| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/SkVx.h" |
| #include "tests/Test.h" |
| |
| using float2 = skvx::Vec<2,float>; |
| using float4 = skvx::Vec<4,float>; |
| using float8 = skvx::Vec<8,float>; |
| |
| using double2 = skvx::Vec<2,double>; |
| using double4 = skvx::Vec<4,double>; |
| using double8 = skvx::Vec<8,double>; |
| |
| using byte2 = skvx::Vec< 2,uint8_t>; |
| using byte4 = skvx::Vec< 4,uint8_t>; |
| using byte8 = skvx::Vec< 8,uint8_t>; |
| using byte16 = skvx::Vec<16,uint8_t>; |
| |
| using int2 = skvx::Vec<2,int32_t>; |
| using int4 = skvx::Vec<4,int32_t>; |
| using int8 = skvx::Vec<8,int32_t>; |
| |
| using long2 = skvx::Vec<2,int64_t>; |
| using long4 = skvx::Vec<4,int64_t>; |
| using long8 = skvx::Vec<8,int64_t>; |
| |
| // These are unused, and just here so I can look at the disassembly. |
| float2 Sqrt(float2 x) { return sqrt(x); } |
| float4 Sqrt(float4 x) { return sqrt(x); } |
| float8 Sqrt(float8 x) { return sqrt(x); } |
| |
| float4 RSqrt(float4 x) { return rsqrt(x); } |
| float4 Rcp(float4 x) { return rcp(x); } |
| float4 Ceil(float4 x) { return ceil(x); } |
| float4 Floor(float4 x) { return floor(x); } |
| float4 Trunc(float4 x) { return trunc(x); } |
| float4 Round(float4 x) { return round(x); } |
| float4 Abs(float4 x) { return abs(x); } |
| |
| float4 Min(float4 x, float4 y) { return min(x,y); } |
| float4 Max(float4 x, float4 y) { return max(x,y); } |
| |
| float4 IfThenElse(int4 c, float4 t, float4 e) { return if_then_else(c,t,e); } |
| |
| DEF_TEST(SkVx, r) { |
| static_assert(sizeof(float2) == 8, ""); |
| static_assert(sizeof(float4) == 16, ""); |
| static_assert(sizeof(float8) == 32, ""); |
| |
| static_assert(sizeof(byte2) == 2, ""); |
| static_assert(sizeof(byte4) == 4, ""); |
| static_assert(sizeof(byte8) == 8, ""); |
| |
| { |
| int4 mask = float4{1,2,3,4} < float4{1,2,4,8}; |
| REPORTER_ASSERT(r, mask[0] == int32_t( 0)); |
| REPORTER_ASSERT(r, mask[1] == int32_t( 0)); |
| REPORTER_ASSERT(r, mask[2] == int32_t(-1)); |
| REPORTER_ASSERT(r, mask[3] == int32_t(-1)); |
| |
| REPORTER_ASSERT(r, any(mask)); |
| REPORTER_ASSERT(r, !all(mask)); |
| } |
| |
| { |
| long4 mask = double4{1,2,3,4} < double4{1,2,4,8}; |
| REPORTER_ASSERT(r, mask[0] == int64_t( 0)); |
| REPORTER_ASSERT(r, mask[1] == int64_t( 0)); |
| REPORTER_ASSERT(r, mask[2] == int64_t(-1)); |
| REPORTER_ASSERT(r, mask[3] == int64_t(-1)); |
| |
| REPORTER_ASSERT(r, any(mask)); |
| REPORTER_ASSERT(r, !all(mask)); |
| } |
| |
| REPORTER_ASSERT(r, min(float4{1,2,3,4}) == 1); |
| REPORTER_ASSERT(r, max(float4{1,2,3,4}) == 4); |
| |
| REPORTER_ASSERT(r, all(int4{1,2,3,4,5} == int4{1,2,3,4})); |
| REPORTER_ASSERT(r, all(int4{1,2,3,4} == int4{1,2,3,4})); |
| REPORTER_ASSERT(r, all(int4{1,2,3} == int4{1,2,3,0})); |
| REPORTER_ASSERT(r, all(int4{1,2} == int4{1,2,0,0})); |
| REPORTER_ASSERT(r, all(int4{1} == int4{1,0,0,0})); |
| REPORTER_ASSERT(r, all(int4(1) == int4{1,1,1,1})); |
| REPORTER_ASSERT(r, all(int4{} == int4{0,0,0,0})); |
| REPORTER_ASSERT(r, all(int4() == int4{0,0,0,0})); |
| |
| REPORTER_ASSERT(r, all(int4{1,2,2,1} == min(int4{1,2,3,4}, int4{4,3,2,1}))); |
| REPORTER_ASSERT(r, all(int4{4,3,3,4} == max(int4{1,2,3,4}, int4{4,3,2,1}))); |
| |
| REPORTER_ASSERT(r, all(if_then_else(float4{1,2,3,2} <= float4{2,2,2,2}, float4(42), float4(47)) |
| == float4{42,42,47,42})); |
| |
| REPORTER_ASSERT(r, all(floor(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,1.0f,1.0f,-1.0f})); |
| REPORTER_ASSERT(r, all( ceil(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,2.0f,1.0f,-1.0f})); |
| REPORTER_ASSERT(r, all(trunc(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-1.0f,1.0f,1.0f,-1.0f})); |
| REPORTER_ASSERT(r, all(round(float4{-1.5f,1.5f,1.0f,-1.0f}) == float4{-2.0f,2.0f,1.0f,-1.0f})); |
| |
| |
| REPORTER_ASSERT(r, all(abs(float4{-2,-1,0,1}) == float4{2,1,0,1})); |
| |
| // TODO(mtklein): these tests could be made less loose. |
| REPORTER_ASSERT(r, all( sqrt(float4{2,3,4,5}) < float4{2,2,3,3})); |
| REPORTER_ASSERT(r, all( rcp(float4{2,3,4,5}) < float4{1.0f,0.5f,0.5f,0.3f})); |
| REPORTER_ASSERT(r, all(rsqrt(float4{2,3,4,5}) < float4{1.0f,1.0f,1.0f,0.5f})); |
| |
| REPORTER_ASSERT(r, all( sqrt(float2{2,3}) < float2{2,2})); |
| REPORTER_ASSERT(r, all( rcp(float2{2,3}) < float2{1.0f,0.5f})); |
| REPORTER_ASSERT(r, all(rsqrt(float2{2,3}) < float2{1.0f,1.0f})); |
| |
| REPORTER_ASSERT(r, all(skvx::cast<int>(float4{-1.5f,0.5f,1.0f,1.5f}) == int4{-1,0,1,1})); |
| |
| float buf[] = {1,2,3,4,5,6}; |
| REPORTER_ASSERT(r, all(float4::Load(buf) == float4{1,2,3,4})); |
| float4{2,3,4,5}.store(buf); |
| REPORTER_ASSERT(r, buf[0] == 2 |
| && buf[1] == 3 |
| && buf[2] == 4 |
| && buf[3] == 5 |
| && buf[4] == 5 |
| && buf[5] == 6); |
| REPORTER_ASSERT(r, all(float4::Load(buf+0) == float4{2,3,4,5})); |
| REPORTER_ASSERT(r, all(float4::Load(buf+2) == float4{4,5,5,6})); |
| |
| REPORTER_ASSERT(r, all(skvx::shuffle<2,1,0,3> (float4{1,2,3,4}) == float4{3,2,1,4})); |
| REPORTER_ASSERT(r, all(skvx::shuffle<2,1> (float4{1,2,3,4}) == float2{3,2})); |
| REPORTER_ASSERT(r, all(skvx::shuffle<3,3,3,3> (float4{1,2,3,4}) == float4{4,4,4,4})); |
| REPORTER_ASSERT(r, all(skvx::shuffle<2,1,2,1,2,1,2,1>(float4{1,2,3,4}) |
| == float8{3,2,3,2,3,2,3,2})); |
| |
| // Test that mixed types can be used where they make sense. Mostly about ergonomics. |
| REPORTER_ASSERT(r, all(float4{1,2,3,4} < 5)); |
| REPORTER_ASSERT(r, all( byte4{1,2,3,4} < 5)); |
| REPORTER_ASSERT(r, all( int4{1,2,3,4} < 5.0f)); |
| float4 five = 5; |
| REPORTER_ASSERT(r, all(five == 5.0f)); |
| REPORTER_ASSERT(r, all(five == 5)); |
| |
| REPORTER_ASSERT(r, all(max(2, min(float4{1,2,3,4}, 3)) == float4{2,2,3,3})); |
| |
| for (int x = 0; x < 256; x++) |
| for (int y = 0; y < 256; y++) { |
| uint8_t want = (uint8_t)( 255*(x/255.0 * y/255.0) + 0.5 ); |
| |
| { |
| uint8_t got = skvx::div255(skvx::Vec<8, uint16_t>(x) * |
| skvx::Vec<8, uint16_t>(y) )[0]; |
| REPORTER_ASSERT(r, got == want); |
| } |
| |
| { |
| uint8_t got = skvx::approx_scale(skvx::Vec<8,uint8_t>(x), |
| skvx::Vec<8,uint8_t>(y))[0]; |
| |
| REPORTER_ASSERT(r, got == want-1 || |
| got == want || |
| got == want+1); |
| if (x == 0 || y == 0 || x == 255 || y == 255) { |
| REPORTER_ASSERT(r, got == want); |
| } |
| } |
| } |
| |
| for (int x = 0; x < 256; x++) |
| for (int y = 0; y < 256; y++) { |
| uint16_t xy = x*y; |
| |
| // Make sure to cover implementation cases N=8, N<8, and N>8. |
| REPORTER_ASSERT(r, all(mull(byte2 (x), byte2 (y)) == xy)); |
| REPORTER_ASSERT(r, all(mull(byte4 (x), byte4 (y)) == xy)); |
| REPORTER_ASSERT(r, all(mull(byte8 (x), byte8 (y)) == xy)); |
| REPORTER_ASSERT(r, all(mull(byte16(x), byte16(y)) == xy)); |
| } |
| |
| { |
| // Intentionally not testing -0, as we don't care if it's 0x0000 or 0x8000. |
| float8 fs = {+0.0f,+0.5f,+1.0f,+2.0f, |
| -4.0f,-0.5f,-1.0f,-2.0f}; |
| skvx::Vec<8,uint16_t> hs = {0x0000,0x3800,0x3c00,0x4000, |
| 0xc400,0xb800,0xbc00,0xc000}; |
| REPORTER_ASSERT(r, all(skvx:: to_half(fs) == hs)); |
| REPORTER_ASSERT(r, all(skvx::from_half(hs) == fs)); |
| } |
| } |