| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/GrDrawingManager.h" |
| |
| #include <algorithm> |
| #include <memory> |
| |
| #include "include/core/SkDeferredDisplayList.h" |
| #include "include/gpu/GrBackendSemaphore.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/core/SkDeferredDisplayListPriv.h" |
| #include "src/gpu/GrAuditTrail.h" |
| #include "src/gpu/GrClientMappedBufferManager.h" |
| #include "src/gpu/GrCopyRenderTask.h" |
| #include "src/gpu/GrDDLTask.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrGpu.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrOnFlushResourceProvider.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrRenderTargetContext.h" |
| #include "src/gpu/GrRenderTargetProxy.h" |
| #include "src/gpu/GrRenderTask.h" |
| #include "src/gpu/GrResourceAllocator.h" |
| #include "src/gpu/GrResourceProvider.h" |
| #include "src/gpu/GrSoftwarePathRenderer.h" |
| #include "src/gpu/GrSurfaceContext.h" |
| #include "src/gpu/GrSurfaceProxyPriv.h" |
| #include "src/gpu/GrTTopoSort.h" |
| #include "src/gpu/GrTexture.h" |
| #include "src/gpu/GrTextureProxy.h" |
| #include "src/gpu/GrTextureProxyPriv.h" |
| #include "src/gpu/GrTextureResolveRenderTask.h" |
| #include "src/gpu/GrTracing.h" |
| #include "src/gpu/GrTransferFromRenderTask.h" |
| #include "src/gpu/GrWaitRenderTask.h" |
| #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" |
| #include "src/gpu/text/GrSDFTOptions.h" |
| #include "src/image/SkSurface_Gpu.h" |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| GrDrawingManager::GrDrawingManager(GrRecordingContext* context, |
| const GrPathRendererChain::Options& optionsForPathRendererChain, |
| bool reduceOpsTaskSplitting) |
| : fContext(context) |
| , fOptionsForPathRendererChain(optionsForPathRendererChain) |
| , fPathRendererChain(nullptr) |
| , fSoftwarePathRenderer(nullptr) |
| , fFlushing(false) |
| , fReduceOpsTaskSplitting(reduceOpsTaskSplitting) { } |
| |
| GrDrawingManager::~GrDrawingManager() { |
| this->closeAllTasks(); |
| this->removeRenderTasks(0, fDAG.count()); |
| } |
| |
| bool GrDrawingManager::wasAbandoned() const { |
| return fContext->abandoned(); |
| } |
| |
| void GrDrawingManager::freeGpuResources() { |
| for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) { |
| if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) { |
| // it's safe to just do this because we're iterating in reverse |
| fOnFlushCBObjects.removeShuffle(i); |
| } |
| } |
| |
| // a path renderer may be holding onto resources |
| fPathRendererChain = nullptr; |
| fSoftwarePathRenderer = nullptr; |
| } |
| |
| // MDB TODO: make use of the 'proxies' parameter. |
| bool GrDrawingManager::flush( |
| SkSpan<GrSurfaceProxy*> proxies, |
| SkSurface::BackendSurfaceAccess access, |
| const GrFlushInfo& info, |
| const GrBackendSurfaceMutableState* newState) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext); |
| |
| if (fFlushing || this->wasAbandoned()) { |
| if (info.fSubmittedProc) { |
| info.fSubmittedProc(info.fSubmittedContext, false); |
| } |
| if (info.fFinishedProc) { |
| info.fFinishedProc(info.fFinishedContext); |
| } |
| return false; |
| } |
| |
| SkDEBUGCODE(this->validate()); |
| |
| // As of now we only short-circuit if we got an explicit list of surfaces to flush. |
| if (!proxies.empty() && !info.fNumSemaphores && !info.fFinishedProc && |
| access == SkSurface::BackendSurfaceAccess::kNoAccess && !newState) { |
| bool allUnused = std::all_of(proxies.begin(), proxies.end(), [&](GrSurfaceProxy* proxy) { |
| bool used = std::any_of(fDAG.begin(), fDAG.end(), [&](auto& task) { |
| return task && task->isUsed(proxy); |
| }); |
| return !used && !this->isDDLTarget(proxy); |
| }); |
| if (allUnused) { |
| if (info.fSubmittedProc) { |
| info.fSubmittedProc(info.fSubmittedContext, true); |
| } |
| return false; |
| } |
| } |
| |
| auto direct = fContext->asDirectContext(); |
| SkASSERT(direct); |
| direct->priv().clientMappedBufferManager()->process(); |
| |
| GrGpu* gpu = direct->priv().getGpu(); |
| // We have a non abandoned and direct GrContext. It must have a GrGpu. |
| SkASSERT(gpu); |
| |
| fFlushing = true; |
| |
| auto resourceProvider = direct->priv().resourceProvider(); |
| auto resourceCache = direct->priv().getResourceCache(); |
| |
| // Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs |
| // to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be |
| // flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them |
| // if the SkGpuDevice(s) write to them again. |
| this->closeAllTasks(); |
| fActiveOpsTask = nullptr; |
| |
| this->sortTasks(); |
| if (!fCpuBufferCache) { |
| // We cache more buffers when the backend is using client side arrays. Otherwise, we |
| // expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU |
| // buffer object. Each pool only requires one staging buffer at a time. |
| int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6; |
| fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers); |
| } |
| |
| GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache); |
| |
| GrOnFlushResourceProvider onFlushProvider(this); |
| |
| // Prepare any onFlush op lists (e.g. atlases). |
| if (!fOnFlushCBObjects.empty()) { |
| fFlushingRenderTaskIDs.reserve_back(fDAG.count()); |
| for (const auto& task : fDAG) { |
| if (task) { |
| task->gatherIDs(&fFlushingRenderTaskIDs); |
| } |
| } |
| |
| for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { |
| onFlushCBObject->preFlush(&onFlushProvider, fFlushingRenderTaskIDs); |
| } |
| for (const auto& onFlushRenderTask : fOnFlushRenderTasks) { |
| onFlushRenderTask->makeClosed(*fContext->priv().caps()); |
| #ifdef SK_DEBUG |
| // OnFlush callbacks are invoked during flush, and are therefore expected to handle |
| // resource allocation & usage on their own. (No deferred or lazy proxies!) |
| onFlushRenderTask->visitTargetAndSrcProxies_debugOnly( |
| [](GrSurfaceProxy* p, GrMipmapped mipMapped) { |
| SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred()); |
| SkASSERT(!p->isLazy()); |
| if (p->requiresManualMSAAResolve()) { |
| // The onFlush callback is responsible for ensuring MSAA gets resolved. |
| SkASSERT(p->asRenderTargetProxy() && !p->asRenderTargetProxy()->isMSAADirty()); |
| } |
| if (GrMipmapped::kYes == mipMapped) { |
| // The onFlush callback is responsible for regenerating mips if needed. |
| SkASSERT(p->asTextureProxy() && !p->asTextureProxy()->mipmapsAreDirty()); |
| } |
| }); |
| #endif |
| onFlushRenderTask->prepare(&flushState); |
| } |
| } |
| |
| #if 0 |
| // Enable this to print out verbose GrOp information |
| SkDEBUGCODE(SkDebugf("onFlush renderTasks (%d):\n", fOnFlushRenderTasks.count())); |
| for (const auto& onFlushRenderTask : fOnFlushRenderTasks) { |
| SkDEBUGCODE(onFlushRenderTask->dump(/* printDependencies */ true);) |
| } |
| SkDEBUGCODE(SkDebugf("Normal renderTasks (%d):\n", fDAG.count())); |
| for (const auto& task : fDAG) { |
| SkDEBUGCODE(task->dump(/* printDependencies */ true);) |
| } |
| #endif |
| |
| int startIndex, stopIndex; |
| bool flushed = false; |
| |
| { |
| GrResourceAllocator alloc(resourceProvider SkDEBUGCODE(, fDAG.count())); |
| for (int i = 0; i < fDAG.count(); ++i) { |
| if (fDAG[i]) { |
| fDAG[i]->gatherProxyIntervals(&alloc); |
| } |
| alloc.markEndOfOpsTask(i); |
| } |
| alloc.determineRecyclability(); |
| |
| GrResourceAllocator::AssignError error = GrResourceAllocator::AssignError::kNoError; |
| int numRenderTasksExecuted = 0; |
| while (alloc.assign(&startIndex, &stopIndex, &error)) { |
| if (GrResourceAllocator::AssignError::kFailedProxyInstantiation == error) { |
| for (int i = startIndex; i < stopIndex; ++i) { |
| GrRenderTask* renderTask = fDAG[i].get(); |
| if (!renderTask) { |
| continue; |
| } |
| if (!renderTask->isInstantiated()) { |
| // No need to call the renderTask's handleInternalAllocationFailure |
| // since we will already skip executing the renderTask since it is not |
| // instantiated. |
| continue; |
| } |
| renderTask->handleInternalAllocationFailure(); |
| } |
| this->removeRenderTasks(startIndex, stopIndex); |
| } |
| |
| if (this->executeRenderTasks( |
| startIndex, stopIndex, &flushState, &numRenderTasksExecuted)) { |
| flushed = true; |
| } |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| for (const auto& task : fDAG) { |
| // All render tasks should have been cleared out by now – we only reset the array below to |
| // reclaim storage. |
| SkASSERT(!task); |
| } |
| #endif |
| fLastRenderTasks.reset(); |
| fDAG.reset(); |
| this->clearDDLTargets(); |
| |
| #ifdef SK_DEBUG |
| // In non-DDL mode this checks that all the flushed ops have been freed from the memory pool. |
| // When we move to partial flushes this assert will no longer be valid. |
| // In DDL mode this check is somewhat superfluous since the memory for most of the ops/opsTasks |
| // will be stored in the DDL's GrOpMemoryPools. |
| GrMemoryPool* opMemoryPool = fContext->priv().opMemoryPool(); |
| opMemoryPool->isEmpty(); |
| #endif |
| |
| gpu->executeFlushInfo(proxies, access, info, newState); |
| |
| // Give the cache a chance to purge resources that become purgeable due to flushing. |
| if (flushed) { |
| resourceCache->purgeAsNeeded(); |
| flushed = false; |
| } |
| for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { |
| onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(), fFlushingRenderTaskIDs); |
| flushed = true; |
| } |
| if (flushed) { |
| resourceCache->purgeAsNeeded(); |
| } |
| fFlushingRenderTaskIDs.reset(); |
| fFlushing = false; |
| |
| return true; |
| } |
| |
| bool GrDrawingManager::submitToGpu(bool syncToCpu) { |
| if (fFlushing || this->wasAbandoned()) { |
| return false; |
| } |
| |
| auto direct = fContext->asDirectContext(); |
| if (!direct) { |
| return false; // Can't submit while DDL recording |
| } |
| GrGpu* gpu = direct->priv().getGpu(); |
| return gpu->submitToGpu(syncToCpu); |
| } |
| |
| bool GrDrawingManager::executeRenderTasks(int startIndex, int stopIndex, GrOpFlushState* flushState, |
| int* numRenderTasksExecuted) { |
| SkASSERT(startIndex <= stopIndex && stopIndex <= fDAG.count()); |
| |
| #if GR_FLUSH_TIME_OP_SPEW |
| SkDebugf("Flushing opsTask: %d to %d out of [%d, %d]\n", |
| startIndex, stopIndex, 0, fDAG.count()); |
| for (int i = startIndex; i < stopIndex; ++i) { |
| if (fDAG[i]) { |
| fDAG[i]->dump(true); |
| } |
| } |
| #endif |
| |
| bool anyRenderTasksExecuted = false; |
| |
| for (int i = startIndex; i < stopIndex; ++i) { |
| GrRenderTask* renderTask = fDAG[i].get(); |
| if (!renderTask || !renderTask->isInstantiated()) { |
| continue; |
| } |
| |
| SkASSERT(renderTask->deferredProxiesAreInstantiated()); |
| |
| renderTask->prepare(flushState); |
| } |
| |
| // Upload all data to the GPU |
| flushState->preExecuteDraws(); |
| |
| // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources |
| // for each command buffer associated with the oplists. If this gets too large we can cause the |
| // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we |
| // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some |
| // memory pressure. |
| static constexpr int kMaxRenderTasksBeforeFlush = 100; |
| |
| // Execute the onFlush renderTasks first, if any. |
| for (sk_sp<GrRenderTask>& onFlushRenderTask : fOnFlushRenderTasks) { |
| if (!onFlushRenderTask->execute(flushState)) { |
| SkDebugf("WARNING: onFlushRenderTask failed to execute.\n"); |
| } |
| SkASSERT(onFlushRenderTask->unique()); |
| onFlushRenderTask->disown(this); |
| onFlushRenderTask = nullptr; |
| (*numRenderTasksExecuted)++; |
| if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { |
| flushState->gpu()->submitToGpu(false); |
| *numRenderTasksExecuted = 0; |
| } |
| } |
| fOnFlushRenderTasks.reset(); |
| |
| // Execute the normal op lists. |
| for (int i = startIndex; i < stopIndex; ++i) { |
| GrRenderTask* renderTask = fDAG[i].get(); |
| if (!renderTask || !renderTask->isInstantiated()) { |
| continue; |
| } |
| |
| if (renderTask->execute(flushState)) { |
| anyRenderTasksExecuted = true; |
| } |
| (*numRenderTasksExecuted)++; |
| if (*numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { |
| flushState->gpu()->submitToGpu(false); |
| *numRenderTasksExecuted = 0; |
| } |
| } |
| |
| SkASSERT(!flushState->opsRenderPass()); |
| SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush()); |
| |
| // We reset the flush state before the RenderTasks so that the last resources to be freed are |
| // those that are written to in the RenderTasks. This helps to make sure the most recently used |
| // resources are the last to be purged by the resource cache. |
| flushState->reset(); |
| |
| this->removeRenderTasks(startIndex, stopIndex); |
| |
| return anyRenderTasksExecuted; |
| } |
| |
| void GrDrawingManager::removeRenderTasks(int startIndex, int stopIndex) { |
| for (int i = startIndex; i < stopIndex; ++i) { |
| GrRenderTask* task = fDAG[i].get(); |
| if (!task) { |
| continue; |
| } |
| if (!task->unique() || task->requiresExplicitCleanup()) { |
| // TODO: Eventually uniqueness should be guaranteed: http://skbug.com/7111. |
| // DDLs, however, will always require an explicit notification for when they |
| // can clean up resources. |
| task->endFlush(this); |
| } |
| task->disown(this); |
| |
| // This doesn't cleanup any referring pointers (e.g. dependency pointers in the DAG). |
| // It works right now bc this is only called after the topological sort is complete |
| // (so the dangling pointers aren't used). |
| fDAG[i] = nullptr; |
| } |
| } |
| |
| void GrDrawingManager::sortTasks() { |
| if (!GrTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>(&fDAG)) { |
| SkDEBUGFAIL("Render task topo sort failed."); |
| return; |
| } |
| |
| #ifdef SK_DEBUG |
| // This block checks for any unnecessary splits in the opsTasks. If two sequential opsTasks |
| // share the same backing GrSurfaceProxy it means the opsTask was artificially split. |
| if (!fDAG.empty()) { |
| GrOpsTask* prevOpsTask = fDAG[0]->asOpsTask(); |
| for (int i = 1; i < fDAG.count(); ++i) { |
| GrOpsTask* curOpsTask = fDAG[i]->asOpsTask(); |
| |
| if (prevOpsTask && curOpsTask) { |
| SkASSERT(prevOpsTask->target(0).proxy() != curOpsTask->target(0).proxy()); |
| } |
| |
| prevOpsTask = curOpsTask; |
| } |
| } |
| #endif |
| } |
| |
| void GrDrawingManager::closeAllTasks() { |
| const GrCaps& caps = *fContext->priv().caps(); |
| for (auto& task : fDAG) { |
| if (task) { |
| task->makeClosed(caps); |
| } |
| } |
| } |
| |
| GrRenderTask* GrDrawingManager::insertTaskBeforeLast(sk_sp<GrRenderTask> task) { |
| SkASSERT(!fDAG.empty()); |
| if (!task) { |
| return nullptr; |
| } |
| // Release 'fDAG.back()' and grab the raw pointer, in case the SkTArray grows |
| // and reallocates during emplace_back. |
| // TODO: Either use std::vector that can do this for us, or use SkSTArray to get the |
| // perf win. |
| fDAG.emplace_back(fDAG.back().release()); |
| return (fDAG[fDAG.count() - 2] = std::move(task)).get(); |
| } |
| |
| GrRenderTask* GrDrawingManager::appendTask(sk_sp<GrRenderTask> task) { |
| if (!task) { |
| return nullptr; |
| } |
| return fDAG.push_back(std::move(task)).get(); |
| } |
| |
| static void resolve_and_mipmap(GrGpu* gpu, GrSurfaceProxy* proxy) { |
| if (!proxy->isInstantiated()) { |
| return; |
| } |
| |
| // In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is |
| // because clients expect the flushed surface's backing texture to be fully resolved |
| // upon return. |
| if (proxy->requiresManualMSAAResolve()) { |
| auto* rtProxy = proxy->asRenderTargetProxy(); |
| SkASSERT(rtProxy); |
| if (rtProxy->isMSAADirty()) { |
| SkASSERT(rtProxy->peekRenderTarget()); |
| gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect()); |
| gpu->submitToGpu(false); |
| rtProxy->markMSAAResolved(); |
| } |
| } |
| // If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in |
| // case their backend textures are being stolen. |
| // (This special case is exercised by the ReimportImageTextureWithMipLevels test.) |
| // FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag. |
| if (auto* textureProxy = proxy->asTextureProxy()) { |
| if (textureProxy->mipmapsAreDirty()) { |
| SkASSERT(textureProxy->peekTexture()); |
| gpu->regenerateMipMapLevels(textureProxy->peekTexture()); |
| textureProxy->markMipmapsClean(); |
| } |
| } |
| } |
| |
| GrSemaphoresSubmitted GrDrawingManager::flushSurfaces( |
| SkSpan<GrSurfaceProxy*> proxies, |
| SkSurface::BackendSurfaceAccess access, |
| const GrFlushInfo& info, |
| const GrBackendSurfaceMutableState* newState) { |
| if (this->wasAbandoned()) { |
| if (info.fSubmittedProc) { |
| info.fSubmittedProc(info.fSubmittedContext, false); |
| } |
| if (info.fFinishedProc) { |
| info.fFinishedProc(info.fFinishedContext); |
| } |
| return GrSemaphoresSubmitted::kNo; |
| } |
| SkDEBUGCODE(this->validate()); |
| |
| auto direct = fContext->asDirectContext(); |
| SkASSERT(direct); |
| GrGpu* gpu = direct->priv().getGpu(); |
| // We have a non abandoned and direct GrContext. It must have a GrGpu. |
| SkASSERT(gpu); |
| |
| // TODO: It is important to upgrade the drawingmanager to just flushing the |
| // portion of the DAG required by 'proxies' in order to restore some of the |
| // semantics of this method. |
| bool didFlush = this->flush(proxies, access, info, newState); |
| for (GrSurfaceProxy* proxy : proxies) { |
| resolve_and_mipmap(gpu, proxy); |
| } |
| |
| SkDEBUGCODE(this->validate()); |
| |
| if (!didFlush || (!direct->priv().caps()->semaphoreSupport() && info.fNumSemaphores)) { |
| return GrSemaphoresSubmitted::kNo; |
| } |
| return GrSemaphoresSubmitted::kYes; |
| } |
| |
| void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) { |
| fOnFlushCBObjects.push_back(onFlushCBObject); |
| } |
| |
| #if GR_TEST_UTILS |
| void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) { |
| int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) - |
| fOnFlushCBObjects.begin(); |
| SkASSERT(n < fOnFlushCBObjects.count()); |
| fOnFlushCBObjects.removeShuffle(n); |
| } |
| #endif |
| |
| void GrDrawingManager::setLastRenderTask(const GrSurfaceProxy* proxy, GrRenderTask* task) { |
| #ifdef SK_DEBUG |
| if (auto prior = this->getLastRenderTask(proxy)) { |
| SkASSERT(prior->isClosed() || prior == task); |
| } |
| #endif |
| uint32_t key = proxy->uniqueID().asUInt(); |
| if (task) { |
| fLastRenderTasks.set(key, task); |
| } else if (fLastRenderTasks.find(key)) { |
| fLastRenderTasks.remove(key); |
| } |
| } |
| |
| GrRenderTask* GrDrawingManager::getLastRenderTask(const GrSurfaceProxy* proxy) const { |
| auto entry = fLastRenderTasks.find(proxy->uniqueID().asUInt()); |
| return entry ? *entry : nullptr; |
| } |
| |
| GrOpsTask* GrDrawingManager::getLastOpsTask(const GrSurfaceProxy* proxy) const { |
| GrRenderTask* task = this->getLastRenderTask(proxy); |
| return task ? task->asOpsTask() : nullptr; |
| } |
| |
| |
| void GrDrawingManager::moveRenderTasksToDDL(SkDeferredDisplayList* ddl) { |
| SkDEBUGCODE(this->validate()); |
| |
| // no renderTask should receive a new command after this |
| this->closeAllTasks(); |
| fActiveOpsTask = nullptr; |
| |
| this->sortTasks(); |
| |
| fDAG.swap(ddl->fRenderTasks); |
| SkASSERT(fDAG.empty()); |
| |
| for (auto& renderTask : ddl->fRenderTasks) { |
| renderTask->disown(this); |
| renderTask->prePrepare(fContext); |
| } |
| |
| ddl->fArenas = std::move(fContext->priv().detachArenas()); |
| |
| fContext->priv().detachProgramData(&ddl->fProgramData); |
| |
| if (fPathRendererChain) { |
| if (auto ccpr = fPathRendererChain->getCoverageCountingPathRenderer()) { |
| ddl->fPendingPaths = ccpr->detachPendingPaths(); |
| } |
| } |
| |
| SkDEBUGCODE(this->validate()); |
| } |
| |
| void GrDrawingManager::createDDLTask(sk_sp<const SkDeferredDisplayList> ddl, |
| GrRenderTargetProxy* newDest, |
| SkIPoint offset) { |
| SkDEBUGCODE(this->validate()); |
| |
| if (fActiveOpsTask) { |
| // This is a temporary fix for the partial-MDB world. In that world we're not |
| // reordering so ops that (in the single opsTask world) would've just glommed onto the |
| // end of the single opsTask but referred to a far earlier RT need to appear in their |
| // own opsTask. |
| fActiveOpsTask->makeClosed(*fContext->priv().caps()); |
| fActiveOpsTask = nullptr; |
| } |
| |
| // Propagate the DDL proxy's state information to the replay target. |
| if (ddl->priv().targetProxy()->isMSAADirty()) { |
| newDest->markMSAADirty(ddl->priv().targetProxy()->msaaDirtyRect(), |
| ddl->characterization().origin()); |
| } |
| GrTextureProxy* newTextureProxy = newDest->asTextureProxy(); |
| if (newTextureProxy && GrMipmapped::kYes == newTextureProxy->mipmapped()) { |
| newTextureProxy->markMipmapsDirty(); |
| } |
| |
| this->addDDLTarget(newDest, ddl->priv().targetProxy()); |
| |
| // Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData. |
| // The lazy proxy that references it (in the DDL opsTasks) will then steal its GrTexture. |
| ddl->fLazyProxyData->fReplayDest = newDest; |
| |
| if (ddl->fPendingPaths.size()) { |
| GrCoverageCountingPathRenderer* ccpr = this->getCoverageCountingPathRenderer(); |
| |
| ccpr->mergePendingPaths(ddl->fPendingPaths); |
| } |
| |
| // Add a task to handle drawing and lifetime management of the DDL. |
| SkDEBUGCODE(auto ddlTask =) this->appendTask(sk_make_sp<GrDDLTask>(this, |
| sk_ref_sp(newDest), |
| std::move(ddl), |
| offset)); |
| SkASSERT(ddlTask->isClosed()); |
| |
| SkDEBUGCODE(this->validate()); |
| } |
| |
| #ifdef SK_DEBUG |
| void GrDrawingManager::validate() const { |
| if (fReduceOpsTaskSplitting) { |
| SkASSERT(!fActiveOpsTask); |
| } else { |
| if (fActiveOpsTask) { |
| SkASSERT(!fDAG.empty()); |
| SkASSERT(!fActiveOpsTask->isClosed()); |
| SkASSERT(fActiveOpsTask == fDAG.back().get()); |
| } |
| |
| for (int i = 0; i < fDAG.count(); ++i) { |
| if (fActiveOpsTask != fDAG[i].get()) { |
| // The resolveTask associated with the activeTask remains open for as long as the |
| // activeTask does. |
| bool isActiveResolveTask = |
| fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG[i].get(); |
| SkASSERT(isActiveResolveTask || fDAG[i]->isClosed()); |
| } |
| } |
| |
| if (!fDAG.empty() && !fDAG.back()->isClosed()) { |
| SkASSERT(fActiveOpsTask == fDAG.back().get()); |
| } |
| } |
| } |
| #endif |
| |
| void GrDrawingManager::closeRenderTasksForNewRenderTask(GrSurfaceProxy* target) { |
| if (target && fReduceOpsTaskSplitting) { |
| // In this case we need to close all the renderTasks that rely on the current contents of |
| // 'target'. That is bc we're going to update the content of the proxy so they need to be |
| // split in case they use both the old and new content. (This is a bit of an overkill: they |
| // really only need to be split if they ever reference proxy's contents again but that is |
| // hard to predict/handle). |
| if (GrRenderTask* lastRenderTask = this->getLastRenderTask(target)) { |
| lastRenderTask->closeThoseWhoDependOnMe(*fContext->priv().caps()); |
| } |
| } else if (fActiveOpsTask) { |
| // This is a temporary fix for the partial-MDB world. In that world we're not |
| // reordering so ops that (in the single opsTask world) would've just glommed onto the |
| // end of the single opsTask but referred to a far earlier RT need to appear in their |
| // own opsTask. |
| fActiveOpsTask->makeClosed(*fContext->priv().caps()); |
| fActiveOpsTask = nullptr; |
| } |
| } |
| |
| sk_sp<GrOpsTask> GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView, |
| bool managedOpsTask) { |
| SkDEBUGCODE(this->validate()); |
| SkASSERT(fContext); |
| |
| GrSurfaceProxy* proxy = surfaceView.proxy(); |
| this->closeRenderTasksForNewRenderTask(proxy); |
| |
| sk_sp<GrOpsTask> opsTask(new GrOpsTask(this, fContext->priv().arenas(), |
| std::move(surfaceView), |
| fContext->priv().auditTrail())); |
| SkASSERT(this->getLastRenderTask(proxy) == opsTask.get()); |
| |
| if (managedOpsTask) { |
| this->appendTask(opsTask); |
| |
| if (!fReduceOpsTaskSplitting) { |
| fActiveOpsTask = opsTask.get(); |
| } |
| } |
| |
| SkDEBUGCODE(this->validate()); |
| return opsTask; |
| } |
| |
| GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTask(const GrCaps& caps) { |
| // Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are |
| // in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current |
| // state. This is because those opsTasks can still receive new ops and because if they refer to |
| // the mipmapped version of 'proxy', they will then come to depend on the render task being |
| // created here. |
| // |
| // Add the new textureResolveTask before the fActiveOpsTask (if not in |
| // sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task. |
| // NOTE: Putting it here will also reduce the amount of work required by the topological sort. |
| GrRenderTask* task = this->insertTaskBeforeLast(sk_make_sp<GrTextureResolveRenderTask>()); |
| return static_cast<GrTextureResolveRenderTask*>(task); |
| } |
| |
| void GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy, |
| std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores, |
| int numSemaphores) { |
| SkDEBUGCODE(this->validate()); |
| SkASSERT(fContext); |
| |
| const GrCaps& caps = *fContext->priv().caps(); |
| |
| sk_sp<GrWaitRenderTask> waitTask = sk_make_sp<GrWaitRenderTask>(GrSurfaceProxyView(proxy), |
| std::move(semaphores), |
| numSemaphores); |
| if (fReduceOpsTaskSplitting) { |
| GrRenderTask* lastTask = this->getLastRenderTask(proxy.get()); |
| if (lastTask && !lastTask->isClosed()) { |
| // We directly make the currently open renderTask depend on waitTask instead of using |
| // the proxy version of addDependency. The waitTask will never need to trigger any |
| // resolves or mip map generation which is the main advantage of going through the proxy |
| // version. Additionally we would've had to temporarily set the wait task as the |
| // lastRenderTask on the proxy, add the dependency, and then reset the lastRenderTask to |
| // lastTask. Additionally we add all dependencies of lastTask to waitTask so that the |
| // waitTask doesn't get reordered before them and unnecessarily block those tasks. |
| // Note: Any previous Ops already in lastTask will get blocked by the wait semaphore |
| // even though they don't need to be for correctness. |
| |
| // Make sure we add the dependencies of lastTask to waitTask first or else we'll get a |
| // circular self dependency of waitTask on waitTask. |
| waitTask->addDependenciesFromOtherTask(lastTask); |
| lastTask->addDependency(waitTask.get()); |
| } else { |
| // If there is a last task we set the waitTask to depend on it so that it doesn't get |
| // reordered in front of the lastTask causing the lastTask to be blocked by the |
| // semaphore. Again we directly just go through adding the dependency to the task and |
| // not the proxy since we don't need to worry about resolving anything. |
| if (lastTask) { |
| waitTask->addDependency(lastTask); |
| } |
| this->setLastRenderTask(proxy.get(), waitTask.get()); |
| } |
| this->appendTask(waitTask); |
| } else { |
| if (fActiveOpsTask && (fActiveOpsTask->target(0).proxy() == proxy.get())) { |
| SkASSERT(this->getLastRenderTask(proxy.get()) == fActiveOpsTask); |
| this->insertTaskBeforeLast(waitTask); |
| // In this case we keep the current renderTask open but just insert the new waitTask |
| // before it in the list. The waitTask will never need to trigger any resolves or mip |
| // map generation which is the main advantage of going through the proxy version. |
| // Additionally we would've had to temporarily set the wait task as the lastRenderTask |
| // on the proxy, add the dependency, and then reset the lastRenderTask to |
| // fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask |
| // dependencies so that we don't unnecessarily reorder the waitTask before them. |
| // Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait |
| // semaphore even though they don't need to be for correctness. |
| |
| // Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll |
| // get a circular self dependency of waitTask on waitTask. |
| waitTask->addDependenciesFromOtherTask(fActiveOpsTask); |
| fActiveOpsTask->addDependency(waitTask.get()); |
| } else { |
| // In this case we just close the previous RenderTask and start and append the waitTask |
| // to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If |
| // there is a lastTask on the proxy we make waitTask depend on that task. This |
| // dependency isn't strictly needed but it does keep the DAG from reordering the |
| // waitTask earlier and blocking more tasks. |
| if (GrRenderTask* lastTask = this->getLastRenderTask(proxy.get())) { |
| waitTask->addDependency(lastTask); |
| } |
| this->setLastRenderTask(proxy.get(), waitTask.get()); |
| this->closeRenderTasksForNewRenderTask(proxy.get()); |
| this->appendTask(waitTask); |
| } |
| } |
| waitTask->makeClosed(caps); |
| |
| SkDEBUGCODE(this->validate()); |
| } |
| |
| void GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy, |
| const SkIRect& srcRect, |
| GrColorType surfaceColorType, |
| GrColorType dstColorType, |
| sk_sp<GrGpuBuffer> dstBuffer, |
| size_t dstOffset) { |
| SkDEBUGCODE(this->validate()); |
| SkASSERT(fContext); |
| // This copies from srcProxy to dstBuffer so it doesn't have a real target. |
| this->closeRenderTasksForNewRenderTask(nullptr); |
| |
| GrRenderTask* task = this->appendTask(sk_make_sp<GrTransferFromRenderTask>( |
| srcProxy, srcRect, surfaceColorType, dstColorType, |
| std::move(dstBuffer), dstOffset)); |
| |
| const GrCaps& caps = *fContext->priv().caps(); |
| |
| // We always say GrMipmapped::kNo here since we are always just copying from the base layer. We |
| // don't need to make sure the whole mip map chain is valid. |
| task->addDependency(this, srcProxy.get(), GrMipmapped::kNo, |
| GrTextureResolveManager(this), caps); |
| task->makeClosed(caps); |
| |
| // We have closed the previous active oplist but since a new oplist isn't being added there |
| // shouldn't be an active one. |
| SkASSERT(!fActiveOpsTask); |
| SkDEBUGCODE(this->validate()); |
| } |
| |
| bool GrDrawingManager::newCopyRenderTask(GrSurfaceProxyView srcView, |
| const SkIRect& srcRect, |
| GrSurfaceProxyView dstView, |
| const SkIPoint& dstPoint) { |
| SkDEBUGCODE(this->validate()); |
| SkASSERT(fContext); |
| |
| this->closeRenderTasksForNewRenderTask(dstView.proxy()); |
| const GrCaps& caps = *fContext->priv().caps(); |
| |
| GrSurfaceProxy* srcProxy = srcView.proxy(); |
| |
| GrRenderTask* task = |
| this->appendTask(GrCopyRenderTask::Make(this, std::move(srcView), srcRect, |
| std::move(dstView), dstPoint, &caps)); |
| if (!task) { |
| return false; |
| } |
| |
| // We always say GrMipmapped::kNo here since we are always just copying from the base layer to |
| // another base layer. We don't need to make sure the whole mip map chain is valid. |
| task->addDependency(this, srcProxy, GrMipmapped::kNo, GrTextureResolveManager(this), caps); |
| task->makeClosed(caps); |
| |
| // We have closed the previous active oplist but since a new oplist isn't being added there |
| // shouldn't be an active one. |
| SkASSERT(!fActiveOpsTask); |
| SkDEBUGCODE(this->validate()); |
| return true; |
| } |
| |
| /* |
| * This method finds a path renderer that can draw the specified path on |
| * the provided target. |
| * Due to its expense, the software path renderer has split out so it can |
| * can be individually allowed/disallowed via the "allowSW" boolean. |
| */ |
| GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args, |
| bool allowSW, |
| GrPathRendererChain::DrawType drawType, |
| GrPathRenderer::StencilSupport* stencilSupport) { |
| |
| if (!fPathRendererChain) { |
| fPathRendererChain = |
| std::make_unique<GrPathRendererChain>(fContext, fOptionsForPathRendererChain); |
| } |
| |
| GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport); |
| if (!pr && allowSW) { |
| auto swPR = this->getSoftwarePathRenderer(); |
| if (GrPathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) { |
| pr = swPR; |
| } |
| } |
| |
| #if GR_PATH_RENDERER_SPEW |
| if (pr) { |
| SkDebugf("getPathRenderer: %s\n", pr->name()); |
| } |
| #endif |
| |
| return pr; |
| } |
| |
| GrPathRenderer* GrDrawingManager::getSoftwarePathRenderer() { |
| if (!fSoftwarePathRenderer) { |
| fSoftwarePathRenderer.reset( |
| new GrSoftwarePathRenderer(fContext->priv().proxyProvider(), |
| fOptionsForPathRendererChain.fAllowPathMaskCaching)); |
| } |
| return fSoftwarePathRenderer.get(); |
| } |
| |
| GrCoverageCountingPathRenderer* GrDrawingManager::getCoverageCountingPathRenderer() { |
| if (!fPathRendererChain) { |
| fPathRendererChain = std::make_unique<GrPathRendererChain>(fContext, |
| fOptionsForPathRendererChain); |
| } |
| return fPathRendererChain->getCoverageCountingPathRenderer(); |
| } |
| |
| void GrDrawingManager::flushIfNecessary() { |
| auto direct = fContext->asDirectContext(); |
| if (!direct) { |
| return; |
| } |
| |
| auto resourceCache = direct->priv().getResourceCache(); |
| if (resourceCache && resourceCache->requestsFlush()) { |
| if (this->flush({}, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), nullptr)) { |
| this->submitToGpu(false); |
| } |
| resourceCache->purgeAsNeeded(); |
| } |
| } |