147 child.orientation = (byte) (orientation ^ S2.posToOrientation(pos));
Michael Bolin6fb46572011-09-22 15:24:39 -0400148 child.cellId = id;
David Beaumont89b87702011-10-31 18:44:08 -0400149 int ij = S2.posToIJ(orientation, pos);
Michael Bolin6fb46572011-09-22 15:24:39 -0400150 for (int d = 0; d < 2; ++d) {
151 // The dimension 0 index (i/u) is in bit 1 of ij.
152 int m = 1 - ((ij >> (1 - d)) & 1);
153 child.uv[d][m] = uvMid.get(d);
154 child.uv[d][1 - m] = uv[d][1 - m];
155 }
156 }
157 return true;
158 }
159
160 /**
161 * Return the direction vector corresponding to the center in (s,t)-space of
162 * the given cell. This is the point at which the cell is divided into four
163 * subcells; it is not necessarily the centroid of the cell in (u,v)-space or
164 * (x,y,z)-space. The point returned by GetCenterRaw is not necessarily unit
165 * length.
166 */
167 public S2Point getCenter() {
168 return S2Point.normalize(getCenterRaw());
169 }
170
171 public S2Point getCenterRaw() {
172 return cellId.toPointRaw();
173 }
174
175 /**
176 * Return the center of the cell in (u,v) coordinates (see {@code
177 * S2Projections}). Note that the center of the cell is defined as the point
178 * at which it is recursively subdivided into four children; in general, it is
179 * not at the midpoint of the (u,v) rectangle covered by the cell
180 */
181 public R2Vector getCenterUV() {
182 MutableInteger i = new MutableInteger(0);
183 MutableInteger j = new MutableInteger(0);
Michael Bolin6fb46572011-09-22 15:24:39 -0400184 cellId.toFaceIJOrientation(i, j, null);
185 int cellSize = 1 << (S2CellId.MAX_LEVEL - level);
186
David Beaumont0095e3d2011-10-31 18:43:31 -0400187 // TODO(dbeaumont): Figure out a better naming of the variables here (and elsewhere).
188 int si = (i.intValue() & -cellSize) * 2 + cellSize - MAX_CELL_SIZE;
189 double x = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * si);
Michael Bolin6fb46572011-09-22 15:24:39 -0400190
David Beaumont0095e3d2011-10-31 18:43:31 -0400191 int sj = (j.intValue() & -cellSize) * 2 + cellSize - MAX_CELL_SIZE;
192 double y = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * sj);
Michael Bolin6fb46572011-09-22 15:24:39 -0400193
David Beaumont0095e3d2011-10-31 18:43:31 -0400194 return new R2Vector(x, y);
Michael Bolin6fb46572011-09-22 15:24:39 -0400195 }
196
197 /**
198 * Return the average area for cells at the given level.
199 */
200 public static double averageArea(int level) {
201 return S2Projections.AVG_AREA.getValue(level);
202 }
203
204 /**
205 * Return the average area of cells at this level. This is accurate to within
206 * a factor of 1.7 (for S2_QUADRATIC_PROJECTION) and is extremely cheap to
207 * compute.
208 */
209 public double averageArea() {
210 return averageArea(level);
211 }
212
213 /**
214 * Return the approximate area of this cell. This method is accurate to within
215 * 3% percent for all cell sizes and accurate to within 0.1% for cells at
216 * level 5 or higher (i.e. 300km square or smaller). It is moderately cheap to
217 * compute.
218 */
219 public double approxArea() {
220
221 // All cells at the first two levels have the same area.
222 if (level < 2) {
223 return averageArea(level);
224 }
225
226 // First, compute the approximate area of the cell when projected
227 // perpendicular to its normal. The cross product of its diagonals gives
228 // the normal, and the length of the normal is twice the projected area.
229 double flatArea = 0.5 * S2Point.crossProd(
230 S2Point.sub(getVertex(2), getVertex(0)), S2Point.sub(getVertex(3), getVertex(1))).norm();
231
232 // Now, compensate for the curvature of the cell surface by pretending
233 // that the cell is shaped like a spherical cap. The ratio of the
234 // area of a spherical cap to the area of its projected disc turns out
235 // to be 2 / (1 + sqrt(1 - r*r)) where "r" is the radius of the disc.
236 // For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
237 // Here we set Pi*r*r == flat_area to find the equivalent disc.
238 return flatArea * 2 / (1 + Math.sqrt(1 - Math.min(S2.M_1_PI * flatArea, 1.0)));
239 }
240
241 /**
242 * Return the area of this cell as accurately as possible. This method is more
243 * expensive but it is accurate to 6 digits of precision even for leaf cells
244 * (whose area is approximately 1e-18).
245 */
246 public double exactArea() {
247 S2Point v0 = getVertex(0);
248 S2Point v1 = getVertex(1);
249 S2Point v2 = getVertex(2);
250 S2Point v3 = getVertex(3);
251 return S2.area(v0, v1, v2) + S2.area(v0, v2, v3);
252 }
253
254 // //////////////////////////////////////////////////////////////////////
255 // S2Region interface (see {@code S2Region} for details):
256
257 @Override
258 public S2Region clone() {
259 S2Cell clone = new S2Cell();
260 clone.face = this.face;
261 clone.level = this.level;
262 clone.orientation = this.orientation;
263 clone.uv = this.uv.clone();
264
265 return clone;
266 }
267
268 @Override
269 public S2Cap getCapBound() {
270 // Use the cell center in (u,v)-space as the cap axis. This vector is
271 // very close to GetCenter() and faster to compute. Neither one of these
272 // vectors yields the bounding cap with minimal surface area, but they
273 // are both pretty close.
274 //
275 // It's possible to show that the two vertices that are furthest from
276 // the (u,v)-origin never determine the maximum cap size (this is a
277 // possible future optimization).
278
279 double u = 0.5 * (uv[0][0] + uv[0][1]);
280 double v = 0.5 * (uv[1][0] + uv[1][1]);
281 S2Cap cap = S2Cap.fromAxisHeight(S2Point.normalize(S2Projections.faceUvToXyz(face, u, v)), 0);
282 for (int k = 0; k < 4; ++k) {
283 cap = cap.addPoint(getVertex(k));
284 }
285 return cap;
286 }
287
288 // We grow the bounds slightly to make sure that the bounding rectangle
289 // also contains the normalized versions of the vertices. Note that the
290 // maximum result magnitude is Pi, with a floating-point exponent of 1.
291 // Therefore adding or subtracting 2**-51 will always change the result.
292 private static final double MAX_ERROR = 1.0 / (1L << 51);
293
294 // The 4 cells around the equator extend to +/-45 degrees latitude at the
295 // midpoints of their top and bottom edges. The two cells covering the
296 // poles extend down to +/-35.26 degrees at their vertices.
297 // adding kMaxError (as opposed to the C version) because of asin and atan2
298 // roundoff errors
299 private static final double POLE_MIN_LAT = Math.asin(Math.sqrt(1.0 / 3.0)) - MAX_ERROR;
300 // 35.26 degrees
301
302
303 @Override
304 public S2LatLngRect getRectBound() {
305 if (level > 0) {
306 // Except for cells at level 0, the latitude and longitude extremes are
307 // attained at the vertices. Furthermore, the latitude range is
308 // determined by one pair of diagonally opposite vertices and the
309 // longitude range is determined by the other pair.
310 //
311 // We first determine which corner (i,j) of the cell has the largest
312 // absolute latitude. To maximize latitude, we want to find the point in
313 // the cell that has the largest absolute z-coordinate and the smallest
314 // absolute x- and y-coordinates. To do this we look at each coordinate
315 // (u and v), and determine whether we want to minimize or maximize that
316 // coordinate based on the axis direction and the cell's (u,v) quadrant.
317 double u = uv[0][0] + uv[0][1];
318 double v = uv[1][0] + uv[1][1];
319 int i = S2Projections.getUAxis(face).z == 0 ? (u < 0 ? 1 : 0) : (u > 0 ? 1 : 0);
320 int j = S2Projections.getVAxis(face).z == 0 ? (v < 0 ? 1 : 0) : (v > 0 ? 1 : 0);
321
322
323 R1Interval lat = R1Interval.fromPointPair(getLatitude(i, j), getLatitude(1 - i, 1 - j));
324 lat = lat.expanded(MAX_ERROR).intersection(S2LatLngRect.fullLat());
325 if (lat.lo() == -S2.M_PI_2 || lat.hi() == S2.M_PI_2) {
326 return new S2LatLngRect(lat, S1Interval.full());
327 }
328 S1Interval lng = S1Interval.fromPointPair(getLongitude(i, 1 - j), getLongitude(1 - i, j));
329 return new S2LatLngRect(lat, lng.expanded(MAX_ERROR));
330 }
331
332
333 // The face centers are the +X, +Y, +Z, -X, -Y, -Z axes in that order.
334 // assert (S2Projections.getNorm(face).get(face % 3) == ((face < 3) ? 1 : -1));
335 switch (face) {
336 case 0:
337 return new S2LatLngRect(
338 new R1Interval(-S2.M_PI_4, S2.M_PI_4), new S1Interval(-S2.M_PI_4, S2.M_PI_4));
339 case 1:
340 return new S2LatLngRect(
341 new R1Interval(-S2.M_PI_4, S2.M_PI_4), new S1Interval(S2.M_PI_4, 3 * S2.M_PI_4));
342 case 2:
343 return new S2LatLngRect(
344 new R1Interval(POLE_MIN_LAT, S2.M_PI_2), new S1Interval(-S2.M_PI, S2.M_PI));
345 case 3:
346 return new S2LatLngRect(
347 new R1Interval(-S2.M_PI_4, S2.M_PI_4), new S1Interval(3 * S2.M_PI_4, -3 * S2.M_PI_4));
348 case 4:
349 return new S2LatLngRect(
350 new R1Interval(-S2.M_PI_4, S2.M_PI_4), new S1Interval(-3 * S2.M_PI_4, -S2.M_PI_4));
351 default:
352 return new S2LatLngRect(
353 new R1Interval(-S2.M_PI_2, -POLE_MIN_LAT), new S1Interval(-S2.M_PI, S2.M_PI));
354 }
355
356 }
357
358 @Override
359 public boolean mayIntersect(S2Cell cell) {
360 return cellId.intersects(cell.cellId);
361 }
362
363 public boolean contains(S2Point p) {
364 // We can't just call XYZtoFaceUV, because for points that lie on the
365 // boundary between two faces (i.e. u or v is +1/-1) we need to return
366 // true for both adjacent cells.
David Beaumont0095e3d2011-10-31 18:43:31 -0400367 R2Vector uvPoint = S2Projections.faceXyzToUv(face, p);
368 if (uvPoint == null) {
Michael Bolin6fb46572011-09-22 15:24:39 -0400369 return false;
370 }
David Beaumontc04b68b2011-11-08 11:05:51 -0500371 return (uvPoint.x() >= uv[0][0] && uvPoint.x() <= uv[0][1]
372 && uvPoint.y() >= uv[1][0] && uvPoint.y() <= uv[1][1]);
Michael Bolin6fb46572011-09-22 15:24:39 -0400373 }
374
375 // The point 'p' does not need to be normalized.
376 @Override
377 public boolean contains(S2Cell cell) {
378 return cellId.contains(cell.cellId);
379 }
380
381 private void init(S2CellId id) {
382 cellId = id;
383 MutableInteger ij[] = new MutableInteger[2];
384 MutableInteger mOrientation = new MutableInteger(0);
385
386 for (int d = 0; d < 2; ++d) {
387 ij[d] = new MutableInteger(0);
388 }
389
390 face = (byte) id.toFaceIJOrientation(ij[0], ij[1], mOrientation);
391 orientation = (byte) mOrientation.intValue(); // Compress int to a byte.
392 level = (byte) id.level();
393 int cellSize = 1 << (S2CellId.MAX_LEVEL - level);
394 for (int d = 0; d < 2; ++d) {
395 // Compute the cell bounds in scaled (i,j) coordinates.
396 int sijLo = (ij[d].intValue() & -cellSize) * 2 - MAX_CELL_SIZE;
397 int sijHi = sijLo + cellSize * 2;
398 uv[d][0] = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * sijLo);
399 uv[d][1] = S2Projections.stToUV((1.0 / MAX_CELL_SIZE) * sijHi);
400 }
401 }
402
403
404 // Internal method that does the actual work in the constructors.
405
406 private double getLatitude(int i, int j) {
407 S2Point p = S2Projections.faceUvToXyz(face, uv[0][i], uv[1][j]);
408 return Math.atan2(p.z, Math.sqrt(p.x * p.x + p.y * p.y));
409 }
410
411 private double getLongitude(int i, int j) {
412 S2Point p = S2Projections.faceUvToXyz(face, uv[0][i], uv[1][j]);
413 return Math.atan2(p.y, p.x);
414 }
415
416 // Return the latitude or longitude of the cell vertex given by (i,j),
417 // where "i" and "j" are either 0 or 1.
418
419 @Override
420 public String toString() {
421 return "[" + face + ", " + level + ", " + orientation + ", " + cellId + "]";
422 }
423
424 @Override
425 public int hashCode() {
426 int value = 17;
427 value = 37 * (37 * (37 * value + face) + orientation) + level;
428 return 37 * value + id().hashCode();
429 }
430
431 @Override
432 public boolean equals(Object that) {
433 if (that instanceof S2Cell) {
434 S2Cell thatCell = (S2Cell) that;
435 return this.face == thatCell.face && this.level == thatCell.level
436 && this.orientation == thatCell.orientation && this.cellId.equals(thatCell.cellId);
437 }
438 return false;
439 }
440
441}