| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "QuadraticUtilities.h" |
| #include <math.h> |
| |
| /* |
| |
| Numeric Solutions (5.6) suggests to solve the quadratic by computing |
| |
| Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
| |
| and using the roots |
| |
| t1 = Q / A |
| t2 = C / Q |
| |
| */ |
| |
| // note: caller expects multiple results to be sorted smaller first |
| // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
| // analysis of the quadratic equation, suggesting why the following looks at |
| // the sign of B -- and further suggesting that the greatest loss of precision |
| // is in b squared less two a c |
| int quadraticRoots(double A, double B, double C, double t[2]) { |
| B *= 2; |
| double square = B * B - 4 * A * C; |
| if (approximately_negative(square)) { |
| if (!approximately_positive(square)) { |
| return 0; |
| } |
| square = 0; |
| } |
| double squareRt = sqrt(square); |
| double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2; |
| int foundRoots = 0; |
| double ratio = Q / A; |
| if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { |
| if (approximately_less_than_zero(ratio)) { |
| ratio = 0; |
| } else if (approximately_greater_than_one(ratio)) { |
| ratio = 1; |
| } |
| t[0] = ratio; |
| ++foundRoots; |
| } |
| ratio = C / Q; |
| if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { |
| if (approximately_less_than_zero(ratio)) { |
| ratio = 0; |
| } else if (approximately_greater_than_one(ratio)) { |
| ratio = 1; |
| } |
| if (foundRoots == 0 || !approximately_negative(ratio - t[0])) { |
| t[foundRoots++] = ratio; |
| } else if (!approximately_negative(t[0] - ratio)) { |
| t[foundRoots++] = t[0]; |
| t[0] = ratio; |
| } |
| } |
| return foundRoots; |
| } |
| |
| static double derivativeAtT(const double* quad, double t) { |
| double a = t - 1; |
| double b = 1 - 2 * t; |
| double c = t; |
| return a * quad[0] + b * quad[2] + c * quad[4]; |
| } |
| |
| double dx_at_t(const Quadratic& quad, double t) { |
| return derivativeAtT(&quad[0].x, t); |
| } |
| |
| double dy_at_t(const Quadratic& quad, double t) { |
| return derivativeAtT(&quad[0].y, t); |
| } |
| |
| void dxdy_at_t(const Quadratic& quad, double t, _Point& dxy) { |
| double a = t - 1; |
| double b = 1 - 2 * t; |
| double c = t; |
| dxy.x = a * quad[0].x + b * quad[1].x + c * quad[2].x; |
| dxy.y = a * quad[0].y + b * quad[1].y + c * quad[2].y; |
| } |
| |
| void xy_at_t(const Quadratic& quad, double t, double& x, double& y) { |
| double one_t = 1 - t; |
| double a = one_t * one_t; |
| double b = 2 * one_t * t; |
| double c = t * t; |
| if (&x) { |
| x = a * quad[0].x + b * quad[1].x + c * quad[2].x; |
| } |
| if (&y) { |
| y = a * quad[0].y + b * quad[1].y + c * quad[2].y; |
| } |
| } |