blob: 5a58f6dd00c1117523c1193b809f700b442c623e [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkFontMetrics.h"
#include "include/core/SkFontMgr.h"
#include "include/core/SkImage.h"
#include "include/core/SkMallocPixelRef.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkTextBlob.h"
#include "include/core/SkTypeface.h"
#include "include/effects/SkDashPathEffect.h"
#include "include/effects/SkImageFilters.h"
#include "include/effects/SkTableColorFilter.h"
#include "include/private/SkFixed.h"
#include "include/private/SkTemplates.h"
#include "src/core/SkAnnotationKeys.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkPicturePriv.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkWriteBuffer.h"
#include "src/shaders/SkShaderBase.h"
#include "tests/Test.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
static const uint32_t kArraySize = 64;
static const int kBitmapSize = 256;
class SerializationTest {
public:
template<typename T>
static void TestAlignment(T* testObj, skiatest::Reporter* reporter) {
// Test memory read/write functions directly
unsigned char dataWritten[1024];
size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten);
REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory);
size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory);
REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory);
}
};
template<typename T> struct SerializationUtils {
// Generic case for flattenables
static void Write(SkWriteBuffer& writer, const T* flattenable) {
writer.writeFlattenable(flattenable);
}
static void Read(SkReadBuffer& reader, T** flattenable) {
*flattenable = (T*)reader.readFlattenable(T::GetFlattenableType());
}
};
template<> struct SerializationUtils<SkMatrix> {
static void Write(SkWriteBuffer& writer, const SkMatrix* matrix) {
writer.writeMatrix(*matrix);
}
static void Read(SkReadBuffer& reader, SkMatrix* matrix) {
reader.readMatrix(matrix);
}
};
template<> struct SerializationUtils<SkPath> {
static void Write(SkWriteBuffer& writer, const SkPath* path) {
writer.writePath(*path);
}
static void Read(SkReadBuffer& reader, SkPath* path) {
reader.readPath(path);
}
};
template<> struct SerializationUtils<SkRegion> {
static void Write(SkWriteBuffer& writer, const SkRegion* region) {
writer.writeRegion(*region);
}
static void Read(SkReadBuffer& reader, SkRegion* region) {
reader.readRegion(region);
}
};
template<> struct SerializationUtils<SkString> {
static void Write(SkWriteBuffer& writer, const SkString* string) {
writer.writeString(string->c_str());
}
static void Read(SkReadBuffer& reader, SkString* string) {
reader.readString(string);
}
};
template<> struct SerializationUtils<unsigned char> {
static void Write(SkWriteBuffer& writer, unsigned char* data, uint32_t arraySize) {
writer.writeByteArray(data, arraySize);
}
static bool Read(SkReadBuffer& reader, unsigned char* data, uint32_t arraySize) {
return reader.readByteArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkColor> {
static void Write(SkWriteBuffer& writer, SkColor* data, uint32_t arraySize) {
writer.writeColorArray(data, arraySize);
}
static bool Read(SkReadBuffer& reader, SkColor* data, uint32_t arraySize) {
return reader.readColorArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkColor4f> {
static void Write(SkWriteBuffer& writer, SkColor4f* data, uint32_t arraySize) {
writer.writeColor4fArray(data, arraySize);
}
static bool Read(SkReadBuffer& reader, SkColor4f* data, uint32_t arraySize) {
return reader.readColor4fArray(data, arraySize);
}
};
template<> struct SerializationUtils<int32_t> {
static void Write(SkWriteBuffer& writer, int32_t* data, uint32_t arraySize) {
writer.writeIntArray(data, arraySize);
}
static bool Read(SkReadBuffer& reader, int32_t* data, uint32_t arraySize) {
return reader.readIntArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkPoint> {
static void Write(SkWriteBuffer& writer, SkPoint* data, uint32_t arraySize) {
writer.writePointArray(data, arraySize);
}
static bool Read(SkReadBuffer& reader, SkPoint* data, uint32_t arraySize) {
return reader.readPointArray(data, arraySize);
}
};
template<> struct SerializationUtils<SkPoint3> {
static void Write(SkWriteBuffer& writer, const SkPoint3* data) {
writer.writePoint3(*data);
}
static void Read(SkReadBuffer& reader, SkPoint3* data) {
reader.readPoint3(data);
}
};
template<> struct SerializationUtils<SkScalar> {
static void Write(SkWriteBuffer& writer, SkScalar* data, uint32_t arraySize) {
writer.writeScalarArray(data, arraySize);
}
static bool Read(SkReadBuffer& reader, SkScalar* data, uint32_t arraySize) {
return reader.readScalarArray(data, arraySize);
}
};
template<typename T, bool testInvalid> struct SerializationTestUtils {
static void InvalidateData(unsigned char* data) {}
};
template<> struct SerializationTestUtils<SkString, true> {
static void InvalidateData(unsigned char* data) {
data[3] |= 0x80; // Reverse sign of 1st integer
}
};
template<typename T, bool testInvalid>
static void TestObjectSerializationNoAlign(T* testObj, skiatest::Reporter* reporter) {
SkBinaryWriteBuffer writer;
SerializationUtils<T>::Write(writer, testObj);
size_t bytesWritten = writer.bytesWritten();
REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);
unsigned char dataWritten[1024];
writer.writeToMemory(dataWritten);
SerializationTestUtils<T, testInvalid>::InvalidateData(dataWritten);
// Make sure this fails when it should (test with smaller size, but still multiple of 4)
SkReadBuffer buffer(dataWritten, bytesWritten - 4);
T obj;
SerializationUtils<T>::Read(buffer, &obj);
REPORTER_ASSERT(reporter, !buffer.isValid());
// Make sure this succeeds when it should
SkReadBuffer buffer2(dataWritten, bytesWritten);
size_t offsetBefore = buffer2.offset();
T obj2;
SerializationUtils<T>::Read(buffer2, &obj2);
size_t offsetAfter = buffer2.offset();
// This should have succeeded, since there are enough bytes to read this
REPORTER_ASSERT(reporter, buffer2.isValid() == !testInvalid);
// Note: This following test should always succeed, regardless of whether the buffer is valid,
// since if it is invalid, it will simply skip to the end, as if it had read the whole buffer.
REPORTER_ASSERT(reporter, offsetAfter - offsetBefore == bytesWritten);
}
template<typename T>
static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) {
TestObjectSerializationNoAlign<T, false>(testObj, reporter);
SerializationTest::TestAlignment(testObj, reporter);
}
template<typename T>
static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed,
skiatest::Reporter* reporter) {
SkBinaryWriteBuffer writer;
SerializationUtils<T>::Write(writer, testObj);
size_t bytesWritten = writer.bytesWritten();
REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);
SkASSERT(bytesWritten <= 4096);
unsigned char dataWritten[4096];
writer.writeToMemory(dataWritten);
// Make sure this fails when it should (test with smaller size, but still multiple of 4)
SkReadBuffer buffer(dataWritten, bytesWritten - 4);
T* obj = nullptr;
SerializationUtils<T>::Read(buffer, &obj);
REPORTER_ASSERT(reporter, !buffer.isValid());
REPORTER_ASSERT(reporter, nullptr == obj);
// Make sure this succeeds when it should
SkReadBuffer buffer2(dataWritten, bytesWritten);
const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
T* obj2 = nullptr;
SerializationUtils<T>::Read(buffer2, &obj2);
const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
if (shouldSucceed) {
// This should have succeeded, since there are enough bytes to read this
REPORTER_ASSERT(reporter, buffer2.isValid());
REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
REPORTER_ASSERT(reporter, obj2);
} else {
// If the deserialization was supposed to fail, make sure it did
REPORTER_ASSERT(reporter, !buffer.isValid());
REPORTER_ASSERT(reporter, nullptr == obj2);
}
return obj2; // Return object to perform further validity tests on it
}
template<typename T>
static void TestArraySerialization(T* data, skiatest::Reporter* reporter) {
SkBinaryWriteBuffer writer;
SerializationUtils<T>::Write(writer, data, kArraySize);
size_t bytesWritten = writer.bytesWritten();
// This should write the length (in 4 bytes) and the array
REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten);
unsigned char dataWritten[2048];
writer.writeToMemory(dataWritten);
// Make sure this fails when it should
SkReadBuffer buffer(dataWritten, bytesWritten);
T dataRead[kArraySize];
bool success = SerializationUtils<T>::Read(buffer, dataRead, kArraySize / 2);
// This should have failed, since the provided size was too small
REPORTER_ASSERT(reporter, !success);
// Make sure this succeeds when it should
SkReadBuffer buffer2(dataWritten, bytesWritten);
success = SerializationUtils<T>::Read(buffer2, dataRead, kArraySize);
// This should have succeeded, since there are enough bytes to read this
REPORTER_ASSERT(reporter, success);
}
static void TestBitmapSerialization(const SkBitmap& validBitmap,
const SkBitmap& invalidBitmap,
bool shouldSucceed,
skiatest::Reporter* reporter) {
sk_sp<SkImage> validImage(SkImage::MakeFromBitmap(validBitmap));
sk_sp<SkImageFilter> validBitmapSource(SkImageFilters::Image(std::move(validImage)));
sk_sp<SkImage> invalidImage(SkImage::MakeFromBitmap(invalidBitmap));
sk_sp<SkImageFilter> invalidBitmapSource(SkImageFilters::Image(std::move(invalidImage)));
sk_sp<SkImageFilter> xfermodeImageFilter(
SkImageFilters::Blend(SkBlendMode::kSrcOver,
std::move(invalidBitmapSource),
std::move(validBitmapSource), nullptr));
sk_sp<SkImageFilter> deserializedFilter(
TestFlattenableSerialization<SkImageFilter>(
xfermodeImageFilter.get(), shouldSucceed, reporter));
// Try to render a small bitmap using the invalid deserialized filter
// to make sure we don't crash while trying to render it
if (shouldSucceed) {
SkBitmap bitmap;
bitmap.allocN32Pixels(24, 24);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint paint;
paint.setImageFilter(deserializedFilter);
canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24)));
canvas.drawBitmap(bitmap, 0, 0, &paint);
}
}
static void TestColorFilterSerialization(skiatest::Reporter* reporter) {
uint8_t table[256];
for (int i = 0; i < 256; ++i) {
table[i] = (i * 41) % 256;
}
auto filter = SkTableColorFilter::Make(table);
sk_sp<SkColorFilter> copy(
TestFlattenableSerialization(as_CFB(filter.get()), true, reporter));
}
static SkBitmap draw_picture(SkPicture& picture) {
SkBitmap bitmap;
bitmap.allocN32Pixels(SkScalarCeilToInt(picture.cullRect().width()),
SkScalarCeilToInt(picture.cullRect().height()));
SkCanvas canvas(bitmap);
picture.playback(&canvas);
return bitmap;
}
static void compare_bitmaps(skiatest::Reporter* reporter,
const SkBitmap& b1, const SkBitmap& b2) {
REPORTER_ASSERT(reporter, b1.width() == b2.width());
REPORTER_ASSERT(reporter, b1.height() == b2.height());
if ((b1.width() != b2.width()) ||
(b1.height() != b2.height())) {
return;
}
int pixelErrors = 0;
for (int y = 0; y < b2.height(); ++y) {
for (int x = 0; x < b2.width(); ++x) {
if (b1.getColor(x, y) != b2.getColor(x, y))
++pixelErrors;
}
}
REPORTER_ASSERT(reporter, 0 == pixelErrors);
}
static sk_sp<SkData> serialize_typeface_proc(SkTypeface* typeface, void* ctx) {
// Write out typeface ID followed by entire typeface.
SkDynamicMemoryWStream stream;
sk_sp<SkData> data(typeface->serialize(SkTypeface::SerializeBehavior::kDoIncludeData));
uint32_t typeface_id = typeface->uniqueID();
stream.write(&typeface_id, sizeof(typeface_id));
stream.write(data->data(), data->size());
return stream.detachAsData();
}
static sk_sp<SkTypeface> deserialize_typeface_proc(const void* data, size_t length, void* ctx) {
SkStream* stream;
if (length < sizeof(stream)) {
return nullptr;
}
memcpy(&stream, data, sizeof(stream));
SkFontID id;
if (!stream->read(&id, sizeof(id))) {
return nullptr;
}
sk_sp<SkTypeface> typeface = SkTypeface::MakeDeserialize(stream);
return typeface;
}
static void serialize_and_compare_typeface(sk_sp<SkTypeface> typeface,
const char* text,
const SkSerialProcs* serial_procs,
const SkDeserialProcs* deserial_procs,
skiatest::Reporter* reporter) {
// Create a font with the typeface.
SkPaint paint;
paint.setColor(SK_ColorGRAY);
SkFont font(std::move(typeface), 30);
// Paint some text.
SkPictureRecorder recorder;
SkIRect canvasRect = SkIRect::MakeWH(kBitmapSize, kBitmapSize);
SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(canvasRect.width()),
SkIntToScalar(canvasRect.height()));
canvas->drawColor(SK_ColorWHITE);
canvas->drawString(text, 24, 32, font, paint);
sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture());
// Serlialize picture and create its clone from stream.
SkDynamicMemoryWStream stream;
picture->serialize(&stream, serial_procs);
std::unique_ptr<SkStream> inputStream(stream.detachAsStream());
sk_sp<SkPicture> loadedPicture(SkPicture::MakeFromStream(inputStream.get(), deserial_procs));
// Draw both original and clone picture and compare bitmaps -- they should be identical.
SkBitmap origBitmap = draw_picture(*picture);
SkBitmap destBitmap = draw_picture(*loadedPicture);
compare_bitmaps(reporter, origBitmap, destBitmap);
}
static sk_sp<SkTypeface> makeDistortableWithNonDefaultAxes(skiatest::Reporter* reporter) {
std::unique_ptr<SkStreamAsset> distortable(GetResourceAsStream("fonts/Distortable.ttf"));
if (!distortable) {
REPORT_FAILURE(reporter, "distortable", SkString());
return nullptr;
}
const SkFontArguments::VariationPosition::Coordinate position[] = {
{ SkSetFourByteTag('w','g','h','t'), SK_ScalarSqrt2 },
};
SkFontArguments params;
params.setVariationDesignPosition({position, SK_ARRAY_COUNT(position)});
sk_sp<SkFontMgr> fm = SkFontMgr::RefDefault();
sk_sp<SkTypeface> typeface = fm->makeFromStream(std::move(distortable), params);
if (!typeface) {
return nullptr; // Not all SkFontMgr can makeFromStream().
}
int count = typeface->getVariationDesignPosition(nullptr, 0);
if (count == -1) {
return nullptr; // The number of axes is unknown.
}
return typeface;
}
static void TestPictureTypefaceSerialization(const SkSerialProcs* serial_procs,
const SkDeserialProcs* deserial_procs,
skiatest::Reporter* reporter) {
{
// Load typeface from file to test CreateFromFile with index.
auto typeface = MakeResourceAsTypeface("fonts/test.ttc", 1);
if (!typeface) {
INFOF(reporter, "Could not run fontstream test because test.ttc not found.");
} else {
serialize_and_compare_typeface(std::move(typeface), "A!", serial_procs, deserial_procs,
reporter);
}
}
{
// Load typeface as stream to create with axis settings.
auto typeface = makeDistortableWithNonDefaultAxes(reporter);
if (!typeface) {
INFOF(reporter, "Could not run fontstream test because Distortable.ttf not created.");
} else {
serialize_and_compare_typeface(std::move(typeface), "ab", serial_procs,
deserial_procs, reporter);
}
}
}
static void TestTypefaceSerialization(skiatest::Reporter* reporter, sk_sp<SkTypeface> typeface) {
SkDynamicMemoryWStream typefaceWStream;
typeface->serialize(&typefaceWStream);
std::unique_ptr<SkStream> typefaceStream = typefaceWStream.detachAsStream();
sk_sp<SkTypeface> cloneTypeface = SkTypeface::MakeDeserialize(typefaceStream.get());
SkASSERT(cloneTypeface);
SkFont font(typeface, 12);
SkFont clone(cloneTypeface, 12);
SkFontMetrics fontMetrics, cloneMetrics;
font.getMetrics(&fontMetrics);
clone.getMetrics(&cloneMetrics);
REPORTER_ASSERT(reporter, fontMetrics == cloneMetrics);
REPORTER_ASSERT(reporter, typeface->countGlyphs() == cloneTypeface->countGlyphs());
REPORTER_ASSERT(reporter, typeface->fontStyle() == cloneTypeface->fontStyle());
}
DEF_TEST(Serialization_Typeface, reporter) {
SkFont font;
TestTypefaceSerialization(reporter, font.refTypefaceOrDefault());
TestTypefaceSerialization(reporter, ToolUtils::sample_user_typeface());
}
static void setup_bitmap_for_canvas(SkBitmap* bitmap) {
bitmap->allocN32Pixels(kBitmapSize, kBitmapSize);
}
static void make_checkerboard_bitmap(SkBitmap& bitmap) {
setup_bitmap_for_canvas(&bitmap);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int i = kBitmapSize / 8;
const SkScalar f = SkIntToScalar(i);
for (int y = 0; y < kBitmapSize; y += i) {
for (int x = 0; x < kBitmapSize; x += i) {
canvas.save();
canvas.translate(SkIntToScalar(x), SkIntToScalar(y));
canvas.drawRect(SkRect::MakeXYWH(0, 0, f, f), darkPaint);
canvas.drawRect(SkRect::MakeXYWH(f, 0, f, f), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(0, f, f, f), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(f, f, f, f), darkPaint);
canvas.restore();
}
}
}
static void draw_something(SkCanvas* canvas) {
SkPaint paint;
SkBitmap bitmap;
make_checkerboard_bitmap(bitmap);
canvas->save();
canvas->scale(0.5f, 0.5f);
canvas->drawBitmap(bitmap, 0, 0, nullptr);
canvas->restore();
paint.setAntiAlias(true);
paint.setColor(SK_ColorRED);
canvas->drawCircle(SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/3), paint);
paint.setColor(SK_ColorBLACK);
SkFont font;
font.setSize(kBitmapSize/3);
canvas->drawString("Picture", SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/4), font, paint);
}
static sk_sp<SkImage> render(const SkPicture& p) {
auto surf = SkSurface::MakeRasterN32Premul(SkScalarRoundToInt(p.cullRect().width()),
SkScalarRoundToInt(p.cullRect().height()));
if (!surf) {
return nullptr; // bounds are empty?
}
surf->getCanvas()->clear(SK_ColorWHITE);
p.playback(surf->getCanvas());
return surf->makeImageSnapshot();
}
DEF_TEST(Serialization, reporter) {
// Test matrix serialization
{
SkMatrix matrix = SkMatrix::I();
TestObjectSerialization(&matrix, reporter);
}
// Test point3 serialization
{
SkPoint3 point;
TestObjectSerializationNoAlign<SkPoint3, false>(&point, reporter);
}
// Test path serialization
{
SkPath path;
TestObjectSerialization(&path, reporter);
}
// Test region serialization
{
SkRegion region;
TestObjectSerialization(&region, reporter);
}
// Test color filter serialization
{
TestColorFilterSerialization(reporter);
}
// Test string serialization
{
SkString string("string");
TestObjectSerializationNoAlign<SkString, false>(&string, reporter);
TestObjectSerializationNoAlign<SkString, true>(&string, reporter);
}
// Test rrect serialization
{
// SkRRect does not initialize anything.
// An uninitialized SkRRect can be serialized,
// but will branch on uninitialized data when deserialized.
SkRRect rrect;
SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30);
SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} };
rrect.setRectRadii(rect, corners);
SerializationTest::TestAlignment(&rrect, reporter);
}
// Test readByteArray
{
unsigned char data[kArraySize] = { 1, 2, 3 };
TestArraySerialization(data, reporter);
}
// Test readColorArray
{
SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED };
TestArraySerialization(data, reporter);
}
// Test readColor4fArray
{
SkColor4f data[kArraySize] = {
SkColor4f::FromColor(SK_ColorBLACK),
SkColor4f::FromColor(SK_ColorWHITE),
SkColor4f::FromColor(SK_ColorRED),
{ 1.f, 2.f, 4.f, 8.f }
};
TestArraySerialization(data, reporter);
}
// Test readIntArray
{
int32_t data[kArraySize] = { 1, 2, 4, 8 };
TestArraySerialization(data, reporter);
}
// Test readPointArray
{
SkPoint data[kArraySize] = { {6, 7}, {42, 128} };
TestArraySerialization(data, reporter);
}
// Test readScalarArray
{
SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax };
TestArraySerialization(data, reporter);
}
// Test skipByteArray
{
// Valid case with non-empty array:
{
unsigned char data[kArraySize] = { 1, 2, 3 };
SkBinaryWriteBuffer writer;
writer.writeByteArray(data, kArraySize);
SkAutoMalloc buf(writer.bytesWritten());
writer.writeToMemory(buf.get());
SkReadBuffer reader(buf.get(), writer.bytesWritten());
size_t len = ~0;
const void* arr = reader.skipByteArray(&len);
REPORTER_ASSERT(reporter, arr);
REPORTER_ASSERT(reporter, len == kArraySize);
REPORTER_ASSERT(reporter, memcmp(arr, data, len) == 0);
}
// Writing a zero length array (can be detected as valid by non-nullptr return):
{
SkBinaryWriteBuffer writer;
writer.writeByteArray(nullptr, 0);
SkAutoMalloc buf(writer.bytesWritten());
writer.writeToMemory(buf.get());
SkReadBuffer reader(buf.get(), writer.bytesWritten());
size_t len = ~0;
const void* arr = reader.skipByteArray(&len);
REPORTER_ASSERT(reporter, arr);
REPORTER_ASSERT(reporter, len == 0);
}
// If the array can't be safely read, should return nullptr:
{
SkBinaryWriteBuffer writer;
writer.writeUInt(kArraySize);
SkAutoMalloc buf(writer.bytesWritten());
writer.writeToMemory(buf.get());
SkReadBuffer reader(buf.get(), writer.bytesWritten());
size_t len = ~0;
const void* arr = reader.skipByteArray(&len);
REPORTER_ASSERT(reporter, !arr);
REPORTER_ASSERT(reporter, len == 0);
}
}
// Test invalid deserializations
{
SkImageInfo info = SkImageInfo::MakeN32Premul(kBitmapSize, kBitmapSize);
SkBitmap validBitmap;
validBitmap.setInfo(info);
// Create a bitmap with a really large height
SkBitmap invalidBitmap;
invalidBitmap.setInfo(info.makeWH(info.width(), 1000000000));
// The deserialization should succeed, and the rendering shouldn't crash,
// even when the device fails to initialize, due to its size
TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter);
}
// Test simple SkPicture serialization
{
SkPictureRecorder recorder;
draw_something(recorder.beginRecording(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize)));
sk_sp<SkPicture> pict(recorder.finishRecordingAsPicture());
// Serialize picture
SkBinaryWriteBuffer writer;
SkPicturePriv::Flatten(pict, writer);
size_t size = writer.bytesWritten();
SkAutoTMalloc<unsigned char> data(size);
writer.writeToMemory(static_cast<void*>(data.get()));
// Deserialize picture
SkReadBuffer reader(static_cast<void*>(data.get()), size);
sk_sp<SkPicture> readPict(SkPicturePriv::MakeFromBuffer(reader));
REPORTER_ASSERT(reporter, reader.isValid());
REPORTER_ASSERT(reporter, readPict.get());
sk_sp<SkImage> img0 = render(*pict);
sk_sp<SkImage> img1 = render(*readPict);
if (img0 && img1) {
REPORTER_ASSERT(reporter, ToolUtils::equal_pixels(img0.get(), img1.get()));
}
}
TestPictureTypefaceSerialization(nullptr, nullptr, reporter);
SkSerialProcs serial_procs;
serial_procs.fTypefaceProc = serialize_typeface_proc;
SkDeserialProcs deserial_procs;
deserial_procs.fTypefaceProc = deserialize_typeface_proc;
TestPictureTypefaceSerialization(&serial_procs, &deserial_procs, reporter);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "include/core/SkAnnotation.h"
static sk_sp<SkPicture> copy_picture_via_serialization(SkPicture* src) {
SkDynamicMemoryWStream wstream;
src->serialize(&wstream);
std::unique_ptr<SkStreamAsset> rstream(wstream.detachAsStream());
return SkPicture::MakeFromStream(rstream.get());
}
struct AnnotationRec {
const SkRect fRect;
const char* fKey;
sk_sp<SkData> fValue;
};
class TestAnnotationCanvas : public SkCanvas {
skiatest::Reporter* fReporter;
const AnnotationRec* fRec;
int fCount;
int fCurrIndex;
public:
TestAnnotationCanvas(skiatest::Reporter* reporter, const AnnotationRec rec[], int count)
: SkCanvas(100, 100)
, fReporter(reporter)
, fRec(rec)
, fCount(count)
, fCurrIndex(0)
{}
~TestAnnotationCanvas() override {
REPORTER_ASSERT(fReporter, fCount == fCurrIndex);
}
protected:
void onDrawAnnotation(const SkRect& rect, const char key[], SkData* value) override {
REPORTER_ASSERT(fReporter, fCurrIndex < fCount);
REPORTER_ASSERT(fReporter, rect == fRec[fCurrIndex].fRect);
REPORTER_ASSERT(fReporter, !strcmp(key, fRec[fCurrIndex].fKey));
REPORTER_ASSERT(fReporter, value->equals(fRec[fCurrIndex].fValue.get()));
fCurrIndex += 1;
}
};
/*
* Test the 3 annotation types by recording them into a picture, serializing, and then playing
* them back into another canvas.
*/
DEF_TEST(Annotations, reporter) {
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeWH(100, 100));
const char* str0 = "rect-with-url";
const SkRect r0 = SkRect::MakeWH(10, 10);
sk_sp<SkData> d0(SkData::MakeWithCString(str0));
SkAnnotateRectWithURL(recordingCanvas, r0, d0.get());
const char* str1 = "named-destination";
const SkRect r1 = SkRect::MakeXYWH(5, 5, 0, 0); // collapsed to a point
sk_sp<SkData> d1(SkData::MakeWithCString(str1));
SkAnnotateNamedDestination(recordingCanvas, {r1.x(), r1.y()}, d1.get());
const char* str2 = "link-to-destination";
const SkRect r2 = SkRect::MakeXYWH(20, 20, 5, 6);
sk_sp<SkData> d2(SkData::MakeWithCString(str2));
SkAnnotateLinkToDestination(recordingCanvas, r2, d2.get());
const AnnotationRec recs[] = {
{ r0, SkAnnotationKeys::URL_Key(), std::move(d0) },
{ r1, SkAnnotationKeys::Define_Named_Dest_Key(), std::move(d1) },
{ r2, SkAnnotationKeys::Link_Named_Dest_Key(), std::move(d2) },
};
sk_sp<SkPicture> pict0(recorder.finishRecordingAsPicture());
sk_sp<SkPicture> pict1(copy_picture_via_serialization(pict0.get()));
TestAnnotationCanvas canvas(reporter, recs, SK_ARRAY_COUNT(recs));
canvas.drawPicture(pict1);
}
DEF_TEST(WriteBuffer_storage, reporter) {
enum {
kSize = 32
};
int32_t storage[kSize/4];
char src[kSize];
sk_bzero(src, kSize);
SkBinaryWriteBuffer writer(storage, kSize);
REPORTER_ASSERT(reporter, writer.usingInitialStorage());
REPORTER_ASSERT(reporter, writer.bytesWritten() == 0);
writer.write(src, kSize - 4);
REPORTER_ASSERT(reporter, writer.usingInitialStorage());
REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize - 4);
writer.writeInt(0);
REPORTER_ASSERT(reporter, writer.usingInitialStorage());
REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize);
writer.reset(storage, kSize-4);
REPORTER_ASSERT(reporter, writer.usingInitialStorage());
REPORTER_ASSERT(reporter, writer.bytesWritten() == 0);
writer.write(src, kSize - 4);
REPORTER_ASSERT(reporter, writer.usingInitialStorage());
REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize - 4);
writer.writeInt(0);
REPORTER_ASSERT(reporter, !writer.usingInitialStorage()); // this is the change
REPORTER_ASSERT(reporter, writer.bytesWritten() == kSize);
}
DEF_TEST(WriteBuffer_external_memory_textblob, reporter) {
SkFont font;
font.setTypeface(SkTypeface::MakeDefault());
SkTextBlobBuilder builder;
int glyph_count = 5;
const auto& run = builder.allocRun(font, glyph_count, 1.2f, 2.3f);
// allocRun() allocates only the glyph buffer.
std::fill(run.glyphs, run.glyphs + glyph_count, 0);
auto blob = builder.make();
SkSerialProcs procs;
SkAutoTMalloc<uint8_t> storage;
size_t blob_size = 0u;
size_t storage_size = 0u;
blob_size = SkAlign4(blob->serialize(procs)->size());
REPORTER_ASSERT(reporter, blob_size > 4u);
storage_size = blob_size - 4;
storage.realloc(storage_size);
REPORTER_ASSERT(reporter, blob->serialize(procs, storage.get(), storage_size) == 0u);
storage_size = blob_size;
storage.realloc(storage_size);
REPORTER_ASSERT(reporter, blob->serialize(procs, storage.get(), storage_size) != 0u);
}
DEF_TEST(WriteBuffer_external_memory_flattenable, reporter) {
SkScalar intervals[] = {1.f, 1.f};
auto path_effect = SkDashPathEffect::Make(intervals, 2, 0);
size_t path_size = SkAlign4(path_effect->serialize()->size());
REPORTER_ASSERT(reporter, path_size > 4u);
SkAutoTMalloc<uint8_t> storage;
size_t storage_size = path_size - 4;
storage.realloc(storage_size);
REPORTER_ASSERT(reporter, path_effect->serialize(storage.get(), storage_size) == 0u);
storage_size = path_size;
storage.realloc(storage_size);
REPORTER_ASSERT(reporter, path_effect->serialize(storage.get(), storage_size) != 0u);
}
DEF_TEST(ReadBuffer_empty, reporter) {
SkBinaryWriteBuffer writer;
writer.writeInt(123);
writer.writeDataAsByteArray(SkData::MakeEmpty().get());
writer.writeInt(321);
size_t size = writer.bytesWritten();
SkAutoMalloc storage(size);
writer.writeToMemory(storage.get());
SkReadBuffer reader(storage.get(), size);
REPORTER_ASSERT(reporter, reader.readInt() == 123);
auto data = reader.readByteArrayAsData();
REPORTER_ASSERT(reporter, data->size() == 0);
REPORTER_ASSERT(reporter, reader.readInt() == 321);
}