| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrDrawState_DEFINED |
| #define GrDrawState_DEFINED |
| |
| #include "GrBackendEffectFactory.h" |
| #include "GrColor.h" |
| #include "GrEffectStage.h" |
| #include "GrPaint.h" |
| #include "GrRefCnt.h" |
| #include "GrRenderTarget.h" |
| #include "GrStencil.h" |
| #include "GrTemplates.h" |
| #include "GrTexture.h" |
| #include "GrTypesPriv.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| |
| #include "SkMatrix.h" |
| #include "SkXfermode.h" |
| |
| class GrDrawState : public GrRefCnt { |
| public: |
| SK_DECLARE_INST_COUNT(GrDrawState) |
| |
| /** |
| * Total number of effect stages. Each stage can host a GrEffect. A stage is enabled if it has a |
| * GrEffect. The effect produces an output color in the fragment shader. It's inputs are the |
| * output from the previous enabled stage and a position. The position is either derived from |
| * the interpolated vertex positions or explicit per-vertex coords, depending upon the |
| * GrAttribBindings used to draw. |
| * |
| * The stages are divided into two sets, color-computing and coverage-computing. The final color |
| * stage produces the final pixel color. The coverage-computing stages function exactly as the |
| * color-computing but the output of the final coverage stage is treated as a fractional pixel |
| * coverage rather than as input to the src/dst color blend step. |
| * |
| * The input color to the first enabled color-stage is either the constant color or interpolated |
| * per-vertex colors. The input to the first coverage stage is either a constant coverage |
| * (usually full-coverage) or interpolated per-vertex coverage. |
| * |
| * See the documentation of kCoverageDrawing_StateBit for information about disabling the |
| * the color / coverage distinction. |
| * |
| * Stages 0 through GrPaint::kTotalStages-1 are reserved for stages copied from the client's |
| * GrPaint. Stage GrPaint::kTotalStages is earmarked for use by GrTextContext, GrPathRenderer- |
| * derived classes, and the rect/oval helper classes. GrPaint::kTotalStages+1 is earmarked for |
| * clipping by GrClipMaskManager. TODO: replace fixed size array of stages with variable size |
| * arrays of color and coverage stages. |
| */ |
| enum { |
| kNumStages = GrPaint::kTotalStages + 2, |
| }; |
| |
| GrDrawState() { |
| this->reset(); |
| } |
| |
| GrDrawState(const GrDrawState& state) { |
| *this = state; |
| } |
| |
| virtual ~GrDrawState() { |
| this->disableStages(); |
| } |
| |
| /** |
| * Resets to the default state. |
| * GrEffects will be removed from all stages. |
| */ |
| void reset() { |
| |
| this->disableStages(); |
| |
| fRenderTarget.reset(NULL); |
| |
| this->setDefaultVertexAttribs(); |
| |
| fCommon.fColor = 0xffffffff; |
| fCommon.fViewMatrix.reset(); |
| fCommon.fSrcBlend = kOne_GrBlendCoeff; |
| fCommon.fDstBlend = kZero_GrBlendCoeff; |
| fCommon.fBlendConstant = 0x0; |
| fCommon.fFlagBits = 0x0; |
| fCommon.fStencilSettings.setDisabled(); |
| fCommon.fFirstCoverageStage = kNumStages; |
| fCommon.fCoverage = 0xffffffff; |
| fCommon.fColorFilterMode = SkXfermode::kDst_Mode; |
| fCommon.fColorFilterColor = 0x0; |
| fCommon.fDrawFace = kBoth_DrawFace; |
| } |
| |
| /** |
| * Initializes the GrDrawState based on a GrPaint. Note that GrDrawState |
| * encompasses more than GrPaint. Aspects of GrDrawState that have no |
| * GrPaint equivalents are not modified. GrPaint has fewer stages than |
| * GrDrawState. The extra GrDrawState stages are disabled. |
| */ |
| void setFromPaint(const GrPaint& paint); |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Vertex Attributes |
| //// |
| |
| enum { |
| kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4, |
| }; |
| |
| /** |
| * The format of vertices is represented as an array of GrVertexAttribs, with each representing |
| * the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in |
| * GrTypesPriv.h). |
| * |
| * The mapping of attributes with kEffect bindings to GrEffect inputs is specified when |
| * setEffect is called. |
| */ |
| |
| /** |
| * Sets vertex attributes for next draw. |
| * |
| * @param attribs the array of vertex attributes to set. |
| * @param count the number of attributes being set, limited to kMaxVertexAttribCnt. |
| */ |
| void setVertexAttribs(const GrVertexAttrib attribs[], int count); |
| |
| const GrVertexAttrib* getVertexAttribs() const { return fCommon.fVertexAttribs.begin(); } |
| int getVertexAttribCount() const { return fCommon.fVertexAttribs.count(); } |
| |
| size_t getVertexSize() const; |
| |
| /** |
| * Sets default vertex attributes for next draw. The default is a single attribute: |
| * {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType} |
| */ |
| void setDefaultVertexAttribs(); |
| |
| /** |
| * Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the |
| * binding does not appear in the current attribs. These bindings should appear only once in |
| * the attrib array. |
| */ |
| |
| int positionAttributeIndex() const { |
| return fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding]; |
| } |
| int localCoordAttributeIndex() const { |
| return fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; |
| } |
| int colorVertexAttributeIndex() const { |
| return fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; |
| } |
| int coverageVertexAttributeIndex() const { |
| return fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; |
| } |
| |
| bool hasLocalCoordAttribute() const { |
| return -1 != fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding]; |
| } |
| bool hasColorVertexAttribute() const { |
| return -1 != fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding]; |
| } |
| bool hasCoverageVertexAttribute() const { |
| return -1 != fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding]; |
| } |
| |
| bool validateVertexAttribs() const; |
| |
| /** |
| * Accessing positions, local coords, or colors, of a vertex within an array is a hassle |
| * involving casts and simple math. These helpers exist to keep GrDrawTarget clients' code a bit |
| * nicer looking. |
| */ |
| |
| /** |
| * Gets a pointer to a GrPoint of a vertex's position or texture |
| * coordinate. |
| * @param vertices the vertex array |
| * @param vertexIndex the index of the vertex in the array |
| * @param vertexSize the size of each vertex in the array |
| * @param offset the offset in bytes of the vertex component. |
| * Defaults to zero (corresponding to vertex position) |
| * @return pointer to the vertex component as a GrPoint |
| */ |
| static GrPoint* GetVertexPoint(void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset = 0) { |
| intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<GrPoint*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| static const GrPoint* GetVertexPoint(const void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset = 0) { |
| intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<const GrPoint*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| |
| /** |
| * Gets a pointer to a GrColor inside a vertex within a vertex array. |
| * @param vertices the vetex array |
| * @param vertexIndex the index of the vertex in the array |
| * @param vertexSize the size of each vertex in the array |
| * @param offset the offset in bytes of the vertex color |
| * @return pointer to the vertex component as a GrColor |
| */ |
| static GrColor* GetVertexColor(void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset) { |
| intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<GrColor*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| static const GrColor* GetVertexColor(const void* vertices, |
| int vertexIndex, |
| int vertexSize, |
| int offset) { |
| const intptr_t start = GrTCast<intptr_t>(vertices); |
| return GrTCast<const GrColor*>(start + offset + |
| vertexIndex * vertexSize); |
| } |
| |
| /// @} |
| |
| /** |
| * Determines whether src alpha is guaranteed to be one for all src pixels |
| */ |
| bool srcAlphaWillBeOne() const; |
| |
| /** |
| * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw. |
| */ |
| bool hasSolidCoverage() const; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Color |
| //// |
| |
| /** |
| * Sets color for next draw to a premultiplied-alpha color. |
| * |
| * @param color the color to set. |
| */ |
| void setColor(GrColor color) { fCommon.fColor = color; } |
| |
| GrColor getColor() const { return fCommon.fColor; } |
| |
| /** |
| * Sets the color to be used for the next draw to be |
| * (r,g,b,a) = (alpha, alpha, alpha, alpha). |
| * |
| * @param alpha The alpha value to set as the color. |
| */ |
| void setAlpha(uint8_t a) { |
| this->setColor((a << 24) | (a << 16) | (a << 8) | a); |
| } |
| |
| /** |
| * Add a color filter that can be represented by a color and a mode. Applied |
| * after color-computing effect stages. |
| */ |
| void setColorFilter(GrColor c, SkXfermode::Mode mode) { |
| fCommon.fColorFilterColor = c; |
| fCommon.fColorFilterMode = mode; |
| } |
| |
| GrColor getColorFilterColor() const { return fCommon.fColorFilterColor; } |
| SkXfermode::Mode getColorFilterMode() const { return fCommon.fColorFilterMode; } |
| |
| /** |
| * Constructor sets the color to be 'color' which is undone by the destructor. |
| */ |
| class AutoColorRestore : public ::GrNoncopyable { |
| public: |
| AutoColorRestore() : fDrawState(NULL), fOldColor(0) {} |
| |
| AutoColorRestore(GrDrawState* drawState, GrColor color) { |
| fDrawState = NULL; |
| this->set(drawState, color); |
| } |
| |
| void reset() { |
| if (NULL != fDrawState) { |
| fDrawState->setColor(fOldColor); |
| fDrawState = NULL; |
| } |
| } |
| |
| void set(GrDrawState* drawState, GrColor color) { |
| this->reset(); |
| fDrawState = drawState; |
| fOldColor = fDrawState->getColor(); |
| fDrawState->setColor(color); |
| } |
| |
| ~AutoColorRestore() { this->reset(); } |
| private: |
| GrDrawState* fDrawState; |
| GrColor fOldColor; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage |
| //// |
| |
| /** |
| * Sets a constant fractional coverage to be applied to the draw. The |
| * initial value (after construction or reset()) is 0xff. The constant |
| * coverage is ignored when per-vertex coverage is provided. |
| */ |
| void setCoverage(uint8_t coverage) { |
| fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); |
| } |
| |
| /** |
| * Version of above that specifies 4 channel per-vertex color. The value |
| * should be premultiplied. |
| */ |
| void setCoverage4(GrColor coverage) { |
| fCommon.fCoverage = coverage; |
| } |
| |
| GrColor getCoverage() const { |
| return fCommon.fCoverage; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Effect Stages |
| //// |
| |
| const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect) { |
| fStages[stageIdx].setEffect(effect); |
| return effect; |
| } |
| |
| const GrEffectRef* setEffect(int stageIdx, const GrEffectRef* effect, |
| int attr0, int attr1 = -1) { |
| fStages[stageIdx].setEffect(effect, attr0, attr1); |
| return effect; |
| } |
| |
| /** |
| * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates. |
| */ |
| void createTextureEffect(int stageIdx, GrTexture* texture, const SkMatrix& matrix) { |
| GrAssert(!this->getStage(stageIdx).getEffect()); |
| GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix); |
| this->setEffect(stageIdx, effect)->unref(); |
| } |
| void createTextureEffect(int stageIdx, |
| GrTexture* texture, |
| const SkMatrix& matrix, |
| const GrTextureParams& params) { |
| GrAssert(!this->getStage(stageIdx).getEffect()); |
| GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params); |
| this->setEffect(stageIdx, effect)->unref(); |
| } |
| |
| bool stagesDisabled() { |
| for (int i = 0; i < kNumStages; ++i) { |
| if (NULL != fStages[i].getEffect()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void disableStage(int stageIdx) { |
| this->setEffect(stageIdx, NULL); |
| } |
| |
| /** |
| * Release all the GrEffects referred to by this draw state. |
| */ |
| void disableStages() { |
| for (int i = 0; i < kNumStages; ++i) { |
| this->disableStage(i); |
| } |
| } |
| |
| class AutoStageDisable : public ::GrNoncopyable { |
| public: |
| AutoStageDisable(GrDrawState* ds) : fDrawState(ds) {} |
| ~AutoStageDisable() { |
| if (NULL != fDrawState) { |
| fDrawState->disableStages(); |
| } |
| } |
| private: |
| GrDrawState* fDrawState; |
| }; |
| |
| /** |
| * Returns the current stage by index. |
| */ |
| const GrEffectStage& getStage(int stageIdx) const { |
| GrAssert((unsigned)stageIdx < kNumStages); |
| return fStages[stageIdx]; |
| } |
| |
| /** |
| * Called when the source coord system is changing. This ensures that effects will see the |
| * correct local coordinates. oldToNew gives the transformation from the old coord system in |
| * which the geometry was specified to the new coordinate system from which it will be rendered. |
| */ |
| void localCoordChange(const SkMatrix& oldToNew) { |
| for (int i = 0; i < kNumStages; ++i) { |
| if (this->isStageEnabled(i)) { |
| fStages[i].localCoordChange(oldToNew); |
| } |
| } |
| } |
| |
| /** |
| * Checks whether any of the effects will read the dst pixel color. |
| */ |
| bool willEffectReadDst() const { |
| for (int s = 0; s < kNumStages; ++s) { |
| if (this->isStageEnabled(s) && (*this->getStage(s).getEffect())->willReadDst()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage / Color Stages |
| //// |
| |
| /** |
| * A common pattern is to compute a color with the initial stages and then |
| * modulate that color by a coverage value in later stage(s) (AA, mask- |
| * filters, glyph mask, etc). Color-filters, xfermodes, etc should be |
| * computed based on the pre-coverage-modulated color. The division of |
| * stages between color-computing and coverage-computing is specified by |
| * this method. Initially this is kNumStages (all stages |
| * are color-computing). |
| */ |
| void setFirstCoverageStage(int firstCoverageStage) { |
| GrAssert((unsigned)firstCoverageStage <= kNumStages); |
| fCommon.fFirstCoverageStage = firstCoverageStage; |
| } |
| |
| /** |
| * Gets the index of the first coverage-computing stage. |
| */ |
| int getFirstCoverageStage() const { |
| return fCommon.fFirstCoverageStage; |
| } |
| |
| ///@} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Blending |
| //// |
| |
| /** |
| * Sets the blending function coefficients. |
| * |
| * The blend function will be: |
| * D' = sat(S*srcCoef + D*dstCoef) |
| * |
| * where D is the existing destination color, S is the incoming source |
| * color, and D' is the new destination color that will be written. sat() |
| * is the saturation function. |
| * |
| * @param srcCoef coefficient applied to the src color. |
| * @param dstCoef coefficient applied to the dst color. |
| */ |
| void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { |
| fCommon.fSrcBlend = srcCoeff; |
| fCommon.fDstBlend = dstCoeff; |
| #if GR_DEBUG |
| switch (dstCoeff) { |
| case kDC_GrBlendCoeff: |
| case kIDC_GrBlendCoeff: |
| case kDA_GrBlendCoeff: |
| case kIDA_GrBlendCoeff: |
| GrPrintf("Unexpected dst blend coeff. Won't work correctly with" |
| "coverage stages.\n"); |
| break; |
| default: |
| break; |
| } |
| switch (srcCoeff) { |
| case kSC_GrBlendCoeff: |
| case kISC_GrBlendCoeff: |
| case kSA_GrBlendCoeff: |
| case kISA_GrBlendCoeff: |
| GrPrintf("Unexpected src blend coeff. Won't work correctly with" |
| "coverage stages.\n"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; } |
| GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; } |
| |
| void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, |
| GrBlendCoeff* dstBlendCoeff) const { |
| *srcBlendCoeff = fCommon.fSrcBlend; |
| *dstBlendCoeff = fCommon.fDstBlend; |
| } |
| |
| /** |
| * Sets the blending function constant referenced by the following blending |
| * coefficients: |
| * kConstC_GrBlendCoeff |
| * kIConstC_GrBlendCoeff |
| * kConstA_GrBlendCoeff |
| * kIConstA_GrBlendCoeff |
| * |
| * @param constant the constant to set |
| */ |
| void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; } |
| |
| /** |
| * Retrieves the last value set by setBlendConstant() |
| * @return the blending constant value |
| */ |
| GrColor getBlendConstant() const { return fCommon.fBlendConstant; } |
| |
| /** |
| * Determines whether multiplying the computed per-pixel color by the pixel's fractional |
| * coverage before the blend will give the correct final destination color. In general it |
| * will not as coverage is applied after blending. |
| */ |
| bool canTweakAlphaForCoverage() const; |
| |
| /** |
| * Optimizations for blending / coverage to that can be applied based on the current state. |
| */ |
| enum BlendOptFlags { |
| /** |
| * No optimization |
| */ |
| kNone_BlendOpt = 0, |
| /** |
| * Don't draw at all |
| */ |
| kSkipDraw_BlendOptFlag = 0x1, |
| /** |
| * Emit the src color, disable HW blending (replace dst with src) |
| */ |
| kDisableBlend_BlendOptFlag = 0x2, |
| /** |
| * The coverage value does not have to be computed separately from alpha, the the output |
| * color can be the modulation of the two. |
| */ |
| kCoverageAsAlpha_BlendOptFlag = 0x4, |
| /** |
| * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are |
| * "don't cares". |
| */ |
| kEmitCoverage_BlendOptFlag = 0x8, |
| /** |
| * Emit transparent black instead of the src color, no need to compute coverage. |
| */ |
| kEmitTransBlack_BlendOptFlag = 0x10, |
| }; |
| GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags); |
| |
| /** |
| * Determines what optimizations can be applied based on the blend. The coefficients may have |
| * to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional |
| * params that receive the tweaked coefficients. Normally the function looks at the current |
| * state to see if coverage is enabled. By setting forceCoverage the caller can speculatively |
| * determine the blend optimizations that would be used if there was partial pixel coverage. |
| * |
| * Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for |
| * playback) must call this function and respect the flags that replace the output color. |
| */ |
| BlendOptFlags getBlendOpts(bool forceCoverage = false, |
| GrBlendCoeff* srcCoeff = NULL, |
| GrBlendCoeff* dstCoeff = NULL) const; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name View Matrix |
| //// |
| |
| /** |
| * Sets the matrix applied to vertex positions. |
| * |
| * In the post-view-matrix space the rectangle [0,w]x[0,h] |
| * fully covers the render target. (w and h are the width and height of the |
| * the render-target.) |
| */ |
| void setViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix = m; } |
| |
| /** |
| * Gets a writable pointer to the view matrix. |
| */ |
| SkMatrix* viewMatrix() { return &fCommon.fViewMatrix; } |
| |
| /** |
| * Multiplies the current view matrix by a matrix |
| * |
| * After this call V' = V*m where V is the old view matrix, |
| * m is the parameter to this function, and V' is the new view matrix. |
| * (We consider positions to be column vectors so position vector p is |
| * transformed by matrix X as p' = X*p.) |
| * |
| * @param m the matrix used to modify the view matrix. |
| */ |
| void preConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.preConcat(m); } |
| |
| /** |
| * Multiplies the current view matrix by a matrix |
| * |
| * After this call V' = m*V where V is the old view matrix, |
| * m is the parameter to this function, and V' is the new view matrix. |
| * (We consider positions to be column vectors so position vector p is |
| * transformed by matrix X as p' = X*p.) |
| * |
| * @param m the matrix used to modify the view matrix. |
| */ |
| void postConcatViewMatrix(const SkMatrix& m) { fCommon.fViewMatrix.postConcat(m); } |
| |
| /** |
| * Retrieves the current view matrix |
| * @return the current view matrix. |
| */ |
| const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; } |
| |
| /** |
| * Retrieves the inverse of the current view matrix. |
| * |
| * If the current view matrix is invertible, return true, and if matrix |
| * is non-null, copy the inverse into it. If the current view matrix is |
| * non-invertible, return false and ignore the matrix parameter. |
| * |
| * @param matrix if not null, will receive a copy of the current inverse. |
| */ |
| bool getViewInverse(SkMatrix* matrix) const { |
| // TODO: determine whether we really need to leave matrix unmodified |
| // at call sites when inversion fails. |
| SkMatrix inverse; |
| if (fCommon.fViewMatrix.invert(&inverse)) { |
| if (matrix) { |
| *matrix = inverse; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Preconcats the current view matrix and restores the previous view matrix in the destructor. |
| * Effect matrices are automatically adjusted to compensate. |
| */ |
| class AutoViewMatrixRestore : public ::GrNoncopyable { |
| public: |
| AutoViewMatrixRestore() : fDrawState(NULL) {} |
| |
| AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) { |
| fDrawState = NULL; |
| this->set(ds, preconcatMatrix); |
| } |
| |
| ~AutoViewMatrixRestore() { this->restore(); } |
| |
| /** |
| * Can be called prior to destructor to restore the original matrix. |
| */ |
| void restore(); |
| |
| void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix); |
| |
| bool isSet() const { return NULL != fDrawState; } |
| |
| private: |
| GrDrawState* fDrawState; |
| SkMatrix fViewMatrix; |
| GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; |
| uint32_t fRestoreMask; |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * This sets the view matrix to identity and adjusts stage matrices to compensate. The |
| * destructor undoes the changes, restoring the view matrix that was set before the |
| * constructor. It is similar to passing the inverse of the current view matrix to |
| * AutoViewMatrixRestore, but lazily computes the inverse only if necessary. |
| */ |
| class AutoDeviceCoordDraw : ::GrNoncopyable { |
| public: |
| AutoDeviceCoordDraw() : fDrawState(NULL) {} |
| /** |
| * If a stage's texture matrix is applied to explicit per-vertex coords, rather than to |
| * positions, then we don't want to modify its matrix. The explicitCoordStageMask is used |
| * to specify such stages. |
| */ |
| AutoDeviceCoordDraw(GrDrawState* drawState) { |
| fDrawState = NULL; |
| this->set(drawState); |
| } |
| |
| ~AutoDeviceCoordDraw() { this->restore(); } |
| |
| bool set(GrDrawState* drawState); |
| |
| /** |
| * Returns true if this object was successfully initialized on to a GrDrawState. It may |
| * return false because a non-default constructor or set() were never called or because |
| * the view matrix was not invertible. |
| */ |
| bool succeeded() const { return NULL != fDrawState; } |
| |
| /** |
| * Returns the matrix that was set previously set on the drawState. This is only valid |
| * if succeeded returns true. |
| */ |
| const SkMatrix& getOriginalMatrix() const { |
| GrAssert(this->succeeded()); |
| return fViewMatrix; |
| } |
| |
| /** |
| * Can be called prior to destructor to restore the original matrix. |
| */ |
| void restore(); |
| |
| private: |
| GrDrawState* fDrawState; |
| SkMatrix fViewMatrix; |
| GrEffectStage::SavedCoordChange fSavedCoordChanges[GrDrawState::kNumStages]; |
| uint32_t fRestoreMask; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Render Target |
| //// |
| |
| /** |
| * Sets the render-target used at the next drawing call |
| * |
| * @param target The render target to set. |
| */ |
| void setRenderTarget(GrRenderTarget* target) { |
| fRenderTarget.reset(SkSafeRef(target)); |
| } |
| |
| /** |
| * Retrieves the currently set render-target. |
| * |
| * @return The currently set render target. |
| */ |
| const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } |
| GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } |
| |
| class AutoRenderTargetRestore : public ::GrNoncopyable { |
| public: |
| AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} |
| AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { |
| fDrawState = NULL; |
| fSavedTarget = NULL; |
| this->set(ds, newTarget); |
| } |
| ~AutoRenderTargetRestore() { this->restore(); } |
| |
| void restore() { |
| if (NULL != fDrawState) { |
| fDrawState->setRenderTarget(fSavedTarget); |
| fDrawState = NULL; |
| } |
| GrSafeSetNull(fSavedTarget); |
| } |
| |
| void set(GrDrawState* ds, GrRenderTarget* newTarget) { |
| this->restore(); |
| |
| if (NULL != ds) { |
| GrAssert(NULL == fSavedTarget); |
| fSavedTarget = ds->getRenderTarget(); |
| SkSafeRef(fSavedTarget); |
| ds->setRenderTarget(newTarget); |
| fDrawState = ds; |
| } |
| } |
| private: |
| GrDrawState* fDrawState; |
| GrRenderTarget* fSavedTarget; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Stencil |
| //// |
| |
| /** |
| * Sets the stencil settings to use for the next draw. |
| * Changing the clip has the side-effect of possibly zeroing |
| * out the client settable stencil bits. So multipass algorithms |
| * using stencil should not change the clip between passes. |
| * @param settings the stencil settings to use. |
| */ |
| void setStencil(const GrStencilSettings& settings) { |
| fCommon.fStencilSettings = settings; |
| } |
| |
| /** |
| * Shortcut to disable stencil testing and ops. |
| */ |
| void disableStencil() { |
| fCommon.fStencilSettings.setDisabled(); |
| } |
| |
| const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; } |
| |
| GrStencilSettings* stencil() { return &fCommon.fStencilSettings; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name State Flags |
| //// |
| |
| /** |
| * Flags that affect rendering. Controlled using enable/disableState(). All |
| * default to disabled. |
| */ |
| enum StateBits { |
| /** |
| * Perform dithering. TODO: Re-evaluate whether we need this bit |
| */ |
| kDither_StateBit = 0x01, |
| /** |
| * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target, |
| * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by |
| * the 3D API. |
| */ |
| kHWAntialias_StateBit = 0x02, |
| /** |
| * Draws will respect the clip, otherwise the clip is ignored. |
| */ |
| kClip_StateBit = 0x04, |
| /** |
| * Disables writing to the color buffer. Useful when performing stencil |
| * operations. |
| */ |
| kNoColorWrites_StateBit = 0x08, |
| |
| /** |
| * Usually coverage is applied after color blending. The color is blended using the coeffs |
| * specified by setBlendFunc(). The blended color is then combined with dst using coeffs |
| * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In |
| * this case there is no distinction between coverage and color and the caller needs direct |
| * control over the blend coeffs. When set, there will be a single blend step controlled by |
| * setBlendFunc() which will use coverage*color as the src color. |
| */ |
| kCoverageDrawing_StateBit = 0x10, |
| |
| // Users of the class may add additional bits to the vector |
| kDummyStateBit, |
| kLastPublicStateBit = kDummyStateBit-1, |
| }; |
| |
| void resetStateFlags() { |
| fCommon.fFlagBits = 0; |
| } |
| |
| /** |
| * Enable render state settings. |
| * |
| * @param stateBits bitfield of StateBits specifying the states to enable |
| */ |
| void enableState(uint32_t stateBits) { |
| fCommon.fFlagBits |= stateBits; |
| } |
| |
| /** |
| * Disable render state settings. |
| * |
| * @param stateBits bitfield of StateBits specifying the states to disable |
| */ |
| void disableState(uint32_t stateBits) { |
| fCommon.fFlagBits &= ~(stateBits); |
| } |
| |
| /** |
| * Enable or disable stateBits based on a boolean. |
| * |
| * @param stateBits bitfield of StateBits to enable or disable |
| * @param enable if true enable stateBits, otherwise disable |
| */ |
| void setState(uint32_t stateBits, bool enable) { |
| if (enable) { |
| this->enableState(stateBits); |
| } else { |
| this->disableState(stateBits); |
| } |
| } |
| |
| bool isDitherState() const { |
| return 0 != (fCommon.fFlagBits & kDither_StateBit); |
| } |
| |
| bool isHWAntialiasState() const { |
| return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit); |
| } |
| |
| bool isClipState() const { |
| return 0 != (fCommon.fFlagBits & kClip_StateBit); |
| } |
| |
| bool isColorWriteDisabled() const { |
| return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit); |
| } |
| |
| bool isCoverageDrawing() const { |
| return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit); |
| } |
| |
| bool isStateFlagEnabled(uint32_t stateBit) const { |
| return 0 != (stateBit & fCommon.fFlagBits); |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Face Culling |
| //// |
| |
| enum DrawFace { |
| kInvalid_DrawFace = -1, |
| |
| kBoth_DrawFace, |
| kCCW_DrawFace, |
| kCW_DrawFace, |
| }; |
| |
| /** |
| * Controls whether clockwise, counterclockwise, or both faces are drawn. |
| * @param face the face(s) to draw. |
| */ |
| void setDrawFace(DrawFace face) { |
| GrAssert(kInvalid_DrawFace != face); |
| fCommon.fDrawFace = face; |
| } |
| |
| /** |
| * Gets whether the target is drawing clockwise, counterclockwise, |
| * or both faces. |
| * @return the current draw face(s). |
| */ |
| DrawFace getDrawFace() const { return fCommon.fDrawFace; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| |
| bool isStageEnabled(int s) const { |
| GrAssert((unsigned)s < kNumStages); |
| return (NULL != fStages[s].getEffect()); |
| } |
| |
| bool operator ==(const GrDrawState& s) const { |
| if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) { |
| return false; |
| } |
| for (int i = 0; i < kNumStages; i++) { |
| bool enabled = this->isStageEnabled(i); |
| if (enabled != s.isStageEnabled(i)) { |
| return false; |
| } |
| if (enabled && this->fStages[i] != s.fStages[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| bool operator !=(const GrDrawState& s) const { return !(*this == s); } |
| |
| GrDrawState& operator= (const GrDrawState& s) { |
| this->setRenderTarget(s.fRenderTarget.get()); |
| fCommon = s.fCommon; |
| for (int i = 0; i < kNumStages; i++) { |
| if (s.isStageEnabled(i)) { |
| this->fStages[i] = s.fStages[i]; |
| } |
| } |
| return *this; |
| } |
| |
| private: |
| |
| /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */ |
| struct CommonState { |
| // These fields are roughly sorted by decreasing likelihood of being different in op== |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| GrBlendCoeff fSrcBlend; |
| GrBlendCoeff fDstBlend; |
| GrColor fBlendConstant; |
| uint32_t fFlagBits; |
| GrVertexAttribArray<kMaxVertexAttribCnt> fVertexAttribs; |
| GrStencilSettings fStencilSettings; |
| int fFirstCoverageStage; |
| GrColor fCoverage; |
| SkXfermode::Mode fColorFilterMode; |
| GrColor fColorFilterColor; |
| DrawFace fDrawFace; |
| |
| // This is simply a different representation of info in fVertexAttribs and thus does |
| // not need to be compared in op==. |
| int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt]; |
| |
| GR_STATIC_ASSERT(kGrVertexAttribBindingCnt <= 8*sizeof(uint32_t)); |
| |
| bool operator== (const CommonState& other) const { |
| bool result = fColor == other.fColor && |
| fViewMatrix.cheapEqualTo(other.fViewMatrix) && |
| fSrcBlend == other.fSrcBlend && |
| fDstBlend == other.fDstBlend && |
| fBlendConstant == other.fBlendConstant && |
| fFlagBits == other.fFlagBits && |
| fVertexAttribs == other.fVertexAttribs && |
| fStencilSettings == other.fStencilSettings && |
| fFirstCoverageStage == other.fFirstCoverageStage && |
| fCoverage == other.fCoverage && |
| fColorFilterMode == other.fColorFilterMode && |
| fColorFilterColor == other.fColorFilterColor && |
| fDrawFace == other.fDrawFace; |
| GrAssert(!result || 0 == memcmp(fFixedFunctionVertexAttribIndices, |
| other.fFixedFunctionVertexAttribIndices, |
| sizeof(fFixedFunctionVertexAttribIndices))); |
| return result; |
| } |
| bool operator!= (const CommonState& other) const { return !(*this == other); } |
| }; |
| |
| /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef. |
| DeferredState must directly reference GrEffects, however. */ |
| struct SavedEffectStage { |
| SavedEffectStage() : fEffect(NULL) {} |
| const GrEffect* fEffect; |
| GrEffectStage::SavedCoordChange fCoordChange; |
| }; |
| |
| public: |
| /** |
| * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource |
| * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal |
| * dispose mechanism returns them to the cache. This allows recycling resources through the |
| * the cache while they are in a deferred draw queue. |
| */ |
| class DeferredState { |
| public: |
| DeferredState() : fRenderTarget(NULL) { |
| GR_DEBUGCODE(fInitialized = false;) |
| } |
| // TODO: Remove this when DeferredState no longer holds a ref to the RT |
| ~DeferredState() { SkSafeUnref(fRenderTarget); } |
| |
| void saveFrom(const GrDrawState& drawState) { |
| fCommon = drawState.fCommon; |
| // TODO: Here we will copy the GrRenderTarget pointer without taking a ref. |
| fRenderTarget = drawState.fRenderTarget.get(); |
| SkSafeRef(fRenderTarget); |
| // Here we ref the effects directly rather than the effect-refs. TODO: When the effect- |
| // ref gets fully unref'ed it will cause the underlying effect to unref its resources |
| // and recycle them to the cache (if no one else is holding a ref to the resources). |
| for (int i = 0; i < kNumStages; ++i) { |
| fStages[i].saveFrom(drawState.fStages[i]); |
| } |
| GR_DEBUGCODE(fInitialized = true;) |
| } |
| |
| void restoreTo(GrDrawState* drawState) { |
| GrAssert(fInitialized); |
| drawState->fCommon = fCommon; |
| drawState->setRenderTarget(fRenderTarget); |
| for (int i = 0; i < kNumStages; ++i) { |
| fStages[i].restoreTo(&drawState->fStages[i]); |
| } |
| } |
| |
| bool isEqual(const GrDrawState& state) const { |
| if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) { |
| return false; |
| } |
| for (int i = 0; i < kNumStages; ++i) { |
| if (!fStages[i].isEqual(state.fStages[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| private: |
| GrRenderTarget* fRenderTarget; |
| CommonState fCommon; |
| GrEffectStage::DeferredStage fStages[kNumStages]; |
| |
| GR_DEBUGCODE(bool fInitialized;) |
| }; |
| |
| private: |
| |
| SkAutoTUnref<GrRenderTarget> fRenderTarget; |
| CommonState fCommon; |
| GrEffectStage fStages[kNumStages]; |
| |
| typedef GrRefCnt INHERITED; |
| }; |
| |
| GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags); |
| |
| #endif |