| #!/usr/bin/env python |
| |
| import sys |
| from scipy.stats import mannwhitneyu |
| |
| SIGNIFICANCE_THRESHOLD = 0.0001 |
| |
| a,b = {},{} |
| for (path, d) in [(sys.argv[1], a), (sys.argv[2], b)]: |
| for line in open(path): |
| try: |
| tokens = line.split() |
| samples = tokens[:-1] |
| label = tokens[-1] |
| d[label] = map(float, samples) |
| except: |
| pass |
| |
| common = set(a.keys()).intersection(b.keys()) |
| |
| ps = [] |
| for key in common: |
| _, p = mannwhitneyu(a[key], b[key]) # Non-parametric t-test. Doesn't assume normal dist. |
| am, bm = min(a[key]), min(b[key]) |
| ps.append((bm/am, p, key, am, bm)) |
| ps.sort(reverse=True) |
| |
| def humanize(ns): |
| for threshold, suffix in [(1e9, 's'), (1e6, 'ms'), (1e3, 'us'), (1e0, 'ns')]: |
| if ns > threshold: |
| return "%.3g%s" % (ns/threshold, suffix) |
| |
| maxlen = max(map(len, common)) |
| |
| # We print only signficant changes in benchmark timing distribution. |
| bonferroni = SIGNIFICANCE_THRESHOLD / len(ps) # Adjust for the fact we've run multiple tests. |
| for ratio, p, key, am, bm in ps: |
| if p < bonferroni: |
| str_ratio = ('%.2gx' if ratio < 1 else '%.3gx') % ratio |
| print '%*s\t%6s -> %6s\t%s' % (maxlen, key, humanize(am), humanize(bm), str_ratio) |