| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrGpuGL.h" |
| #include "GrGLStencilBuffer.h" |
| #include "GrGLPath.h" |
| #include "GrGLShaderBuilder.h" |
| #include "GrTemplates.h" |
| #include "GrTypes.h" |
| #include "SkTemplates.h" |
| |
| static const GrGLuint GR_MAX_GLUINT = ~0U; |
| static const GrGLint GR_INVAL_GLINT = ~0; |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| // we use a spare texture unit to avoid |
| // mucking with the state of any of the stages. |
| static const int SPARE_TEX_UNIT = GrDrawState::kNumStages; |
| |
| #define SKIP_CACHE_CHECK true |
| |
| #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) |
| #else |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR |
| #endif |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| GR_GL_CONSTANT_ALPHA, |
| GR_GL_ONE_MINUS_CONSTANT_ALPHA, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| }; |
| |
| bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { |
| static const bool gCoeffReferencesBlendConst[] = { |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| true, |
| true, |
| true, |
| true, |
| |
| // extended blend coeffs |
| false, |
| false, |
| false, |
| false, |
| }; |
| return gCoeffReferencesBlendConst[coeff]; |
| GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == |
| GR_ARRAY_COUNT(gCoeffReferencesBlendConst)); |
| |
| GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); |
| GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); |
| GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); |
| GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); |
| GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); |
| GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); |
| GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); |
| GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); |
| |
| GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); |
| GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); |
| |
| // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope |
| GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == |
| GR_ARRAY_COUNT(gXfermodeCoeff2Blend)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static bool gPrintStartupSpew; |
| |
| static bool fbo_test(const GrGLInterface* gl, int w, int h) { |
| |
| GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT)); |
| |
| GrGLuint testFBO; |
| GR_GL_CALL(gl, GenFramebuffers(1, &testFBO)); |
| GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, testFBO)); |
| GrGLuint testRTTex; |
| GR_GL_CALL(gl, GenTextures(1, &testRTTex)); |
| GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, testRTTex)); |
| // some implementations require texture to be mip-map complete before |
| // FBO with level 0 bound as color attachment will be framebuffer complete. |
| GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| GR_GL_NEAREST)); |
| GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RGBA, w, h, |
| 0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, NULL)); |
| GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0)); |
| GR_GL_CALL(gl, FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, testRTTex, 0)); |
| GrGLenum status; |
| GR_GL_CALL_RET(gl, status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| GR_GL_CALL(gl, DeleteFramebuffers(1, &testFBO)); |
| GR_GL_CALL(gl, DeleteTextures(1, &testRTTex)); |
| |
| return status == GR_GL_FRAMEBUFFER_COMPLETE; |
| } |
| |
| GrGpuGL::GrGpuGL(const GrGLContext& ctx, GrContext* context) |
| : GrGpu(context) |
| , fGLContext(ctx) { |
| |
| GrAssert(ctx.isInitialized()); |
| |
| fCaps.reset(SkRef(ctx.info().caps())); |
| |
| fillInConfigRenderableTable(); |
| |
| |
| GrGLClearErr(fGLContext.interface()); |
| |
| if (gPrintStartupSpew) { |
| const GrGLubyte* ext; |
| GL_CALL_RET(ext, GetString(GR_GL_EXTENSIONS)); |
| const GrGLubyte* vendor; |
| const GrGLubyte* renderer; |
| const GrGLubyte* version; |
| GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); |
| GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); |
| GL_CALL_RET(version, GetString(GR_GL_VERSION)); |
| GrPrintf("------------------------- create GrGpuGL %p --------------\n", |
| this); |
| GrPrintf("------ VENDOR %s\n", vendor); |
| GrPrintf("------ RENDERER %s\n", renderer); |
| GrPrintf("------ VERSION %s\n", version); |
| GrPrintf("------ EXTENSIONS\n %s \n", ext); |
| ctx.info().caps()->print(); |
| } |
| |
| fProgramCache = SkNEW_ARGS(ProgramCache, (this->glContext())); |
| |
| GrAssert(this->glCaps().maxVertexAttributes() >= GrDrawState::kMaxVertexAttribCnt); |
| |
| fLastSuccessfulStencilFmtIdx = 0; |
| if (false) { // avoid bit rot, suppress warning |
| fbo_test(this->glInterface(), 0, 0); |
| } |
| } |
| |
| GrGpuGL::~GrGpuGL() { |
| if (0 != fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| GrAssert(fHWProgramID == fCurrentProgram->programID()); |
| GL_CALL(UseProgram(0)); |
| } |
| |
| delete fProgramCache; |
| |
| // This must be called by before the GrDrawTarget destructor |
| this->releaseGeometry(); |
| // This subclass must do this before the base class destructor runs |
| // since we will unref the GrGLInterface. |
| this->releaseResources(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGpuGL::fillInConfigRenderableTable() { |
| |
| // OpenGL < 3.0 |
| // no support for render targets unless the GL_ARB_framebuffer_object |
| // extension is supported (in which case we get ALPHA, RED, RG, RGB, |
| // RGBA (ALPHA8, RGBA4, RGBA8) for OpenGL > 1.1). Note that we |
| // probably don't get R8 in this case. |
| |
| // OpenGL 3.0 |
| // base color renderable: ALPHA, RED, RG, RGB, and RGBA |
| // sized derivatives: ALPHA8, R8, RGBA4, RGBA8 |
| |
| // >= OpenGL 3.1 |
| // base color renderable: RED, RG, RGB, and RGBA |
| // sized derivatives: R8, RGBA4, RGBA8 |
| // if the GL_ARB_compatibility extension is supported then we get back |
| // support for GL_ALPHA and ALPHA8 |
| |
| // GL_EXT_bgra adds BGRA render targets to any version |
| |
| // ES 2.0 |
| // color renderable: RGBA4, RGB5_A1, RGB565 |
| // GL_EXT_texture_rg adds support for R8 as a color render target |
| // GL_OES_rgb8_rgba8 and/or GL_ARM_rgba8 adds support for RGBA8 |
| // GL_EXT_texture_format_BGRA8888 and/or GL_APPLE_texture_format_BGRA8888 added BGRA support |
| |
| if (kDesktop_GrGLBinding == this->glBinding()) { |
| // Post 3.0 we will get R8 |
| // Prior to 3.0 we will get ALPHA8 (with GL_ARB_framebuffer_object) |
| if (this->glVersion() >= GR_GL_VER(3,0) || |
| this->hasExtension("GL_ARB_framebuffer_object")) { |
| fConfigRenderSupport[kAlpha_8_GrPixelConfig] = true; |
| } |
| } else { |
| // On ES we can only hope for R8 |
| fConfigRenderSupport[kAlpha_8_GrPixelConfig] = |
| this->glCaps().textureRedSupport(); |
| } |
| |
| if (kDesktop_GrGLBinding != this->glBinding()) { |
| // only available in ES |
| fConfigRenderSupport[kRGB_565_GrPixelConfig] = true; |
| } |
| |
| // Pre 3.0, Ganesh relies on either GL_ARB_framebuffer_object or |
| // GL_EXT_framebuffer_object for FBO support. Both of these |
| // allow RGBA4 render targets so this is always supported. |
| fConfigRenderSupport[kRGBA_4444_GrPixelConfig] = true; |
| |
| if (this->glCaps().rgba8RenderbufferSupport()) { |
| fConfigRenderSupport[kRGBA_8888_GrPixelConfig] = true; |
| } |
| |
| if (this->glCaps().bgraFormatSupport()) { |
| fConfigRenderSupport[kBGRA_8888_GrPixelConfig] = true; |
| } |
| } |
| |
| namespace { |
| GrPixelConfig preferred_pixel_ops_config(GrPixelConfig config) { |
| if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == config) { |
| return kBGRA_8888_GrPixelConfig; |
| } else { |
| return config; |
| } |
| } |
| } |
| |
| GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig config) const { |
| return preferred_pixel_ops_config(config); |
| } |
| |
| GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig config) const { |
| return preferred_pixel_ops_config(config); |
| } |
| |
| bool GrGpuGL::canWriteTexturePixels(const GrTexture* texture, GrPixelConfig srcConfig) const { |
| if (kIndex_8_GrPixelConfig == srcConfig || kIndex_8_GrPixelConfig == texture->config()) { |
| return false; |
| } |
| if (srcConfig != texture->config() && kES2_GrGLBinding == this->glBinding()) { |
| // In general ES2 requires the internal format of the texture and the format of the src |
| // pixels to match. However, It may or may not be possible to upload BGRA data to a RGBA |
| // texture. It depends upon which extension added BGRA. The Apple extension allows it |
| // (BGRA's internal format is RGBA) while the EXT extension does not (BGRA is its own |
| // internal format). |
| if (this->glCaps().bgraFormatSupport() && |
| !this->glCaps().bgraIsInternalFormat() && |
| kBGRA_8888_GrPixelConfig == srcConfig && |
| kRGBA_8888_GrPixelConfig == texture->config()) { |
| return true; |
| } else { |
| return false; |
| } |
| } else { |
| return true; |
| } |
| } |
| |
| bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const { |
| return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL); |
| } |
| |
| void GrGpuGL::onResetContext() { |
| |
| // we don't use the zb at all |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| fHWDrawFace = GrDrawState::kInvalid_DrawFace; |
| fHWDitherEnabled = kUnknown_TriState; |
| |
| if (kDesktop_GrGLBinding == this->glBinding()) { |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a core |
| // profile. This seems like a bug since the core spec removes any mention of GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't |
| // currently part of our gl interface. There are probably others as |
| // well. |
| } |
| fHWAAState.invalidate(); |
| fHWWriteToColor = kUnknown_TriState; |
| |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| |
| // invalid |
| fHWActiveTextureUnitIdx = -1; |
| |
| fHWBlendState.invalidate(); |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| fHWBoundTextures[s] = NULL; |
| } |
| |
| fHWScissorSettings.invalidate(); |
| |
| fHWViewport.invalidate(); |
| |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| |
| fHWGeometryState.invalidate(); |
| |
| fHWBoundRenderTarget = NULL; |
| |
| fHWPathStencilMatrixState.invalidate(); |
| if (this->caps()->pathStencilingSupport()) { |
| // we don't use the model view matrix. |
| GL_CALL(MatrixMode(GR_GL_MODELVIEW)); |
| GL_CALL(LoadIdentity()); |
| } |
| |
| // we assume these values |
| if (this->glCaps().unpackRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().unpackFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| |
| fHWProgramID = 0; |
| fSharedGLProgramState.invalidate(); |
| } |
| |
| namespace { |
| |
| GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { |
| // By default, GrRenderTargets are GL's normal orientation so that they |
| // can be drawn to by the outside world without the client having |
| // to render upside down. |
| if (kDefault_GrSurfaceOrigin == origin) { |
| return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; |
| } else { |
| return origin; |
| } |
| } |
| |
| } |
| |
| GrTexture* GrGpuGL::onWrapBackendTexture(const GrBackendTextureDesc& desc) { |
| if (!this->configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) { |
| return NULL; |
| } |
| |
| if (0 == desc.fTextureHandle) { |
| return NULL; |
| } |
| |
| int maxSize = this->caps()->maxTextureSize(); |
| if (desc.fWidth > maxSize || desc.fHeight > maxSize) { |
| return NULL; |
| } |
| |
| GrGLTexture::Desc glTexDesc; |
| // next line relies on GrBackendTextureDesc's flags matching GrTexture's |
| glTexDesc.fFlags = (GrTextureFlags) desc.fFlags; |
| glTexDesc.fWidth = desc.fWidth; |
| glTexDesc.fHeight = desc.fHeight; |
| glTexDesc.fConfig = desc.fConfig; |
| glTexDesc.fSampleCnt = desc.fSampleCnt; |
| glTexDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle); |
| glTexDesc.fIsWrapped = true; |
| bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrBackendTextureFlag); |
| // FIXME: this should be calling resolve_origin(), but Chrome code is currently |
| // assuming the old behaviour, which is that backend textures are always |
| // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: |
| // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| if (kDefault_GrSurfaceOrigin == desc.fOrigin) { |
| glTexDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| } else { |
| glTexDesc.fOrigin = desc.fOrigin; |
| } |
| |
| GrGLTexture* texture = NULL; |
| if (renderTarget) { |
| GrGLRenderTarget::Desc glRTDesc; |
| glRTDesc.fRTFBOID = 0; |
| glRTDesc.fTexFBOID = 0; |
| glRTDesc.fMSColorRenderbufferID = 0; |
| glRTDesc.fConfig = desc.fConfig; |
| glRTDesc.fSampleCnt = desc.fSampleCnt; |
| glRTDesc.fOrigin = glTexDesc.fOrigin; |
| if (!this->createRenderTargetObjects(glTexDesc.fWidth, |
| glTexDesc.fHeight, |
| glTexDesc.fTextureID, |
| &glRTDesc)) { |
| return NULL; |
| } |
| texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); |
| } else { |
| texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); |
| } |
| if (NULL == texture) { |
| return NULL; |
| } |
| |
| this->setSpareTextureUnit(); |
| return texture; |
| } |
| |
| GrRenderTarget* GrGpuGL::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { |
| GrGLRenderTarget::Desc glDesc; |
| glDesc.fConfig = desc.fConfig; |
| glDesc.fRTFBOID = static_cast<GrGLuint>(desc.fRenderTargetHandle); |
| glDesc.fMSColorRenderbufferID = 0; |
| glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| glDesc.fSampleCnt = desc.fSampleCnt; |
| glDesc.fIsWrapped = true; |
| glDesc.fOrigin = desc.fOrigin; |
| if (glDesc.fRTFBOID == 0) { |
| GrAssert(desc.fOrigin == kBottomLeft_GrSurfaceOrigin); |
| } |
| |
| glDesc.fOrigin = resolve_origin(desc.fOrigin, true); |
| GrGLIRect viewport; |
| viewport.fLeft = 0; |
| viewport.fBottom = 0; |
| viewport.fWidth = desc.fWidth; |
| viewport.fHeight = desc.fHeight; |
| |
| GrRenderTarget* tgt = SkNEW_ARGS(GrGLRenderTarget, |
| (this, glDesc, viewport)); |
| if (desc.fStencilBits) { |
| GrGLStencilBuffer::Format format; |
| format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat; |
| format.fPacked = false; |
| format.fStencilBits = desc.fStencilBits; |
| format.fTotalBits = desc.fStencilBits; |
| static const bool kIsSBWrapped = false; |
| GrGLStencilBuffer* sb = SkNEW_ARGS(GrGLStencilBuffer, |
| (this, |
| kIsSBWrapped, |
| 0, |
| desc.fWidth, |
| desc.fHeight, |
| desc.fSampleCnt, |
| format)); |
| tgt->setStencilBuffer(sb); |
| sb->unref(); |
| } |
| return tgt; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrGpuGL::onWriteTexturePixels(GrTexture* texture, |
| int left, int top, int width, int height, |
| GrPixelConfig config, const void* buffer, |
| size_t rowBytes) { |
| if (NULL == buffer) { |
| return false; |
| } |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(texture); |
| |
| this->setSpareTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); |
| GrGLTexture::Desc desc; |
| desc.fFlags = glTex->desc().fFlags; |
| desc.fWidth = glTex->width(); |
| desc.fHeight = glTex->height(); |
| desc.fConfig = glTex->config(); |
| desc.fSampleCnt = glTex->desc().fSampleCnt; |
| desc.fTextureID = glTex->textureID(); |
| desc.fOrigin = glTex->origin(); |
| |
| return this->uploadTexData(desc, false, |
| left, top, width, height, |
| config, buffer, rowBytes); |
| } |
| |
| namespace { |
| bool adjust_pixel_ops_params(int surfaceWidth, |
| int surfaceHeight, |
| size_t bpp, |
| int* left, int* top, int* width, int* height, |
| const void** data, |
| size_t* rowBytes) { |
| if (!*rowBytes) { |
| *rowBytes = *width * bpp; |
| } |
| |
| GrIRect subRect = GrIRect::MakeXYWH(*left, *top, *width, *height); |
| GrIRect bounds = GrIRect::MakeWH(surfaceWidth, surfaceHeight); |
| |
| if (!subRect.intersect(bounds)) { |
| return false; |
| } |
| *data = reinterpret_cast<const void*>(reinterpret_cast<intptr_t>(*data) + |
| (subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp); |
| |
| *left = subRect.fLeft; |
| *top = subRect.fTop; |
| *width = subRect.width(); |
| *height = subRect.height(); |
| return true; |
| } |
| } |
| |
| bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc, |
| bool isNewTexture, |
| int left, int top, int width, int height, |
| GrPixelConfig dataConfig, |
| const void* data, |
| size_t rowBytes) { |
| GrAssert(NULL != data || isNewTexture); |
| |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top, |
| &width, &height, &data, &rowBytes)) { |
| return false; |
| } |
| size_t trimRowBytes = width * bpp; |
| |
| // in case we need a temporary, trimmed copy of the src pixels |
| SkAutoSMalloc<128 * 128> tempStorage; |
| |
| // paletted textures cannot be partially updated |
| bool useTexStorage = isNewTexture && |
| desc.fConfig != kIndex_8_GrPixelConfig && |
| this->glCaps().texStorageSupport(); |
| |
| if (useTexStorage && kDesktop_GrGLBinding == this->glBinding()) { |
| // 565 is not a sized internal format on desktop GL. So on desktop with |
| // 565 we always use an unsized internal format to let the system pick |
| // the best sized format to convert the 565 data to. Since TexStorage |
| // only allows sized internal formats we will instead use TexImage2D. |
| useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; |
| } |
| |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| // glTexStorage requires sized internal formats on both desktop and ES. ES |
| // glTexImage requires an unsized format. |
| if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat, |
| &externalFormat, &externalType)) { |
| return false; |
| } |
| |
| if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) { |
| // paletted textures cannot be updated |
| return false; |
| } |
| |
| /* |
| * check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| bool restoreGLRowLength = false; |
| bool swFlipY = false; |
| bool glFlipY = false; |
| if (NULL != data) { |
| if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { |
| if (this->glCaps().unpackFlipYSupport()) { |
| glFlipY = true; |
| } else { |
| swFlipY = true; |
| } |
| } |
| if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { |
| // can't use this for flipping, only non-neg values allowed. :( |
| if (rowBytes != trimRowBytes) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } |
| } else { |
| if (trimRowBytes != rowBytes || swFlipY) { |
| // copy data into our new storage, skipping the trailing bytes |
| size_t trimSize = height * trimRowBytes; |
| const char* src = (const char*)data; |
| if (swFlipY) { |
| src += (height - 1) * rowBytes; |
| } |
| char* dst = (char*)tempStorage.reset(trimSize); |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, trimRowBytes); |
| if (swFlipY) { |
| src -= rowBytes; |
| } else { |
| src += rowBytes; |
| } |
| dst += trimRowBytes; |
| } |
| // now point data to our copied version |
| data = tempStorage.get(); |
| } |
| } |
| if (glFlipY) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); |
| } |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast<GrGLint>(bpp))); |
| } |
| bool succeeded = true; |
| if (isNewTexture && |
| 0 == left && 0 == top && |
| desc.fWidth == width && desc.fHeight == height) { |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| if (useTexStorage) { |
| // We never resize or change formats of textures. We don't use |
| // mipmaps currently. |
| GL_ALLOC_CALL(this->glInterface(), |
| TexStorage2D(GR_GL_TEXTURE_2D, |
| 1, // levels |
| internalFormat, |
| desc.fWidth, desc.fHeight)); |
| } else { |
| if (GR_GL_PALETTE8_RGBA8 == internalFormat) { |
| GrGLsizei imageSize = desc.fWidth * desc.fHeight + |
| kGrColorTableSize; |
| GL_ALLOC_CALL(this->glInterface(), |
| CompressedTexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| desc.fWidth, desc.fHeight, |
| 0, // border |
| imageSize, |
| data)); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), |
| TexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| desc.fWidth, desc.fHeight, |
| 0, // border |
| externalFormat, externalType, |
| data)); |
| } |
| } |
| GrGLenum error = CHECK_ALLOC_ERROR(this->glInterface()); |
| if (error != GR_GL_NO_ERROR) { |
| succeeded = false; |
| } else { |
| // if we have data and we used TexStorage to create the texture, we |
| // now upload with TexSubImage. |
| if (NULL != data && useTexStorage) { |
| GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| externalFormat, externalType, |
| data)); |
| } |
| } |
| } else { |
| if (swFlipY || glFlipY) { |
| top = desc.fHeight - (top + height); |
| } |
| GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| externalFormat, externalType, data)); |
| } |
| |
| if (restoreGLRowLength) { |
| GrAssert(this->glCaps().unpackRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (glFlipY) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| return succeeded; |
| } |
| |
| namespace { |
| bool renderbuffer_storage_msaa(GrGLContext& ctx, |
| int sampleCount, |
| GrGLenum format, |
| int width, int height) { |
| CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); |
| GrAssert(GrGLCaps::kNone_MSFBOType != ctx.info().caps()->msFBOType()); |
| bool created = false; |
| if (GrGLCaps::kNVDesktop_CoverageAAType == |
| ctx.info().caps()->coverageAAType()) { |
| const GrGLCaps::MSAACoverageMode& mode = |
| ctx.info().caps()->getMSAACoverageMode(sampleCount); |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleCoverage(GR_GL_RENDERBUFFER, |
| mode.fCoverageSampleCnt, |
| mode.fColorSampleCnt, |
| format, |
| width, height)); |
| created = (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); |
| } |
| if (!created) { |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| created = (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); |
| } |
| return created; |
| } |
| } |
| |
| bool GrGpuGL::createRenderTargetObjects(int width, int height, |
| GrGLuint texID, |
| GrGLRenderTarget::Desc* desc) { |
| desc->fMSColorRenderbufferID = 0; |
| desc->fRTFBOID = 0; |
| desc->fTexFBOID = 0; |
| desc->fIsWrapped = false; |
| |
| GrGLenum status; |
| |
| GrGLenum msColorFormat = 0; // suppress warning |
| |
| GL_CALL(GenFramebuffers(1, &desc->fTexFBOID)); |
| if (!desc->fTexFBOID) { |
| goto FAILED; |
| } |
| |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (desc->fSampleCnt > 0 && GrGLCaps::kImaginationES_MSFBOType != this->glCaps().msFBOType()) { |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| goto FAILED; |
| } |
| GL_CALL(GenFramebuffers(1, &desc->fRTFBOID)); |
| GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID)); |
| if (!desc->fRTFBOID || |
| !desc->fMSColorRenderbufferID || |
| !this->configToGLFormats(desc->fConfig, |
| // GLES requires sized internal formats |
| kES2_GrGLBinding == this->glBinding(), |
| &msColorFormat, NULL, NULL)) { |
| goto FAILED; |
| } |
| } else { |
| desc->fRTFBOID = desc->fTexFBOID; |
| } |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTarget = NULL; |
| if (desc->fRTFBOID != desc->fTexFBOID) { |
| GrAssert(desc->fSampleCnt > 0); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, |
| desc->fMSColorRenderbufferID)); |
| if (!renderbuffer_storage_msaa(fGLContext, |
| desc->fSampleCnt, |
| msColorFormat, |
| width, height)) { |
| goto FAILED; |
| } |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| desc->fMSColorRenderbufferID)); |
| if (!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext.info().caps()->markConfigAsValidColorAttachment(desc->fConfig); |
| } |
| } |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID)); |
| |
| if (GrGLCaps::kImaginationES_MSFBOType == this->glCaps().msFBOType() && desc->fSampleCnt > 0) { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, 0, desc->fSampleCnt)); |
| } else { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, 0)); |
| } |
| if (!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext.info().caps()->markConfigAsValidColorAttachment(desc->fConfig); |
| } |
| |
| return true; |
| |
| FAILED: |
| if (desc->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID)); |
| } |
| if (desc->fRTFBOID != desc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID)); |
| } |
| if (desc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID)); |
| } |
| return false; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static GrTexture* return_null_texture() { |
| // GrAssert(!"null texture"); |
| return NULL; |
| } |
| |
| #if 0 && GR_DEBUG |
| static size_t as_size_t(int x) { |
| return x; |
| } |
| #endif |
| |
| GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc, |
| const void* srcData, |
| size_t rowBytes) { |
| |
| GrGLTexture::Desc glTexDesc; |
| GrGLRenderTarget::Desc glRTDesc; |
| |
| // Attempt to catch un- or wrongly initialized sample counts; |
| GrAssert(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64); |
| // We fail if the MSAA was requested and is not available. |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { |
| //GrPrintf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| // If the sample count exceeds the max then we clamp it. |
| glTexDesc.fSampleCnt = GrMin(desc.fSampleCnt, this->caps()->maxSampleCount()); |
| |
| glTexDesc.fFlags = desc.fFlags; |
| glTexDesc.fWidth = desc.fWidth; |
| glTexDesc.fHeight = desc.fHeight; |
| glTexDesc.fConfig = desc.fConfig; |
| glTexDesc.fIsWrapped = false; |
| |
| glRTDesc.fMSColorRenderbufferID = 0; |
| glRTDesc.fRTFBOID = 0; |
| glRTDesc.fTexFBOID = 0; |
| glRTDesc.fIsWrapped = false; |
| glRTDesc.fConfig = glTexDesc.fConfig; |
| |
| bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrTextureFlagBit); |
| |
| glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| glRTDesc.fOrigin = glTexDesc.fOrigin; |
| |
| glRTDesc.fSampleCnt = glTexDesc.fSampleCnt; |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && |
| desc.fSampleCnt) { |
| //GrPrintf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| |
| if (renderTarget) { |
| int maxRTSize = this->caps()->maxRenderTargetSize(); |
| if (glTexDesc.fWidth > maxRTSize || glTexDesc.fHeight > maxRTSize) { |
| return return_null_texture(); |
| } |
| } |
| |
| GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); |
| if (renderTarget && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_USAGE, |
| GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| if (!glTexDesc.fTextureID) { |
| return return_null_texture(); |
| } |
| |
| this->setSpareTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); |
| |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTexture::TexParams initialTexParams; |
| // we only set a subset here so invalidate first |
| initialTexParams.invalidate(); |
| initialTexParams.fFilter = GR_GL_NEAREST; |
| initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| initialTexParams.fFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| initialTexParams.fFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| initialTexParams.fWrapS)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| initialTexParams.fWrapT)); |
| if (!this->uploadTexData(glTexDesc, true, 0, 0, |
| glTexDesc.fWidth, glTexDesc.fHeight, |
| desc.fConfig, srcData, rowBytes)) { |
| GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| if (renderTarget) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| |
| if (!this->createRenderTargetObjects(glTexDesc.fWidth, |
| glTexDesc.fHeight, |
| glTexDesc.fTextureID, |
| &glRTDesc)) { |
| GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); |
| } else { |
| tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); |
| } |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n", |
| glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| namespace { |
| |
| const GrGLuint kUnknownBitCount = GrGLStencilBuffer::kUnknownBitCount; |
| |
| void inline get_stencil_rb_sizes(const GrGLInterface* gl, |
| GrGLuint rb, |
| GrGLStencilBuffer::Format* format) { |
| // we shouldn't ever know one size and not the other |
| GrAssert((kUnknownBitCount == format->fStencilBits) == |
| (kUnknownBitCount == format->fTotalBits)); |
| if (kUnknownBitCount == format->fStencilBits) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_STENCIL_SIZE, |
| (GrGLint*)&format->fStencilBits); |
| if (format->fPacked) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_DEPTH_SIZE, |
| (GrGLint*)&format->fTotalBits); |
| format->fTotalBits += format->fStencilBits; |
| } else { |
| format->fTotalBits = format->fStencilBits; |
| } |
| } |
| } |
| } |
| |
| bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt, |
| int width, int height) { |
| |
| // All internally created RTs are also textures. We don't create |
| // SBs for a client's standalone RT (that is a RT that isn't also a texture). |
| GrAssert(rt->asTexture()); |
| GrAssert(width >= rt->width()); |
| GrAssert(height >= rt->height()); |
| |
| int samples = rt->numSamples(); |
| GrGLuint sbID; |
| GL_CALL(GenRenderbuffers(1, &sbID)); |
| if (!sbID) { |
| return false; |
| } |
| |
| int stencilFmtCnt = this->glCaps().stencilFormats().count(); |
| for (int i = 0; i < stencilFmtCnt; ++i) { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID)); |
| // we start with the last stencil format that succeeded in hopes |
| // that we won't go through this loop more than once after the |
| // first (painful) stencil creation. |
| int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt; |
| const GrGLCaps::StencilFormat& sFmt = |
| this->glCaps().stencilFormats()[sIdx]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // we do this "if" so that we don't call the multisample |
| // version on a GL that doesn't have an MSAA extension. |
| bool created; |
| if (samples > 0) { |
| created = renderbuffer_storage_msaa(fGLContext, |
| samples, |
| sFmt.fInternalFormat, |
| width, height); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), |
| RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| width, height)); |
| created = |
| (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())); |
| } |
| if (created) { |
| // After sized formats we attempt an unsized format and take |
| // whatever sizes GL gives us. In that case we query for the size. |
| GrGLStencilBuffer::Format format = sFmt; |
| get_stencil_rb_sizes(this->glInterface(), sbID, &format); |
| static const bool kIsWrapped = false; |
| SkAutoTUnref<GrStencilBuffer> sb(SkNEW_ARGS(GrGLStencilBuffer, |
| (this, kIsWrapped, sbID, width, height, |
| samples, format))); |
| if (this->attachStencilBufferToRenderTarget(sb, rt)) { |
| fLastSuccessfulStencilFmtIdx = sIdx; |
| sb->transferToCache(); |
| rt->setStencilBuffer(sb); |
| return true; |
| } |
| sb->abandon(); // otherwise we lose sbID |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbID)); |
| return false; |
| } |
| |
| bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb, GrRenderTarget* rt) { |
| GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt; |
| |
| GrGLuint fbo = glrt->renderFBOID(); |
| |
| if (NULL == sb) { |
| if (NULL != rt->getStencilBuffer()) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| #if GR_DEBUG |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| GrAssert(GR_GL_FRAMEBUFFER_COMPLETE == status); |
| #endif |
| } |
| return true; |
| } else { |
| GrGLStencilBuffer* glsb = static_cast<GrGLStencilBuffer*>(sb); |
| GrGLuint rb = glsb->renderbufferID(); |
| |
| fHWBoundRenderTarget = NULL; |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, rb)); |
| if (glsb->format().fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, rb)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GrGLenum status; |
| if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (glsb->format().fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| return false; |
| } else { |
| fGLContext.info().caps()->markColorConfigAndStencilFormatAsVerified( |
| rt->config(), |
| glsb->format()); |
| } |
| } |
| return true; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(uint32_t size, bool dynamic) { |
| GrGLVertexBuffer::Desc desc; |
| desc.fDynamic = dynamic; |
| desc.fSizeInBytes = size; |
| desc.fIsWrapped = false; |
| |
| if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { |
| desc.fID = 0; |
| GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); |
| return vertexBuffer; |
| } else { |
| GL_CALL(GenBuffers(1, &desc.fID)); |
| if (desc.fID) { |
| fHWGeometryState.setVertexBufferID(this, desc.fID); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // make sure driver can allocate memory for this buffer |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ARRAY_BUFFER, |
| desc.fSizeInBytes, |
| NULL, // data ptr |
| desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); |
| if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteBuffers(1, &desc.fID)); |
| this->notifyVertexBufferDelete(desc.fID); |
| return NULL; |
| } |
| GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); |
| return vertexBuffer; |
| } |
| return NULL; |
| } |
| } |
| |
| GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) { |
| GrGLIndexBuffer::Desc desc; |
| desc.fDynamic = dynamic; |
| desc.fSizeInBytes = size; |
| desc.fIsWrapped = false; |
| |
| if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { |
| desc.fID = 0; |
| GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); |
| return indexBuffer; |
| } else { |
| GL_CALL(GenBuffers(1, &desc.fID)); |
| if (desc.fID) { |
| fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // make sure driver can allocate memory for this buffer |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, |
| desc.fSizeInBytes, |
| NULL, // data ptr |
| desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); |
| if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteBuffers(1, &desc.fID)); |
| this->notifyIndexBufferDelete(desc.fID); |
| return NULL; |
| } |
| GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); |
| return indexBuffer; |
| } |
| return NULL; |
| } |
| } |
| |
| GrPath* GrGpuGL::onCreatePath(const SkPath& inPath) { |
| GrAssert(this->caps()->pathStencilingSupport()); |
| return SkNEW_ARGS(GrGLPath, (this, inPath)); |
| } |
| |
| void GrGpuGL::flushScissor() { |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrGLRenderTarget* rt = |
| static_cast<const GrGLRenderTarget*>(drawState.getRenderTarget()); |
| |
| GrAssert(NULL != rt); |
| const GrGLIRect& vp = rt->getViewport(); |
| |
| if (fScissorState.fEnabled) { |
| GrGLIRect scissor; |
| scissor.setRelativeTo(vp, |
| fScissorState.fRect.fLeft, |
| fScissorState.fRect.fTop, |
| fScissorState.fRect.width(), |
| fScissorState.fRect.height(), |
| rt->origin()); |
| // if the scissor fully contains the viewport then we fall through and |
| // disable the scissor test. |
| if (!scissor.contains(vp)) { |
| if (fHWScissorSettings.fRect != scissor) { |
| scissor.pushToGLScissor(this->glInterface()); |
| fHWScissorSettings.fRect = scissor; |
| } |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| return; |
| } |
| } |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| return; |
| } |
| } |
| |
| void GrGpuGL::onClear(const GrIRect* rect, GrColor color) { |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrRenderTarget* rt = drawState.getRenderTarget(); |
| // parent class should never let us get here with no RT |
| GrAssert(NULL != rt); |
| |
| GrIRect clippedRect; |
| if (NULL != rect) { |
| // flushScissor expects rect to be clipped to the target. |
| clippedRect = *rect; |
| GrIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height()); |
| if (clippedRect.intersect(rtRect)) { |
| rect = &clippedRect; |
| } else { |
| return; |
| } |
| } |
| this->flushRenderTarget(rect); |
| GrAutoTRestore<ScissorState> asr(&fScissorState); |
| fScissorState.fEnabled = (NULL != rect); |
| if (fScissorState.fEnabled) { |
| fScissorState.fRect = *rect; |
| } |
| this->flushScissor(); |
| |
| GrGLfloat r, g, b, a; |
| static const GrGLfloat scale255 = 1.f / 255.f; |
| a = GrColorUnpackA(color) * scale255; |
| GrGLfloat scaleRGB = scale255; |
| r = GrColorUnpackR(color) * scaleRGB; |
| g = GrColorUnpackG(color) * scaleRGB; |
| b = GrColorUnpackB(color) * scaleRGB; |
| |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| GL_CALL(ClearColor(r, g, b, a)); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| } |
| |
| void GrGpuGL::clearStencil() { |
| if (NULL == this->getDrawState().getRenderTarget()) { |
| return; |
| } |
| |
| this->flushRenderTarget(&GrIRect::EmptyIRect()); |
| |
| GrAutoTRestore<ScissorState> asr(&fScissorState); |
| fScissorState.fEnabled = false; |
| this->flushScissor(); |
| |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(0)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) { |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrRenderTarget* rt = drawState.getRenderTarget(); |
| GrAssert(NULL != rt); |
| |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| GrAssert(NULL != rt->getStencilBuffer()); |
| GrGLint stencilBitCount = rt->getStencilBuffer()->bits(); |
| #if 0 |
| GrAssert(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on GrDrawTarget says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideClip) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| this->flushRenderTarget(&GrIRect::EmptyIRect()); |
| |
| GrAutoTRestore<ScissorState> asr(&fScissorState); |
| fScissorState.fEnabled = true; |
| fScissorState.fRect = rect; |
| this->flushScissor(); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| void GrGpuGL::onForceRenderTargetFlush() { |
| this->flushRenderTarget(&GrIRect::EmptyIRect()); |
| } |
| |
| bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, |
| int left, int top, |
| int width, int height, |
| GrPixelConfig config, |
| size_t rowBytes) const { |
| // If this rendertarget is aready TopLeft, we don't need to flip. |
| if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { |
| return false; |
| } |
| |
| // if GL can do the flip then we'll never pay for it. |
| if (this->glCaps().packFlipYSupport()) { |
| return false; |
| } |
| |
| // If we have to do memcpy to handle non-trim rowBytes then we |
| // get the flip for free. Otherwise it costs. |
| if (this->glCaps().packRowLengthSupport()) { |
| return true; |
| } |
| // If we have to do memcpys to handle rowBytes then y-flip is free |
| // Note the rowBytes might be tight to the passed in data, but if data |
| // gets clipped in x to the target the rowBytes will no longer be tight. |
| if (left >= 0 && (left + width) < renderTarget->width()) { |
| return 0 == rowBytes || |
| GrBytesPerPixel(config) * width == rowBytes; |
| } else { |
| return false; |
| } |
| } |
| |
| bool GrGpuGL::onReadPixels(GrRenderTarget* target, |
| int left, int top, |
| int width, int height, |
| GrPixelConfig config, |
| void* buffer, |
| size_t rowBytes) { |
| GrGLenum format; |
| GrGLenum type; |
| bool flipY = kBottomLeft_GrSurfaceOrigin == target->origin(); |
| if (!this->configToGLFormats(config, false, NULL, &format, &type)) { |
| return false; |
| } |
| size_t bpp = GrBytesPerPixel(config); |
| if (!adjust_pixel_ops_params(target->width(), target->height(), bpp, |
| &left, &top, &width, &height, |
| const_cast<const void**>(&buffer), |
| &rowBytes)) { |
| return false; |
| } |
| |
| // resolve the render target if necessary |
| GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target); |
| GrDrawState::AutoRenderTargetRestore artr; |
| switch (tgt->getResolveType()) { |
| case GrGLRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrGLRenderTarget::kAutoResolves_ResolveType: |
| artr.set(this->drawState(), target); |
| this->flushRenderTarget(&GrIRect::EmptyIRect()); |
| break; |
| case GrGLRenderTarget::kCanResolve_ResolveType: |
| this->onResolveRenderTarget(tgt); |
| // we don't track the state of the READ FBO ID. |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, |
| tgt->textureFBOID())); |
| break; |
| default: |
| GrCrash("Unknown resolve type"); |
| } |
| |
| const GrGLIRect& glvp = tgt->getViewport(); |
| |
| // the read rect is viewport-relative |
| GrGLIRect readRect; |
| readRect.setRelativeTo(glvp, left, top, width, height, target->origin()); |
| |
| size_t tightRowBytes = bpp * width; |
| if (0 == rowBytes) { |
| rowBytes = tightRowBytes; |
| } |
| size_t readDstRowBytes = tightRowBytes; |
| void* readDst = buffer; |
| |
| // determine if GL can read using the passed rowBytes or if we need |
| // a scratch buffer. |
| SkAutoSMalloc<32 * sizeof(GrColor)> scratch; |
| if (rowBytes != tightRowBytes) { |
| if (this->glCaps().packRowLengthSupport()) { |
| GrAssert(!(rowBytes % sizeof(GrColor))); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowBytes / sizeof(GrColor))); |
| readDstRowBytes = rowBytes; |
| } else { |
| scratch.reset(tightRowBytes * height); |
| readDst = scratch.get(); |
| } |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); |
| } |
| GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, |
| readRect.fWidth, readRect.fHeight, |
| format, type, readDst)); |
| if (readDstRowBytes != tightRowBytes) { |
| GrAssert(this->glCaps().packRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); |
| flipY = false; |
| } |
| |
| // now reverse the order of the rows, since GL's are bottom-to-top, but our |
| // API presents top-to-bottom. We must preserve the padding contents. Note |
| // that the above readPixels did not overwrite the padding. |
| if (readDst == buffer) { |
| GrAssert(rowBytes == readDstRowBytes); |
| if (flipY) { |
| scratch.reset(tightRowBytes); |
| void* tmpRow = scratch.get(); |
| // flip y in-place by rows |
| const int halfY = height >> 1; |
| char* top = reinterpret_cast<char*>(buffer); |
| char* bottom = top + (height - 1) * rowBytes; |
| for (int y = 0; y < halfY; y++) { |
| memcpy(tmpRow, top, tightRowBytes); |
| memcpy(top, bottom, tightRowBytes); |
| memcpy(bottom, tmpRow, tightRowBytes); |
| top += rowBytes; |
| bottom -= rowBytes; |
| } |
| } |
| } else { |
| GrAssert(readDst != buffer); GrAssert(rowBytes != tightRowBytes); |
| // copy from readDst to buffer while flipping y |
| // const int halfY = height >> 1; |
| const char* src = reinterpret_cast<const char*>(readDst); |
| char* dst = reinterpret_cast<char*>(buffer); |
| if (flipY) { |
| dst += (height-1) * rowBytes; |
| } |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, tightRowBytes); |
| src += readDstRowBytes; |
| if (!flipY) { |
| dst += rowBytes; |
| } else { |
| dst -= rowBytes; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void GrGpuGL::flushRenderTarget(const GrIRect* bound) { |
| |
| GrGLRenderTarget* rt = |
| static_cast<GrGLRenderTarget*>(this->drawState()->getRenderTarget()); |
| GrAssert(NULL != rt); |
| |
| if (fHWBoundRenderTarget != rt) { |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID())); |
| #if GR_DEBUG |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status); |
| } |
| #endif |
| fHWBoundRenderTarget = rt; |
| const GrGLIRect& vp = rt->getViewport(); |
| if (fHWViewport != vp) { |
| vp.pushToGLViewport(this->glInterface()); |
| fHWViewport = vp; |
| } |
| } |
| if (NULL == bound || !bound->isEmpty()) { |
| rt->flagAsNeedingResolve(bound); |
| } |
| } |
| |
| GrGLenum gPrimitiveType2GLMode[] = { |
| GR_GL_TRIANGLES, |
| GR_GL_TRIANGLE_STRIP, |
| GR_GL_TRIANGLE_FAN, |
| GR_GL_POINTS, |
| GR_GL_LINES, |
| GR_GL_LINE_STRIP |
| }; |
| |
| #define SWAP_PER_DRAW 0 |
| |
| #if SWAP_PER_DRAW |
| #if GR_MAC_BUILD |
| #include <AGL/agl.h> |
| #elif GR_WIN32_BUILD |
| #include <gl/GL.h> |
| void SwapBuf() { |
| DWORD procID = GetCurrentProcessId(); |
| HWND hwnd = GetTopWindow(GetDesktopWindow()); |
| while(hwnd) { |
| DWORD wndProcID = 0; |
| GetWindowThreadProcessId(hwnd, &wndProcID); |
| if(wndProcID == procID) { |
| SwapBuffers(GetDC(hwnd)); |
| } |
| hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); |
| } |
| } |
| #endif |
| #endif |
| |
| void GrGpuGL::onGpuDraw(const DrawInfo& info) { |
| size_t indexOffsetInBytes; |
| this->setupGeometry(info, &indexOffsetInBytes); |
| |
| GrAssert((size_t)info.primitiveType() < GR_ARRAY_COUNT(gPrimitiveType2GLMode)); |
| |
| if (info.isIndexed()) { |
| GrGLvoid* indices = |
| reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + sizeof(uint16_t) * info.startIndex()); |
| // info.startVertex() was accounted for by setupGeometry. |
| GL_CALL(DrawElements(gPrimitiveType2GLMode[info.primitiveType()], |
| info.indexCount(), |
| GR_GL_UNSIGNED_SHORT, |
| indices)); |
| } else { |
| // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for |
| // startVertex in the DrawElements case. So we always rely on setupGeometry to have |
| // accounted for startVertex. |
| GL_CALL(DrawArrays(gPrimitiveType2GLMode[info.primitiveType()], 0, info.vertexCount())); |
| } |
| #if SWAP_PER_DRAW |
| glFlush(); |
| #if GR_MAC_BUILD |
| aglSwapBuffers(aglGetCurrentContext()); |
| int set_a_break_pt_here = 9; |
| aglSwapBuffers(aglGetCurrentContext()); |
| #elif GR_WIN32_BUILD |
| SwapBuf(); |
| int set_a_break_pt_here = 9; |
| SwapBuf(); |
| #endif |
| #endif |
| } |
| |
| namespace { |
| |
| static const uint16_t kOnes16 = static_cast<uint16_t>(~0); |
| const GrStencilSettings& winding_nv_path_stencil_settings() { |
| GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings, |
| kIncClamp_StencilOp, |
| kIncClamp_StencilOp, |
| kAlwaysIfInClip_StencilFunc, |
| kOnes16, kOnes16, kOnes16); |
| return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings); |
| } |
| const GrStencilSettings& even_odd_nv_path_stencil_settings() { |
| GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings, |
| kInvert_StencilOp, |
| kInvert_StencilOp, |
| kAlwaysIfInClip_StencilFunc, |
| kOnes16, kOnes16, kOnes16); |
| return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings); |
| } |
| } |
| |
| void GrGpuGL::setStencilPathSettings(const GrPath&, |
| SkPath::FillType fill, |
| GrStencilSettings* settings) { |
| switch (fill) { |
| case SkPath::kEvenOdd_FillType: |
| *settings = even_odd_nv_path_stencil_settings(); |
| return; |
| case SkPath::kWinding_FillType: |
| *settings = winding_nv_path_stencil_settings(); |
| return; |
| default: |
| GrCrash("Unexpected path fill."); |
| } |
| } |
| |
| void GrGpuGL::onGpuStencilPath(const GrPath* path, SkPath::FillType fill) { |
| GrAssert(this->caps()->pathStencilingSupport()); |
| |
| GrGLuint id = static_cast<const GrGLPath*>(path)->pathID(); |
| GrDrawState* drawState = this->drawState(); |
| GrAssert(NULL != drawState->getRenderTarget()); |
| if (NULL == drawState->getRenderTarget()->getStencilBuffer()) { |
| return; |
| } |
| |
| // Decide how to manipulate the stencil buffer based on the fill rule. |
| // Also, assert that the stencil settings we set in setStencilPathSettings |
| // are present. |
| GrAssert(!fStencilSettings.isTwoSided()); |
| GrGLenum fillMode; |
| switch (fill) { |
| case SkPath::kWinding_FillType: |
| fillMode = GR_GL_COUNT_UP; |
| GrAssert(kIncClamp_StencilOp == |
| fStencilSettings.passOp(GrStencilSettings::kFront_Face)); |
| GrAssert(kIncClamp_StencilOp == |
| fStencilSettings.failOp(GrStencilSettings::kFront_Face)); |
| break; |
| case SkPath::kEvenOdd_FillType: |
| fillMode = GR_GL_INVERT; |
| GrAssert(kInvert_StencilOp == |
| fStencilSettings.passOp(GrStencilSettings::kFront_Face)); |
| GrAssert(kInvert_StencilOp == |
| fStencilSettings.failOp(GrStencilSettings::kFront_Face)); |
| break; |
| default: |
| // Only the above two fill rules are allowed. |
| GrCrash("Unexpected path fill."); |
| return; // suppress unused var warning. |
| } |
| GrGLint writeMask = fStencilSettings.writeMask(GrStencilSettings::kFront_Face); |
| GL_CALL(StencilFillPath(id, fillMode, writeMask)); |
| } |
| |
| void GrGpuGL::onResolveRenderTarget(GrRenderTarget* target) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); |
| if (rt->needsResolve()) { |
| // The IMG extension automatically resolves the texture when it is read. |
| if (GrGLCaps::kImaginationES_MSFBOType != this->glCaps().msFBOType()) { |
| GrAssert(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType()); |
| GrAssert(rt->textureFBOID() != rt->renderFBOID()); |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); |
| GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTarget = NULL; |
| const GrGLIRect& vp = rt->getViewport(); |
| const GrIRect dirtyRect = rt->getResolveRect(); |
| GrGLIRect r; |
| r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, |
| dirtyRect.width(), dirtyRect.height(), target->origin()); |
| |
| GrAutoTRestore<ScissorState> asr; |
| if (GrGLCaps::kAppleES_MSFBOType == this->glCaps().msFBOType()) { |
| // Apple's extension uses the scissor as the blit bounds. |
| asr.reset(&fScissorState); |
| fScissorState.fEnabled = true; |
| fScissorState.fRect = dirtyRect; |
| this->flushScissor(); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| if (GrGLCaps::kDesktopARB_MSFBOType != this->glCaps().msFBOType()) { |
| // this respects the scissor during the blit, so disable it. |
| GrAssert(GrGLCaps::kDesktopEXT_MSFBOType == this->glCaps().msFBOType()); |
| asr.reset(&fScissorState); |
| fScissorState.fEnabled = false; |
| this->flushScissor(); |
| } |
| int right = r.fLeft + r.fWidth; |
| int top = r.fBottom + r.fHeight; |
| GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, |
| r.fLeft, r.fBottom, right, top, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| } |
| rt->flagAsResolved(); |
| } |
| } |
| |
| namespace { |
| |
| GrGLenum gr_to_gl_stencil_func(GrStencilFunc basicFunc) { |
| static const GrGLenum gTable[] = { |
| GR_GL_ALWAYS, // kAlways_StencilFunc |
| GR_GL_NEVER, // kNever_StencilFunc |
| GR_GL_GREATER, // kGreater_StencilFunc |
| GR_GL_GEQUAL, // kGEqual_StencilFunc |
| GR_GL_LESS, // kLess_StencilFunc |
| GR_GL_LEQUAL, // kLEqual_StencilFunc, |
| GR_GL_EQUAL, // kEqual_StencilFunc, |
| GR_GL_NOTEQUAL, // kNotEqual_StencilFunc, |
| }; |
| GR_STATIC_ASSERT(GR_ARRAY_COUNT(gTable) == kBasicStencilFuncCount); |
| GR_STATIC_ASSERT(0 == kAlways_StencilFunc); |
| GR_STATIC_ASSERT(1 == kNever_StencilFunc); |
| GR_STATIC_ASSERT(2 == kGreater_StencilFunc); |
| GR_STATIC_ASSERT(3 == kGEqual_StencilFunc); |
| GR_STATIC_ASSERT(4 == kLess_StencilFunc); |
| GR_STATIC_ASSERT(5 == kLEqual_StencilFunc); |
| GR_STATIC_ASSERT(6 == kEqual_StencilFunc); |
| GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc); |
| GrAssert((unsigned) basicFunc < kBasicStencilFuncCount); |
| |
| return gTable[basicFunc]; |
| } |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[] = { |
| GR_GL_KEEP, // kKeep_StencilOp |
| GR_GL_REPLACE, // kReplace_StencilOp |
| GR_GL_INCR_WRAP, // kIncWrap_StencilOp |
| GR_GL_INCR, // kIncClamp_StencilOp |
| GR_GL_DECR_WRAP, // kDecWrap_StencilOp |
| GR_GL_DECR, // kDecClamp_StencilOp |
| GR_GL_ZERO, // kZero_StencilOp |
| GR_GL_INVERT, // kInvert_StencilOp |
| }; |
| GR_STATIC_ASSERT(GR_ARRAY_COUNT(gTable) == kStencilOpCount); |
| GR_STATIC_ASSERT(0 == kKeep_StencilOp); |
| GR_STATIC_ASSERT(1 == kReplace_StencilOp); |
| GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); |
| GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); |
| GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); |
| GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); |
| GR_STATIC_ASSERT(6 == kZero_StencilOp); |
| GR_STATIC_ASSERT(7 == kInvert_StencilOp); |
| GrAssert((unsigned) op < kStencilOpCount); |
| return gTable[op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings& settings, |
| GrGLenum glFace, |
| GrStencilSettings::Face grFace) { |
| GrGLenum glFunc = gr_to_gl_stencil_func(settings.func(grFace)); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); |
| |
| GrGLint ref = settings.funcRef(grFace); |
| GrGLint mask = settings.funcMask(grFace); |
| GrGLint writeMask = settings.writeMask(grFace); |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, glPassOp, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, glPassOp, glPassOp)); |
| } |
| } |
| } |
| |
| void GrGpuGL::flushStencil(DrawType type) { |
| if (kStencilPath_DrawType == type) { |
| GrAssert(!fStencilSettings.isTwoSided()); |
| // Just the func, ref, and mask is set here. The op and write mask are params to the call |
| // that draws the path to the SB (glStencilFillPath) |
| GrGLenum func = |
| gr_to_gl_stencil_func(fStencilSettings.func(GrStencilSettings::kFront_Face)); |
| GL_CALL(PathStencilFunc(func, |
| fStencilSettings.funcRef(GrStencilSettings::kFront_Face), |
| fStencilSettings.funcMask(GrStencilSettings::kFront_Face))); |
| } else if (fHWStencilSettings != fStencilSettings) { |
| if (fStencilSettings.isDisabled()) { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| } |
| if (!fStencilSettings.isDisabled()) { |
| if (this->caps()->twoSidedStencilSupport()) { |
| set_gl_stencil(this->glInterface(), |
| fStencilSettings, |
| GR_GL_FRONT, |
| GrStencilSettings::kFront_Face); |
| set_gl_stencil(this->glInterface(), |
| fStencilSettings, |
| GR_GL_BACK, |
| GrStencilSettings::kBack_Face); |
| } else { |
| set_gl_stencil(this->glInterface(), |
| fStencilSettings, |
| GR_GL_FRONT_AND_BACK, |
| GrStencilSettings::kFront_Face); |
| } |
| } |
| fHWStencilSettings = fStencilSettings; |
| } |
| } |
| |
| void GrGpuGL::flushAAState(DrawType type) { |
| // At least some ATI linux drivers will render GL_LINES incorrectly when MSAA state is enabled but |
| // the target is not multisampled. Single pixel wide lines are rendered thicker than 1 pixel wide. |
| #if 0 |
| // Replace RT_HAS_MSAA with this definition once this driver bug is no longer a relevant concern |
| #define RT_HAS_MSAA rt->isMultisampled() |
| #else |
| #define RT_HAS_MSAA (rt->isMultisampled() || kDrawLines_DrawType == type) |
| #endif |
| |
| const GrRenderTarget* rt = this->getDrawState().getRenderTarget(); |
| if (kDesktop_GrGLBinding == this->glBinding()) { |
| // ES doesn't support toggling GL_MULTISAMPLE and doesn't have |
| // smooth lines. |
| // we prefer smooth lines over multisampled lines |
| bool smoothLines = false; |
| |
| if (kDrawLines_DrawType == type) { |
| smoothLines = this->willUseHWAALines(); |
| if (smoothLines) { |
| if (kYes_TriState != fHWAAState.fSmoothLineEnabled) { |
| GL_CALL(Enable(GR_GL_LINE_SMOOTH)); |
| fHWAAState.fSmoothLineEnabled = kYes_TriState; |
| // must disable msaa to use line smoothing |
| if (RT_HAS_MSAA && |
| kNo_TriState != fHWAAState.fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fHWAAState.fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } else { |
| if (kNo_TriState != fHWAAState.fSmoothLineEnabled) { |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| fHWAAState.fSmoothLineEnabled = kNo_TriState; |
| } |
| } |
| } |
| if (!smoothLines && RT_HAS_MSAA) { |
| // FIXME: GL_NV_pr doesn't seem to like MSAA disabled. The paths |
| // convex hulls of each segment appear to get filled. |
| bool enableMSAA = kStencilPath_DrawType == type || |
| this->getDrawState().isHWAntialiasState(); |
| if (enableMSAA) { |
| if (kYes_TriState != fHWAAState.fMSAAEnabled) { |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| fHWAAState.fMSAAEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWAAState.fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fHWAAState.fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| } |
| |
| void GrGpuGL::flushBlend(bool isLines, |
| GrBlendCoeff srcCoeff, |
| GrBlendCoeff dstCoeff) { |
| if (isLines && this->willUseHWAALines()) { |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| if (kSA_GrBlendCoeff != fHWBlendState.fSrcCoeff || |
| kISA_GrBlendCoeff != fHWBlendState.fDstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_GrBlendCoeff], |
| gXfermodeCoeff2Blend[kISA_GrBlendCoeff])); |
| fHWBlendState.fSrcCoeff = kSA_GrBlendCoeff; |
| fHWBlendState.fDstCoeff = kISA_GrBlendCoeff; |
| } |
| } else { |
| // any optimization to disable blending should |
| // have already been applied and tweaked the coeffs |
| // to (1, 0). |
| bool blendOff = kOne_GrBlendCoeff == srcCoeff && |
| kZero_GrBlendCoeff == dstCoeff; |
| if (blendOff) { |
| if (kNo_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Disable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| if (fHWBlendState.fSrcCoeff != srcCoeff || |
| fHWBlendState.fDstCoeff != dstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], |
| gXfermodeCoeff2Blend[dstCoeff])); |
| fHWBlendState.fSrcCoeff = srcCoeff; |
| fHWBlendState.fDstCoeff = dstCoeff; |
| } |
| GrColor blendConst = this->getDrawState().getBlendConstant(); |
| if ((BlendCoeffReferencesConstant(srcCoeff) || |
| BlendCoeffReferencesConstant(dstCoeff)) && |
| (!fHWBlendState.fConstColorValid || |
| fHWBlendState.fConstColor != blendConst)) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(blendConst, c); |
| GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); |
| fHWBlendState.fConstColor = blendConst; |
| fHWBlendState.fConstColorValid = true; |
| } |
| } |
| } |
| } |
| namespace { |
| |
| inline void set_tex_swizzle(GrGLenum swizzle[4], const GrGLInterface* gl) { |
| GR_GL_CALL(gl, TexParameteriv(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_SWIZZLE_RGBA, |
| reinterpret_cast<const GrGLint*>(swizzle))); |
| } |
| |
| inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { |
| static const GrGLenum gWrapModes[] = { |
| GR_GL_CLAMP_TO_EDGE, |
| GR_GL_REPEAT, |
| GR_GL_MIRRORED_REPEAT |
| }; |
| GrAssert((unsigned) tm <= SK_ARRAY_COUNT(gWrapModes)); |
| GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); |
| GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); |
| GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); |
| return gWrapModes[tm]; |
| } |
| |
| } |
| |
| void GrGpuGL::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) { |
| GrAssert(NULL != texture); |
| |
| // If we created a rt/tex and rendered to it without using a texture and now we're texturing |
| // from the rt it will still be the last bound texture, but it needs resolving. So keep this |
| // out of the "last != next" check. |
| GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); |
| if (NULL != texRT) { |
| this->onResolveRenderTarget(texRT); |
| } |
| |
| if (fHWBoundTextures[unitIdx] != texture) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID())); |
| fHWBoundTextures[unitIdx] = texture; |
| } |
| |
| ResetTimestamp timestamp; |
| const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); |
| bool setAll = timestamp < this->getResetTimestamp(); |
| GrGLTexture::TexParams newTexParams; |
| |
| newTexParams.fFilter = params.isBilerp() ? GR_GL_LINEAR : GR_GL_NEAREST; |
| |
| newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); |
| newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); |
| memcpy(newTexParams.fSwizzleRGBA, |
| GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()), |
| sizeof(newTexParams.fSwizzleRGBA)); |
| if (setAll || newTexParams.fFilter != oldTexParams.fFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| newTexParams.fFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| newTexParams.fFilter)); |
| } |
| if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| newTexParams.fWrapS)); |
| } |
| if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| newTexParams.fWrapT)); |
| } |
| if (this->glCaps().textureSwizzleSupport() && |
| (setAll || memcmp(newTexParams.fSwizzleRGBA, |
| oldTexParams.fSwizzleRGBA, |
| sizeof(newTexParams.fSwizzleRGBA)))) { |
| this->setTextureUnit(unitIdx); |
| set_tex_swizzle(newTexParams.fSwizzleRGBA, |
| this->glInterface()); |
| } |
| texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); |
| } |
| |
| void GrGpuGL::flushMiscFixedFunctionState() { |
| |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| if (drawState.isDitherState()) { |
| if (kYes_TriState != fHWDitherEnabled) { |
| GL_CALL(Enable(GR_GL_DITHER)); |
| fHWDitherEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWDitherEnabled) { |
| GL_CALL(Disable(GR_GL_DITHER)); |
| fHWDitherEnabled = kNo_TriState; |
| } |
| } |
| |
| if (drawState.isColorWriteDisabled()) { |
| if (kNo_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, |
| GR_GL_FALSE, GR_GL_FALSE)); |
| fHWWriteToColor = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| } |
| } |
| |
| if (fHWDrawFace != drawState.getDrawFace()) { |
| switch (this->getDrawState().getDrawFace()) { |
| case GrDrawState::kCCW_DrawFace: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_BACK)); |
| break; |
| case GrDrawState::kCW_DrawFace: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_FRONT)); |
| break; |
| case GrDrawState::kBoth_DrawFace: |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| break; |
| default: |
| GrCrash("Unknown draw face."); |
| } |
| fHWDrawFace = drawState.getDrawFace(); |
| } |
| } |
| |
| void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) { |
| GrAssert(NULL != renderTarget); |
| if (fHWBoundRenderTarget == renderTarget) { |
| fHWBoundRenderTarget = NULL; |
| } |
| } |
| |
| void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) { |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| if (fHWBoundTextures[s] == texture) { |
| // deleting bound texture does implied bind to 0 |
| fHWBoundTextures[s] = NULL; |
| } |
| } |
| } |
| |
| bool GrGpuGL::configToGLFormats(GrPixelConfig config, |
| bool getSizedInternalFormat, |
| GrGLenum* internalFormat, |
| GrGLenum* externalFormat, |
| GrGLenum* externalType) { |
| GrGLenum dontCare; |
| if (NULL == internalFormat) { |
| internalFormat = &dontCare; |
| } |
| if (NULL == externalFormat) { |
| externalFormat = &dontCare; |
| } |
| if (NULL == externalType) { |
| externalType = &dontCare; |
| } |
| |
| switch (config) { |
| case kRGBA_8888_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA; |
| *externalFormat = GR_GL_RGBA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA8; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kBGRA_8888_GrPixelConfig: |
| if (!this->glCaps().bgraFormatSupport()) { |
| return false; |
| } |
| if (this->glCaps().bgraIsInternalFormat()) { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_BGRA8; |
| } else { |
| *internalFormat = GR_GL_BGRA; |
| } |
| } else { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA8; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| } |
| *externalFormat = GR_GL_BGRA; |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kRGB_565_GrPixelConfig: |
| *internalFormat = GR_GL_RGB; |
| *externalFormat = GR_GL_RGB; |
| if (getSizedInternalFormat) { |
| if (this->glBinding() == kDesktop_GrGLBinding) { |
| return false; |
| } else { |
| *internalFormat = GR_GL_RGB565; |
| } |
| } else { |
| *internalFormat = GR_GL_RGB; |
| } |
| *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; |
| break; |
| case kRGBA_4444_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA; |
| *externalFormat = GR_GL_RGBA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA4; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; |
| break; |
| case kIndex_8_GrPixelConfig: |
| if (this->caps()->eightBitPaletteSupport()) { |
| *internalFormat = GR_GL_PALETTE8_RGBA8; |
| // glCompressedTexImage doesn't take external params |
| *externalFormat = GR_GL_PALETTE8_RGBA8; |
| // no sized/unsized internal format distinction here |
| *internalFormat = GR_GL_PALETTE8_RGBA8; |
| // unused with CompressedTexImage |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } else { |
| return false; |
| } |
| break; |
| case kAlpha_8_GrPixelConfig: |
| if (this->glCaps().textureRedSupport()) { |
| *internalFormat = GR_GL_RED; |
| *externalFormat = GR_GL_RED; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_R8; |
| } else { |
| *internalFormat = GR_GL_RED; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| *externalFormat = GR_GL_ALPHA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_ALPHA8; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| void GrGpuGL::setTextureUnit(int unit) { |
| GrAssert(unit >= 0 && unit < GrDrawState::kNumStages); |
| if (fHWActiveTextureUnitIdx != unit) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); |
| fHWActiveTextureUnitIdx = unit; |
| } |
| } |
| |
| void GrGpuGL::setSpareTextureUnit() { |
| if (fHWActiveTextureUnitIdx != (GR_GL_TEXTURE0 + SPARE_TEX_UNIT)) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT)); |
| fHWActiveTextureUnitIdx = SPARE_TEX_UNIT; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGLAttribArrayState* GrGpuGL::HWGeometryState::bindArrayAndBuffersToDraw( |
| GrGpuGL* gpu, |
| const GrGLVertexBuffer* vbuffer, |
| const GrGLIndexBuffer* ibuffer) { |
| GrAssert(NULL != vbuffer); |
| GrGLAttribArrayState* attribState; |
| |
| // We use a vertex array if we're on a core profile and the verts are in a VBO. |
| if (gpu->glCaps().isCoreProfile() && !vbuffer->isCPUBacked()) { |
| if (NULL == fVBOVertexArray || !fVBOVertexArray->isValid()) { |
| SkSafeUnref(fVBOVertexArray); |
| GrGLuint arrayID; |
| GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| fVBOVertexArray = SkNEW_ARGS(GrGLVertexArray, (gpu, arrayID, attrCount)); |
| } |
| attribState = fVBOVertexArray->bindWithIndexBuffer(ibuffer); |
| } else { |
| if (NULL != ibuffer) { |
| this->setIndexBufferIDOnDefaultVertexArray(gpu, ibuffer->bufferID()); |
| } else { |
| this->setVertexArrayID(gpu, 0); |
| } |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| if (fDefaultVertexArrayAttribState.count() != attrCount) { |
| fDefaultVertexArrayAttribState.resize(attrCount); |
| } |
| attribState = &fDefaultVertexArrayAttribState; |
| } |
| return attribState; |
| } |